en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

沈鹏(1994-),硕士研究生,研究方向为山地农业可持续发展。E-mail:1903501520@qq.com。

通讯作者:

安曈昕,E-mail:tongxinan2012@163.com。

参考文献 1
Li C,Hoffland E,Kuyper T W,et al.Syndromes of production in intercropping impact yield gains[J].Nature Plant,2020,6(6):653-660.
参考文献 2
Zhang X Y,Wu K X,Fullenmichael A,et al.Synergistic effects of vegetation layers of maize and potato intercropping on soil erosion on sloping land in Yunnan Province,China[J].Journal of Mountain Science,2020,17(2):423-434.
参考文献 3
Lian T X,Mu Y,Jin J,et al.Impact of intercropping on the coupling between soil microbial community structure,activity,and nutrient-use efficiencies[J].PeerJ,2019,1(1):14.
参考文献 4
Zhang H,Zeng F,Zou Z,et al.Nitrogen uptake and transfer in a soybean/maize intercropping system in the karst region of southwest Chinas[J].Ecology & Evolution,2017,7(20):8419-8426.
参考文献 5
肖焱波,李隆,张福锁.根瘤菌菌株NM353对小麦/蚕豆间作体系中作物生长及养分吸收的影响[J].植物营养与肥料学报,2006,4(1):89-96.
参考文献 6
Wang X C,Yang W Y,Deng X Y,et al.Effects of nitrogen management on maize nitrogen utilization and residual nitrate nitrogen in soil under maize/soybean and maize/sweet potato relay strip intercropping systems[J].The Journal of Applied Ecology,2014,25(10):2868-2878.
参考文献 7
Wang X,Gao Y,Zhang H,et al.Enhancement of rhizosphere citric acid and decrease of NO3/NH4 + ratio by root interactions facilitate N fixation and transfer[J].Plant and Soil,2019,9(3):169-182.
参考文献 8
Ma X L,Zhu Q L,Geng C X,et al.Contribution of nutrient uptake and utilization on yield advantage in maize and potato intercropping under different nitrogen application rates[J].The Journal of Applied Ecology,2017,28(4):1265.
参考文献 9
伏云珍,马琨,李倩,等.间作作物种间相互作用对马铃薯根际土壤丛枝菌根真菌的影响[J].生态学杂志,2020,28(11):1715-1725.
参考文献 10
赵薇,伊文博,王顶,等.间作对马铃薯种植土壤硝化作用和硝态氮供应的影响[J].应用生态学报,2020,31(12):4171-4179.
参考文献 11
安瞳昕,杨圆满,周锋,等.间作对玉米马铃薯根系生长与分布的影响[J].云南农业大学学报(自然科学版),2018,33(2):363-370.
参考文献 12
Bi Y,Zhang J,Song Z,et al.Arbuscular mycorrhizal fungi alleviate root damage stress induced by simulated coal mining subsidence ground fissures[J].Science of the Total Environment,2019,652(23):398-405.
参考文献 13
Jansa J,Mozafar A,Anken T,et al.Diversity and structure of AMF communities as affected by tillage in a temperate soil[J]. Mycorrhiza,2002,12(5):225-234.
参考文献 14
Xia T,Wang Y J,He Y,et al.An invasive plant experiences greater benefits of root morphology from enhancing nutrient competition associated with arbuscular mycorrhizae in karst soil than a native plant[J].PLoS ONE,2020,15(6):1-18.
参考文献 15
Zhang R,Mu Y,Li X,et al.Response of the arbuscular mycorrhizal fungi diversity and community in maize and soybean rhizosphere soil and roots to intercropping systems with different nitrogen application rates-ScienceDirect[J].Science of the Total Environment,2020,20(11):740-790.
参考文献 16
Hestrin R,Hammer E C,Mueller C W,et al.Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition[J].Communications Biology,2019,2(1):233.
参考文献 17
汪新月,张仕颖,岳献荣,等.接种AMF与间作对红壤上玉米和大豆种间氮素竞争的影响[J].菌物学报,2017,36(7):972-982.
参考文献 18
汪新月,张仕颖,岳献荣,等.隔根与接种FM对红壤上玉米/大豆植株生长及氮素利用的影响[J].植物营养与肥料学报,2017,23(4):1022-1029.
参考文献 19
Wang G,Sheng L,Dan Z,et al.Allocation of nitrogen and carbon is regulated by nodulation and mycorrhizal networks in soybean/maize intercropping system[J].Frontiers in Plant Science,2016,16(7):1901-1902.
参考文献 20
Sciences N.Correction to Supporting Information for Li et al.,Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation[J].Proceedings of the National Academy of Sciences of the United States of America,2016,113(27):3986.
参考文献 21
Chapman N,Miller A J,Lindsey K,et al.Roots,water,and nutrient acquisition:let's get physical[J].Trends in Plant Science,2012,17(12):701-710.
参考文献 22
鲍士旦,土壤农化分析(3 版)[M].北京:中国农业出版社,2000.
参考文献 23
Begum N,Qin C,Ahanger M A,et al.Role of arbuscular mycorrhizal fungi in plant growth regulation:implications in abiotic stress tolerance[J].Frontiers in Plant Science,2019,19(10):1071-1086.
参考文献 24
夏庭君,吴强盛,邵雅东,等.丛枝菌根真菌对福鼎大白茶生长、侧根数和根系内源激素的影响[J].广西植物,2018,38(12):1635-1640.
参考文献 25
Zhan S P,Chen A,Chen C J,et al.Transcriptomic analysis reveals the possible roles of sugar metabolism and export for positive mycorrhizal growth responses in soybean[J]. Physiologia Plantarum,2018,166(3):712-728.
参考文献 26
屈明华,李生,俞元春,等.喀斯特土壤条件下丛枝菌根真菌侵染对任豆幼苗生物量分配和根系结构特征的影响[J]. 生态学杂志,2021,40(3):766-776.
参考文献 27
贾林巧,陈光水,张礼宏,等.常绿阔叶林外生和丛枝菌根树种细根形态和构型性状对氮添加的可塑性响应[J].应用生态学报,2021,32(2):529-537.
参考文献 28
Ren A,Zhu Y,Chen Y,et al.Arbuscular mycorrhizal fungus alters root-sourced signal(abscisic acid)for better drought acclimation in Zea mays L.seedlings[J].Environmental and Experimental Botany,2019,167(19):24-65.
参考文献 29
Lourdes Gil-Cardeza M,Calonne-Salmon M,Gomez E,et al. Short-term chromium(VI)exposure increases phosphorus uptake by the extraradical mycelium of the arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 41833[J].Chemosphere,2017,187(12):27-34.
参考文献 30
Hou L,Zhang X,Feng G,et al.Arbuscular mycorrhizal enhancement of phosphorus uptake and yields of maize under high planting density in the black soil region of China[J].Scientific Reports,2021,11(1):1100-1125.
参考文献 31
Whiteside M D,Digman M A,Gratton E,et al.Organic nitrogen uptake by arbuscular mycorrhizal fungi in a boreal forest[J]. Soil Biology & Biochemistry,2012,55(6):7-13.
参考文献 32
BukovskáP,Bonkowski M,KonvalinkováT,et al.Utilization of organic nitrogen by arbuscular mycorrhizal fungi:is there a specific role for protists and ammonia oxidizers?[J].Mycorrhiza,2018,28(5):465.
参考文献 33
左明雪,孙杰,徐如玉,等.丛枝菌根真菌与有机肥配施对甜玉米根际土壤氮素转化及氮循环微生物功能基因的影响 [J].福建农业学报,2020,35(9):1012-1025.
参考文献 34
张学林,李晓立,何堂庆,等.丛枝菌根真菌对灌浆前期玉米子粒氮代谢及产量和品质的影响[J].河南农业大学学报,2021,3(6):1-7.
参考文献 35
Wang P,Wang Z,Pan Q,et al.Increased biomass accumulation in maize grown in mixed nitrogen supply is mediated by auxin synthesis[J].Journal of Experimental Botany,2019,70(6):1859-1873.
参考文献 36
Ou X,Li S,Liao P,et al.The transcriptome variations of Panaxnotoginseng roots treated with different forms of nitrogen fertilizers[J].BMC Genomics,2019,20(l9):3-5.
参考文献 37
Köhl L,Heijden M.Arbuscular mycorrhizal fungal species differ in their effect on nutrient leaching[J].Soil Biology & Biochemistry,2016,94(11):191-199.
参考文献 38
Eo J K,Eom A H.Differential growth response of various crop species to arbuscular mycorrhizal inoculation[J].Mycobiology,2009,37(1):72-76.
参考文献 39
白灯莎·买买提艾力,张少民,孙良斌.接种丛枝菌根真菌对脱毒马铃薯微型薯生长及产量的影响[J].中国土壤与肥料,2011(1):80-82.
参考文献 40
Ramírez-Flores M R,Bello-Bello E,Rellán-Álvarez R,et al. Inoculation with the mycorrhizal fungus Rhizophagus irregularis modulates the relationship between root growth and nutrient content in maize(Zea mays ssp.L.)[J].Plant Direct,2019,3(12):192-206.
参考文献 41
李煜,赵国红,尹峰,等.岩质边坡覆绿植物的根系形态变化特征及影响因子研究[J].湖南师范大学自然科学学报,2020,43(2):45-52,81.
参考文献 42
张丽丽,谢文锦,付俊,等.不同耐密性玉米品种对根系生长空间的响应[J].玉米科学,2018,26(5):96-101,109.
参考文献 43
Zhang Y,Miao G.Effects of soil root-growing space on root physiological characteristics and grain yield of sorghum[J]. Journal of Applied Ecology,2006,17(4):635-639.
参考文献 44
赵乾旭,史静,夏运生,等.AMF 与隔根对紫色土上玉米 || 大豆种间氮竞争的影响[J].中国农业科学,2017,50(14):2696-2705.
参考文献 45
杨友琼,周锋,吴开贤,等.间作条件下玉米与马铃薯的养分利用特征[J].玉米科学,2016,24(4):116-121.
参考文献 46
潘越,周冀琼,郭川,等.丛枝菌根真菌与根瘤菌对3种豆禾混播植物种间互作的影响[J].草地学报,2021,29(4):644-654.
参考文献 47
金继运,何萍.氮钾营养对春玉米后期碳氮代谢与粒重形成的影响[J].中国农业科学,1999,15(4):57-64.
参考文献 48
蔡明,刘吉利,杨亚亚,等.施氮量对间作马铃薯植株氮素累积及产量的影响[J].干旱地区农业研究,2020,38(2):148-155.
参考文献 49
何萍,金继运,林葆,等,不同氮磷钾用量下春玉米生物产量及其组分动态与养分吸收模式研究[J].植物营养与肥料学报,1998,12(2):123-130.
目录contents

    摘要

    采用不同根系分隔方式(不分隔、尼龙网分隔、塑料膜分隔)和接种丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)来研究玉米(Zea mays L.)间作马铃薯(Solanum tuberosum L.)对土壤氮素吸收利用和作物干物重的影响。结果表明:无论何种分隔方式,接种 AMF 与施用苯菌灵相比,均能增加玉米根系表面积,其中最高增加 29.8%,减少玉米和马铃薯根际土壤总氮、硝态氮、铵态氮含量,增加玉米、马铃薯各器官总氮含量、干物重,其中根际土壤硝态氮含量下降幅度最大,最高分别降低 60.3%、42.1%,玉米籽粒和马铃薯块茎总氮含量最高分别增加 34.4% 和 43.0%,玉米果穗和马铃薯块茎干物重最高分别增加 27.3% 和 28.8%;不同分隔方式对玉米根系表面积、根际土壤氮吸收、各器官总氮含量和干物重均有抑制作用,对马铃薯根际土壤氮吸收、各器官总氮含量和干物质积累均有促进作用,其中不分隔处理玉米根系表面积、籽粒总氮含量和穗干重比塑料布分隔处理最高分别增加 29.8%、29.3% 和 12.5%,根际土壤硝态氮含量降低 28.2%,塑料布分隔处理马铃薯块茎总氮含量和块茎干重比不分隔处理分别增加 13.4% 和 19.0%,根际土壤硝态氮含量最大降低 22.2%。整体上,玉米马铃薯间作不分隔接种 AMF 处理降低根际土壤氮残留量的效果最好,对各器官总氮含量、干物重的促进作用最大,表明玉米马铃薯间作条件下接种 AMF 有利于进一步促进间作群体氮素高效利用和增产增收。

    Abstract

    The effects of intercropping of maize(Zea mays L.)and potato(Solanum tuberosum L.)on soil nitrogen absorption and utilization and crop dry matter weight were studied by different root separation methods (nonseparation,nylon net separation and plastic film separation)and inoculation of arbuscular mycorrhizal fungi(AMF). The results showed,compared with the benomyl application,AMF inoculation increased the root surface area of maize with a maximum increase of 29.8%,reduced the contents of total nitrogen,nitrate nitrogen and ammonium nitrogen in maize and potato rhizosphere soil,and increased the total nitrogen content and dry matter weight of maize and potato organs. Among them,the nitrate nitrogen content in rhizosphere soil decreased the most,with a maximum decrease of 60.3% and 42.1%, the total nitrogen content of maize grain and potato tuber increased by 34.4% and 43.0%,respectively,and the dry matter weight of corn ear and potato tuber increased by 27.3% and 28.8%,respectively.Different separation methods inhibited maize root surface area,rhizosphere soil nitrogen absorption,total nitrogen content and dry matter weight of various organs,and promoted potato rhizosphere soil nitrogen absorption,total nitrogen content of various organs and dry matter accumulation.Among them,the root surface area,grain total nitrogen content and ear dry weight of maize without separation increased by 29.8%,29.3% and 12.5%, respectively,compared with plastic film separation treatment,the nitrate content in rhizosphere soil decreased by 28.2%,the total nitrogen content and dry weight of potato tubers in plastic film separation treatment increased by 13.4% and 19.0%,respectively, compared with non-separation treatment,and the nitrate content in rhizosphere soil decreased by 22.2%.On the whole,maizepotato intercropping without separate inoculation of AMF had the best effect on reducing rhizosphere soil nitrogen,and had the greatest promoting effect on total nitrogen content and dry matter weight of various organs,indicating that inoculation of AMF under maize-potato intercropping conditions was beneficial to further promote the high-efficiency utilization of nitrogen and yield and income of intercropping population.

    关键词

    AMF间作根系作物氮含量土壤氮

  • 间作因资源利用充分,增产潜力大和水土保持效益良好,在云南省坡耕地上被广泛推广应用[1-3]。前人研究表明,禾豆间作根系间的生理作用和根系形态变化会提高豆科固氮根瘤菌的固氮能力,促进氮素转移,增加对土壤氮素的吸收利用[4-7]。对玉米马铃薯间作群体研究发现,玉米马铃薯间作能改变作物根系微生物数量和分布,从而影响土壤氮素供应,同时改变作物根系构型,促进对氮、磷、钾等养分的利用,增加间作群体产量[8-11]。可见,玉米间作大豆或马铃薯均能提高土壤氮素利用率,促进间作群体增产。然而,因豆科固氮根瘤菌、根系形态及根际微生物的影响,土壤氮素的吸收机制存在较大差异。

  • 丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF) 被认为是植物内共生和促进养分吸收的重要土壤微生物,通过促进植物根系伸长和根外菌丝生长,达到扩大作物氮素吸收范围和作物间氮素转运的目的[12-14]。另外,AMF会参与有机物质分解并将分解出的有机态氮素吸收转运给植物,提高土壤氮素供应量[15-16]。汪新月等[17]的研究表明,玉米间作大豆接种AMF能增加土壤氮素吸收量,促进作物氮素积累,增加间作群体干物重,且玉米间作大豆接种AMF后间作群体氮素吸收量增加,是豆科固氮根瘤菌和AMF共同作用的结果[18-19]。可见,玉米大豆间作接种AMF对间作群体氮素吸收和产量形成的促进作用是豆科固氮根瘤菌和AMF共同作用形成的。

  • 前人对于玉米大豆间作和大豆、玉米单作接种AMF对土壤氮素利用和作物产量的影响已经证明,根系形态、作物间根系交叉和根外菌丝是影响禾豆间作模式氮素利用和生长的重要因素[720-21],但关于根系形态、作物间根系交叉和根外菌丝对玉米马铃薯间作群体土壤氮素吸收及干物重的影响研究报道较少。为进一步发挥玉米间作马铃薯群体的养分利用和增产优势,对玉米间作马铃薯群体接种AMF,并进行根系分隔,探究不同分隔方式和接种AMF对玉米间作马铃薯群体土壤氮素利用和干物重的影响,为AMF促进玉米间作马铃薯群体氮肥高效利用和间作增产优势提供科学依据。

  • 1 材料与方法

  • 1.1 供试土壤

  • 供试土壤为红壤,取自云南省昆明市云南农业大学后山教学科研试验农场(25°18′ N,102°45′ E,海拔1930m),土壤pH 7.18,有机质47.78g/kg,全氮含量2.10g/kg,全磷含量2.77g/kg,全钾含量2.09g/kg,碱解氮含量169.67mg/kg,有效磷含量117.78mg/kg,速效钾含量230.59mg/kg。

  • 1.2 供试材料

  • 玉米(Zea mays L.):点谷1号,由云南省农业科学研究院提供;马铃薯(Solanum tuberosum L.):云薯88;丛枝菌根真菌菌剂:根内根孢囊霉(Rhizophagus intraradices,Ri),购于浙江世佳伊宝科技股份有限公司,孢子数量≥ 70000个/L,苯菌灵,由江苏蓝丰生物化工股份有限公司提供。

  • 1.3 试验设计

  • 盆栽模拟试验于2020年5~10月在云南农业大学科研教学试验农场进行。试验采用双因素设计,共6个处理,重复5次,设置接种AMF与否和分隔方式两个因素,其中接种AMF因素设置2个水平:接种AMF(A)和施用抑菌剂(B),抑菌剂为苯菌灵(1-丁基氨甲酰基-2-苯并咪唑),可以抑制AMF酶活性和菌根定殖,但不能完全消除; 此外,分隔方式设置不分隔(玉米、马铃薯间无任何分隔物,根系、菌丝自由穿插,记为NS)、尼龙网分隔(采用30μm孔径尼龙网分隔,根系不能通过,菌丝可以穿过,记为PS)、塑料布分隔(根系、菌丝均不能穿过,记为CS)。所有处理其他田间管理措施均保持一致。

  • 1.4 作物种植与管理

  • 盆栽所用花盆为外口径48cm,内口径40cm,底直径25cm,高31cm,每盆各种一株玉米和马铃薯,保证玉米、马铃薯根系所占土壤体积均等,每盆土重21kg。马铃薯选取均匀一致的种薯直播,玉米育苗移栽。种植时每株马铃薯、玉米底肥施用过磷酸钙8.4g、尿素2.4g、硫酸钾1.6g,在玉米大喇叭口期、抽雄期、孕穗期分别给每株玉米和马铃薯施用3g尿素。接种AMF处理在每株玉米、马铃薯根际土壤均匀混入20g菌剂,抑菌处理:将25g体积分数为50%的苯菌灵溶于20L的水中作为抑菌处理剂,每15d处理1次。

  • 1.5 试验指标测定

  • 根系测定:在玉米果穗成熟期将植株整个根土混合体取出,用水冲洗干净,经Epson Perfection V700扫描仪(Seiko Epson,日本)扫描每株完整根系后,用Win RHI-ZO PRO STD4800型(Regent,加拿大)根系图像处理软件分析得出根体积、根长、根尖数、根表面积、根系平均直径等参数。

  • 植株总氮含量测定:在玉米果穗成熟期、马铃薯块茎成熟期按器官分别收获,置于烘箱中105℃ 杀青30min,80℃下烘干至恒重后称重、粉碎,采用半微量凯氏定氮法测定总氮含量;

  • 土壤各形态氮含量测定:在玉米果穗成熟期、马铃薯块茎成熟期将根土复合体取出,取附着在根系上的土壤500g,采用四分法选取土样,对根际土壤总氮、硝态氮、铵态氮含量进行测定。土壤总氮采用半微量凯氏法(不包含硝态氮);土壤硝态氮采用紫外分光光度法;土壤铵态氮采用靛酚蓝比色法[22]

  • 1.6 试验数据处理与分析

  • 试验数据采用Excel 2019进行处理,采用SPSS 25.0进行方差分析,检验接种AMF处理和不同分隔方式间的交互作用,在交互作用显著的情况下对所有复合处理进行Duncan多重比较 (P<0.05),分析接种AMF-不同分隔方式复合处理间的差异显著性。

  • 2 结果与分析

  • 2.1 接种AMF和不同分隔方式对玉米根系性状的影响

  • 由表1可知,经双因素方差分析,接种AMF处理和不同分隔方式对玉米根系性状有极显著影响(P<0.01),对根长、表面积、总体积、根尖数、 d<0.5mm根长、0.5<d<1.0mm根长均有显著交互作用(P<0.05)。各处理间玉米根长、表面积、总体积、根尖数、平均直径、0<d<1.5mm根长的差异均达到显著水平(P<0.05)。所有处理中NS-A玉米根系总长、表面积、根尖数、0<d<1.5mm根长均最大,根系平均直径最小。

  • 表1 接种AMF和不同分隔方式玉米根系性状方差分析

  • 注:d为根系直径。表中数据表示为平均值 ± 标准差。同列不同小写和大写字母分别表示处理间差异显著(P<0.05)和极显著(P<0.01)。变异来源中的数据表示两因素交互作用的 F 值。**、* 分别表示 P<0.01、P<0.05。下同。

  • 接种AMF处理与施用苯菌灵处理相比,玉米根长、表面积、总体积、根尖数、直径为0~1.5mm的根长均显著增加,玉米总根长、d<0.5mm根长、表面积、总体积、根尖数最多分别增加27.9%、33.2%、11.4%、18.6%、25.0%,玉米根系平均直径显著减小,最大降低5.4%。

  • 不同分隔方式对玉米根长、表面积、总体积、根尖数、平均直径、d<0.5mm根长、0.5<d<1.0mm根长、1.0<d<1.5mm根长均有抑制作用,作用大小依次为不分隔> 尼龙网分隔> 塑料布分隔。接种AMF条件下,玉米总根长、d<0.5mm根长、表面积、总体积、根尖数最多分别增加45.5%、32.9%、22.0%、 20.6%、33.9%,玉米根系平均直径最大减小8.3%。

  • 接种AMF能促进玉米不同直径的根系长度和数量增加,对0~0.5mm直径的玉米根系长度和数量促进作用最大,根系直径越大,促进作用越小,因此,导致玉米根系平均直径下降;不同分隔方式会对玉米根长产生抑制作用,塑料布分隔的抑制作用最大,这可能与根系分泌物不能流动以及根系生长空间有关,说明玉米间作马铃薯群体接种AMF有利于玉米根系生长发育,增加根系吸收面积。

  • 2.2 接种AMF和不同分隔方式对玉米、马铃薯收获期根际土壤氮含量的影响

  • 由表2可知,经双因素方差分析,不同处理间马铃薯、玉米根际土壤总氮、硝态氮、铵态氮含量有极显著的差异(P<0.01),接种AMF处理和不同分隔方式对玉米、马铃薯根际土壤总氮、硝态氮和铵态氮含量均存在显著的交互作用(P<0.05),对玉米根际土壤铵态氮含量存在极显著交互作用 (P<0.01)。所有处理中NS-A处理玉米收获期根际土壤硝态氮、铵态氮、总氮含量最低,CS-A处理马铃薯收获期根际土壤硝态氮、铵态氮、总氮含量最低。

  • 接种AMF处理与施用苯菌灵处理相比,玉米、马铃薯收获期根际土壤总氮、硝态氮、铵态氮含量均显著降低,其中总氮含量最多分别降低11.4%、 14.9%,硝态氮含量最多分别降低28.8%、22.7%,铵态氮含量最多分别降低18.7%、21.2%,马铃薯、玉米根际土壤硝态氮含量下降幅度均最大。

  • 不同分隔方式,对玉米、马铃薯收获期根际土壤总氮、硝态氮、铵态氮含量的影响不一致,玉米收获期根际土壤硝态氮、铵态氮、总氮含量随分隔程度增大而增加,马铃薯收获期根际土壤硝态氮、铵态氮、总氮含量随分隔程度增大而降低。接种AMF条件下,玉米收获期根际土壤硝态氮、铵态氮含量最多分别降低28.2%、23.7%,马铃薯根际土壤硝态氮、铵态氮含量最多分别降低22.2%、 19.2%。

  • 表2 接种AMF和不同分隔方式玉米、马铃薯根际土壤氮含量方差分析

  • 接种AMF能增加玉米、马铃薯对根际土壤氮素的吸收,尤其是对硝态氮的吸收;根系分隔程度越大对玉米根际氮素吸收越不利,对马铃薯根际氮素吸收越有利,这可能是阻断菌根菌丝生长蔓延和完全分隔限制根系生长的原因。说明对玉米马铃薯间作群体接种AMF能促进根系对土壤氮素的吸收利用,降低根际土壤氮含量,NS-A处理促进根系氮素吸收的效果最佳。

  • 2.3 接种AMF和不同分隔方式对马铃薯、玉米各器官总氮含量的影响

  • 由表3可知,经双因素方差分析,接种AMF和根系不同分隔方式对马铃薯、玉米各器官总氮含量均存在极显著影响(P<0.01)。接种AMF和根系不同分隔方式对马铃薯块茎总氮含量存在极显著交互作用(P<0.01),对马铃薯茎叶、根系总氮含量存在显著交互作用(P<0.05),对玉米籽粒、叶片总氮含量有极显著交互作用 (P<0.01),对玉米根系总氮含量存在显著交互作 (P<0.05)。所有处理中NS-A处理玉米各器官总氮含量最高,CS-A处理马铃薯各器官总氮含量最高,间作群体整体总氮含量表现为NS-A>PS-A> CS-A。

  • 表3 接种AMF和不同分隔方式玉米、马铃薯各器官总氮含量方差分析

  • 各处理间马铃薯、玉米各器官总氮含量均表现为接种AMF处理> 施用苯菌灵处理,不分隔处理玉米籽粒、叶片、茎秆、根系总氮含量平均增加15.05%,尼龙网分隔处理平均增加7.5%,塑料布分隔处理平均增加6.9%。马铃薯块茎、茎叶、根系总氮含量塑料布分隔平均增加11.9%,尼龙网分隔处理平均增加6.1%,不分隔处理平均增加12.6%。

  • 不同分隔方式下,玉米各个器官氮含量均表现为不分隔> 尼龙网分隔> 塑料布分隔,马铃薯与之相反,不分隔处理玉米籽粒、叶片、茎秆、根系总氮含量最多分别增加29.3%、23.9%、19.1%、 17.6%,塑料布分隔处理马铃薯块茎、茎叶、根系总氮含量最多分别增加13.4%、17.4%、11.5%。

  • 以上说明,对玉米马铃薯间作群体接种AMF能促进玉米、马铃薯各器官总氮含量增加;分隔程度越大对玉米总氮积累的抑制作用越大,对马铃薯总氮积累的促进作用越大,NS-A处理对间作群体总氮含量积累的促进效果最好。

  • 2.4 接种AMF和分隔程度对玉米、马铃薯各器官干重的影响

  • 由表4可知,经双因素方差分析,接种AMF和不同分隔方式对马铃薯、玉米各器官干重均有极显著影响(P<0.01),接种AMF和不同分隔方式对马铃薯各器官干重有显著交互作用(P<0.05),对玉米叶片干重有极显著交互作用(P<0.01),对穗干重、根系干重、总干重有显著交互作用 (P<0.05)。所有处理中NS-A处理玉米各器官干重最大,CS-A处理马铃薯各器官干重最大,间作群体总干重大小表现为NS-A>PS-A>CS-A。

  • 表4 接种AMF和不同分隔方式玉米、马铃薯各器官干重方差分析

  • 接种AMF处理与施用苯菌灵处理相比,均能增加马铃薯、玉米各器官干重。不分隔处理玉米各器官干重平均增加7.33%,尼龙网分隔处理平均增加10.2%,塑料布分隔处理平均增加5.9%;马铃薯各器官干重塑料布分隔处理平均增加9.7%,尼龙网分隔处理平均增加7.1%,不分隔处理平均增加8.7%。

  • 不同分隔方式下,玉米各器官干重均依次为不分隔> 尼龙网分隔> 塑料布分隔,马铃薯各器官干重与之相反。不分隔处理玉米穗干重、叶片干重、茎秆干重、根系干重最多分别增加12.5%、28.4%、 23.2%、29.1%,塑料布分隔处理马铃薯块茎干重、茎叶干重、根系干重最多分别增加19.0%、14.2%、 26.3%。

  • 说明玉米马铃薯间作群体接种AMF有利于增加玉米、马铃薯各器官干重;根系分隔不利于玉米各器官干物质积累,有利于马铃薯各器官干物质积累,塑料布分隔的作用最大,NS-A处理对间作群体干物质积累的促进效果最好。

  • 3 讨论

  • 3.1 接种AMF对间作群体土壤氮素利用和干物重的影响

  • 接种AMF处理能显著增加玉米根系根尖数、根系总长和根系表面积,降低根系平均直径,增加根系对土壤氮素的吸收量。研究表明,AMF与大豆、玉米共生会促进转运蛋白基因和转化酶基因的表达,促进根芽数量增加,同时增加根系中内源激素的含量,促进根系细胞伸长、分裂及生根,增加根系数量和表面积[23-27],根系直径减小,使根系能穿过土壤中的微小孔隙,增加根系的氮素吸收量[28]。另外,AMF与作物共生会产生庞大的菌丝网络,来吸收根系不能到达区域和不能穿过的微细土壤孔隙吸收土壤氮素[29-30],还能与土壤中微生物竞争有机物质分解物并将有机物释放的氮素转运给植物[31],增加植物对土壤氮素的获取,降低土壤氮素含量[1632]。本试验结果表明,接种AMF玉米、马铃薯根际土壤总氮、硝态氮、铵态氮均显著下降,这与汪新月等[18]的研究结果一致。

  • 接种AMF能提高玉米、马铃薯各器官总氮含量,增加间作群体干物重。左明雪等[33]的研究表明,玉米接种AMF会促进玉米硝酸还原酶(NR)、谷氨酸合酶(GOGAT)和谷氨酰胺合成酶(GS) 活性显著增加,促进玉米氮素高效利用;张学林等[34]研究发现,玉米与AMF共生后能显著增强灌浆前期玉米籽粒氮代谢酶的活性,提高玉米籽粒总氮含量。本研究结果表明,玉米、马铃薯接种AMF后各器官总氮含量均显著增加,这可能与玉米接种AMF后氮代谢酶活性增加有关。研究表明,改善根系吸收能力和根外菌丝生长会增加作物对各形态氮素的吸收利用,不仅能促进光合作用,还能通过增加生长素来扩大叶面积,促进碳和氮的同化利用,对干物重增加产生直接的影响[35-37]。本研究结果表明,对玉米马铃薯间作群体接种AMF能显著增加其干物重,这与前人研究结果一致[2338-40]。但关于马铃薯与AMF共生促进氮素利用及干物质增加的相关研究报道较少,其机制尚不清晰,还有待进一步研究。可见,对玉米马铃薯间作群体接种AMF能改善玉米根系性状,在菌根菌丝和根系共同作用下提高间作群体对土壤氮素的吸收利用,增加玉米马铃薯间作群体植株氮素含量和干物重,对进一步扩大玉米马铃薯间作的氮素利用和增产优势意义重大。

  • 3.2 不同分隔方式对间作群体土壤氮素利用和干物重的影响

  • 不同分隔方式对玉米、马铃薯土壤氮素利用和干物重积累的影响不一致,对玉米土壤氮素利用和干物重积累有抑制作用,对马铃薯土壤氮素利用和干物质积累有促进作用。李煜等[41]、张丽丽等[42] 和Zhang等[43]研究表明,玉米根系生长空间降低会导致玉米侧根发育不良,根系表面积及生物量均显著下降,本试验结果表明,尼龙网分隔和塑料布分隔,玉米根长、表面积等均显著降低,与张丽丽等[42]的研究结果一致。另外,根系分隔会抑制根系和根外菌丝向马铃薯根际延展,减少玉米对马铃薯根系生长空间的侵占和根际土壤氮素的吸收,使马铃薯能吸收更多的土壤氮素[44]。因此,本试验中塑料布分隔处理,马铃薯收获期根际土壤总氮、硝态氮、铵态氮含量最低,各器官总氮含量最高,玉米与之相反。大量研究表明,玉米马铃薯间作群体中玉米处于养分竞争优势地位[45],且接种AMF会扩大优势物种的竞争优势[46],本试验中根系不分隔处理玉米根际土壤氮含量低于其他两种分隔方式,各器官总氮含量高于其他两种分隔方式,说明间作不分隔有利于发挥玉米在间作群体中的养分竞争优势,该结果与前人研究结果一致[1841]。研究表明,根系氮素吸收能力和吸收面积会显著影响植株氮素含量,且氮素吸收量对干物质积累量有显著影响[47-49],本试验结果表明,玉米和马铃薯干物质积累量与根际氮素残留量成负相关,与各器官氮含量呈正相关,可见,根系分隔通过限制根系生长和菌丝延展来降低氮素吸收,从而影响玉米、马铃薯的氮含量和干物质积累量。间作不分隔通过根系和菌根菌丝延展提高了间作群体对土壤氮素的吸收,促进了间作群体的干物重增加。

  • 4 结论

  • 玉米马铃薯间作接种AMF能促进玉米、马铃薯对根际土壤总氮、硝态氮和铵态氮的吸收利用,增加各器官总氮含量和干物重。

  • 根系不同分隔方式对马铃薯氮素利用及干物质积累有促进作用,但对玉米氮素利用及干物质积累有抑制作用。

  • 玉米马铃薯间作不分隔接种AMF群体对土壤氮素利用及干物质积累的促进效果最好,有利于促进玉米间作马铃薯群体氮素高效利用和产量增加。

  • 参考文献

    • [1] Li C,Hoffland E,Kuyper T W,et al.Syndromes of production in intercropping impact yield gains[J].Nature Plant,2020,6(6):653-660.

    • [2] Zhang X Y,Wu K X,Fullenmichael A,et al.Synergistic effects of vegetation layers of maize and potato intercropping on soil erosion on sloping land in Yunnan Province,China[J].Journal of Mountain Science,2020,17(2):423-434.

    • [3] Lian T X,Mu Y,Jin J,et al.Impact of intercropping on the coupling between soil microbial community structure,activity,and nutrient-use efficiencies[J].PeerJ,2019,1(1):14.

    • [4] Zhang H,Zeng F,Zou Z,et al.Nitrogen uptake and transfer in a soybean/maize intercropping system in the karst region of southwest Chinas[J].Ecology & Evolution,2017,7(20):8419-8426.

    • [5] 肖焱波,李隆,张福锁.根瘤菌菌株NM353对小麦/蚕豆间作体系中作物生长及养分吸收的影响[J].植物营养与肥料学报,2006,4(1):89-96.

    • [6] Wang X C,Yang W Y,Deng X Y,et al.Effects of nitrogen management on maize nitrogen utilization and residual nitrate nitrogen in soil under maize/soybean and maize/sweet potato relay strip intercropping systems[J].The Journal of Applied Ecology,2014,25(10):2868-2878.

    • [7] Wang X,Gao Y,Zhang H,et al.Enhancement of rhizosphere citric acid and decrease of NO3/NH4 + ratio by root interactions facilitate N fixation and transfer[J].Plant and Soil,2019,9(3):169-182.

    • [8] Ma X L,Zhu Q L,Geng C X,et al.Contribution of nutrient uptake and utilization on yield advantage in maize and potato intercropping under different nitrogen application rates[J].The Journal of Applied Ecology,2017,28(4):1265.

    • [9] 伏云珍,马琨,李倩,等.间作作物种间相互作用对马铃薯根际土壤丛枝菌根真菌的影响[J].生态学杂志,2020,28(11):1715-1725.

    • [10] 赵薇,伊文博,王顶,等.间作对马铃薯种植土壤硝化作用和硝态氮供应的影响[J].应用生态学报,2020,31(12):4171-4179.

    • [11] 安瞳昕,杨圆满,周锋,等.间作对玉米马铃薯根系生长与分布的影响[J].云南农业大学学报(自然科学版),2018,33(2):363-370.

    • [12] Bi Y,Zhang J,Song Z,et al.Arbuscular mycorrhizal fungi alleviate root damage stress induced by simulated coal mining subsidence ground fissures[J].Science of the Total Environment,2019,652(23):398-405.

    • [13] Jansa J,Mozafar A,Anken T,et al.Diversity and structure of AMF communities as affected by tillage in a temperate soil[J]. Mycorrhiza,2002,12(5):225-234.

    • [14] Xia T,Wang Y J,He Y,et al.An invasive plant experiences greater benefits of root morphology from enhancing nutrient competition associated with arbuscular mycorrhizae in karst soil than a native plant[J].PLoS ONE,2020,15(6):1-18.

    • [15] Zhang R,Mu Y,Li X,et al.Response of the arbuscular mycorrhizal fungi diversity and community in maize and soybean rhizosphere soil and roots to intercropping systems with different nitrogen application rates-ScienceDirect[J].Science of the Total Environment,2020,20(11):740-790.

    • [16] Hestrin R,Hammer E C,Mueller C W,et al.Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition[J].Communications Biology,2019,2(1):233.

    • [17] 汪新月,张仕颖,岳献荣,等.接种AMF与间作对红壤上玉米和大豆种间氮素竞争的影响[J].菌物学报,2017,36(7):972-982.

    • [18] 汪新月,张仕颖,岳献荣,等.隔根与接种FM对红壤上玉米/大豆植株生长及氮素利用的影响[J].植物营养与肥料学报,2017,23(4):1022-1029.

    • [19] Wang G,Sheng L,Dan Z,et al.Allocation of nitrogen and carbon is regulated by nodulation and mycorrhizal networks in soybean/maize intercropping system[J].Frontiers in Plant Science,2016,16(7):1901-1902.

    • [20] Sciences N.Correction to Supporting Information for Li et al.,Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation[J].Proceedings of the National Academy of Sciences of the United States of America,2016,113(27):3986.

    • [21] Chapman N,Miller A J,Lindsey K,et al.Roots,water,and nutrient acquisition:let's get physical[J].Trends in Plant Science,2012,17(12):701-710.

    • [22] 鲍士旦,土壤农化分析(3 版)[M].北京:中国农业出版社,2000.

    • [23] Begum N,Qin C,Ahanger M A,et al.Role of arbuscular mycorrhizal fungi in plant growth regulation:implications in abiotic stress tolerance[J].Frontiers in Plant Science,2019,19(10):1071-1086.

    • [24] 夏庭君,吴强盛,邵雅东,等.丛枝菌根真菌对福鼎大白茶生长、侧根数和根系内源激素的影响[J].广西植物,2018,38(12):1635-1640.

    • [25] Zhan S P,Chen A,Chen C J,et al.Transcriptomic analysis reveals the possible roles of sugar metabolism and export for positive mycorrhizal growth responses in soybean[J]. Physiologia Plantarum,2018,166(3):712-728.

    • [26] 屈明华,李生,俞元春,等.喀斯特土壤条件下丛枝菌根真菌侵染对任豆幼苗生物量分配和根系结构特征的影响[J]. 生态学杂志,2021,40(3):766-776.

    • [27] 贾林巧,陈光水,张礼宏,等.常绿阔叶林外生和丛枝菌根树种细根形态和构型性状对氮添加的可塑性响应[J].应用生态学报,2021,32(2):529-537.

    • [28] Ren A,Zhu Y,Chen Y,et al.Arbuscular mycorrhizal fungus alters root-sourced signal(abscisic acid)for better drought acclimation in Zea mays L.seedlings[J].Environmental and Experimental Botany,2019,167(19):24-65.

    • [29] Lourdes Gil-Cardeza M,Calonne-Salmon M,Gomez E,et al. Short-term chromium(VI)exposure increases phosphorus uptake by the extraradical mycelium of the arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 41833[J].Chemosphere,2017,187(12):27-34.

    • [30] Hou L,Zhang X,Feng G,et al.Arbuscular mycorrhizal enhancement of phosphorus uptake and yields of maize under high planting density in the black soil region of China[J].Scientific Reports,2021,11(1):1100-1125.

    • [31] Whiteside M D,Digman M A,Gratton E,et al.Organic nitrogen uptake by arbuscular mycorrhizal fungi in a boreal forest[J]. Soil Biology & Biochemistry,2012,55(6):7-13.

    • [32] BukovskáP,Bonkowski M,KonvalinkováT,et al.Utilization of organic nitrogen by arbuscular mycorrhizal fungi:is there a specific role for protists and ammonia oxidizers?[J].Mycorrhiza,2018,28(5):465.

    • [33] 左明雪,孙杰,徐如玉,等.丛枝菌根真菌与有机肥配施对甜玉米根际土壤氮素转化及氮循环微生物功能基因的影响 [J].福建农业学报,2020,35(9):1012-1025.

    • [34] 张学林,李晓立,何堂庆,等.丛枝菌根真菌对灌浆前期玉米子粒氮代谢及产量和品质的影响[J].河南农业大学学报,2021,3(6):1-7.

    • [35] Wang P,Wang Z,Pan Q,et al.Increased biomass accumulation in maize grown in mixed nitrogen supply is mediated by auxin synthesis[J].Journal of Experimental Botany,2019,70(6):1859-1873.

    • [36] Ou X,Li S,Liao P,et al.The transcriptome variations of Panaxnotoginseng roots treated with different forms of nitrogen fertilizers[J].BMC Genomics,2019,20(l9):3-5.

    • [37] Köhl L,Heijden M.Arbuscular mycorrhizal fungal species differ in their effect on nutrient leaching[J].Soil Biology & Biochemistry,2016,94(11):191-199.

    • [38] Eo J K,Eom A H.Differential growth response of various crop species to arbuscular mycorrhizal inoculation[J].Mycobiology,2009,37(1):72-76.

    • [39] 白灯莎·买买提艾力,张少民,孙良斌.接种丛枝菌根真菌对脱毒马铃薯微型薯生长及产量的影响[J].中国土壤与肥料,2011(1):80-82.

    • [40] Ramírez-Flores M R,Bello-Bello E,Rellán-Álvarez R,et al. Inoculation with the mycorrhizal fungus Rhizophagus irregularis modulates the relationship between root growth and nutrient content in maize(Zea mays ssp.L.)[J].Plant Direct,2019,3(12):192-206.

    • [41] 李煜,赵国红,尹峰,等.岩质边坡覆绿植物的根系形态变化特征及影响因子研究[J].湖南师范大学自然科学学报,2020,43(2):45-52,81.

    • [42] 张丽丽,谢文锦,付俊,等.不同耐密性玉米品种对根系生长空间的响应[J].玉米科学,2018,26(5):96-101,109.

    • [43] Zhang Y,Miao G.Effects of soil root-growing space on root physiological characteristics and grain yield of sorghum[J]. Journal of Applied Ecology,2006,17(4):635-639.

    • [44] 赵乾旭,史静,夏运生,等.AMF 与隔根对紫色土上玉米 || 大豆种间氮竞争的影响[J].中国农业科学,2017,50(14):2696-2705.

    • [45] 杨友琼,周锋,吴开贤,等.间作条件下玉米与马铃薯的养分利用特征[J].玉米科学,2016,24(4):116-121.

    • [46] 潘越,周冀琼,郭川,等.丛枝菌根真菌与根瘤菌对3种豆禾混播植物种间互作的影响[J].草地学报,2021,29(4):644-654.

    • [47] 金继运,何萍.氮钾营养对春玉米后期碳氮代谢与粒重形成的影响[J].中国农业科学,1999,15(4):57-64.

    • [48] 蔡明,刘吉利,杨亚亚,等.施氮量对间作马铃薯植株氮素累积及产量的影响[J].干旱地区农业研究,2020,38(2):148-155.

    • [49] 何萍,金继运,林葆,等,不同氮磷钾用量下春玉米生物产量及其组分动态与养分吸收模式研究[J].植物营养与肥料学报,1998,12(2):123-130.

  • 参考文献

    • [1] Li C,Hoffland E,Kuyper T W,et al.Syndromes of production in intercropping impact yield gains[J].Nature Plant,2020,6(6):653-660.

    • [2] Zhang X Y,Wu K X,Fullenmichael A,et al.Synergistic effects of vegetation layers of maize and potato intercropping on soil erosion on sloping land in Yunnan Province,China[J].Journal of Mountain Science,2020,17(2):423-434.

    • [3] Lian T X,Mu Y,Jin J,et al.Impact of intercropping on the coupling between soil microbial community structure,activity,and nutrient-use efficiencies[J].PeerJ,2019,1(1):14.

    • [4] Zhang H,Zeng F,Zou Z,et al.Nitrogen uptake and transfer in a soybean/maize intercropping system in the karst region of southwest Chinas[J].Ecology & Evolution,2017,7(20):8419-8426.

    • [5] 肖焱波,李隆,张福锁.根瘤菌菌株NM353对小麦/蚕豆间作体系中作物生长及养分吸收的影响[J].植物营养与肥料学报,2006,4(1):89-96.

    • [6] Wang X C,Yang W Y,Deng X Y,et al.Effects of nitrogen management on maize nitrogen utilization and residual nitrate nitrogen in soil under maize/soybean and maize/sweet potato relay strip intercropping systems[J].The Journal of Applied Ecology,2014,25(10):2868-2878.

    • [7] Wang X,Gao Y,Zhang H,et al.Enhancement of rhizosphere citric acid and decrease of NO3/NH4 + ratio by root interactions facilitate N fixation and transfer[J].Plant and Soil,2019,9(3):169-182.

    • [8] Ma X L,Zhu Q L,Geng C X,et al.Contribution of nutrient uptake and utilization on yield advantage in maize and potato intercropping under different nitrogen application rates[J].The Journal of Applied Ecology,2017,28(4):1265.

    • [9] 伏云珍,马琨,李倩,等.间作作物种间相互作用对马铃薯根际土壤丛枝菌根真菌的影响[J].生态学杂志,2020,28(11):1715-1725.

    • [10] 赵薇,伊文博,王顶,等.间作对马铃薯种植土壤硝化作用和硝态氮供应的影响[J].应用生态学报,2020,31(12):4171-4179.

    • [11] 安瞳昕,杨圆满,周锋,等.间作对玉米马铃薯根系生长与分布的影响[J].云南农业大学学报(自然科学版),2018,33(2):363-370.

    • [12] Bi Y,Zhang J,Song Z,et al.Arbuscular mycorrhizal fungi alleviate root damage stress induced by simulated coal mining subsidence ground fissures[J].Science of the Total Environment,2019,652(23):398-405.

    • [13] Jansa J,Mozafar A,Anken T,et al.Diversity and structure of AMF communities as affected by tillage in a temperate soil[J]. Mycorrhiza,2002,12(5):225-234.

    • [14] Xia T,Wang Y J,He Y,et al.An invasive plant experiences greater benefits of root morphology from enhancing nutrient competition associated with arbuscular mycorrhizae in karst soil than a native plant[J].PLoS ONE,2020,15(6):1-18.

    • [15] Zhang R,Mu Y,Li X,et al.Response of the arbuscular mycorrhizal fungi diversity and community in maize and soybean rhizosphere soil and roots to intercropping systems with different nitrogen application rates-ScienceDirect[J].Science of the Total Environment,2020,20(11):740-790.

    • [16] Hestrin R,Hammer E C,Mueller C W,et al.Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition[J].Communications Biology,2019,2(1):233.

    • [17] 汪新月,张仕颖,岳献荣,等.接种AMF与间作对红壤上玉米和大豆种间氮素竞争的影响[J].菌物学报,2017,36(7):972-982.

    • [18] 汪新月,张仕颖,岳献荣,等.隔根与接种FM对红壤上玉米/大豆植株生长及氮素利用的影响[J].植物营养与肥料学报,2017,23(4):1022-1029.

    • [19] Wang G,Sheng L,Dan Z,et al.Allocation of nitrogen and carbon is regulated by nodulation and mycorrhizal networks in soybean/maize intercropping system[J].Frontiers in Plant Science,2016,16(7):1901-1902.

    • [20] Sciences N.Correction to Supporting Information for Li et al.,Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation[J].Proceedings of the National Academy of Sciences of the United States of America,2016,113(27):3986.

    • [21] Chapman N,Miller A J,Lindsey K,et al.Roots,water,and nutrient acquisition:let's get physical[J].Trends in Plant Science,2012,17(12):701-710.

    • [22] 鲍士旦,土壤农化分析(3 版)[M].北京:中国农业出版社,2000.

    • [23] Begum N,Qin C,Ahanger M A,et al.Role of arbuscular mycorrhizal fungi in plant growth regulation:implications in abiotic stress tolerance[J].Frontiers in Plant Science,2019,19(10):1071-1086.

    • [24] 夏庭君,吴强盛,邵雅东,等.丛枝菌根真菌对福鼎大白茶生长、侧根数和根系内源激素的影响[J].广西植物,2018,38(12):1635-1640.

    • [25] Zhan S P,Chen A,Chen C J,et al.Transcriptomic analysis reveals the possible roles of sugar metabolism and export for positive mycorrhizal growth responses in soybean[J]. Physiologia Plantarum,2018,166(3):712-728.

    • [26] 屈明华,李生,俞元春,等.喀斯特土壤条件下丛枝菌根真菌侵染对任豆幼苗生物量分配和根系结构特征的影响[J]. 生态学杂志,2021,40(3):766-776.

    • [27] 贾林巧,陈光水,张礼宏,等.常绿阔叶林外生和丛枝菌根树种细根形态和构型性状对氮添加的可塑性响应[J].应用生态学报,2021,32(2):529-537.

    • [28] Ren A,Zhu Y,Chen Y,et al.Arbuscular mycorrhizal fungus alters root-sourced signal(abscisic acid)for better drought acclimation in Zea mays L.seedlings[J].Environmental and Experimental Botany,2019,167(19):24-65.

    • [29] Lourdes Gil-Cardeza M,Calonne-Salmon M,Gomez E,et al. Short-term chromium(VI)exposure increases phosphorus uptake by the extraradical mycelium of the arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 41833[J].Chemosphere,2017,187(12):27-34.

    • [30] Hou L,Zhang X,Feng G,et al.Arbuscular mycorrhizal enhancement of phosphorus uptake and yields of maize under high planting density in the black soil region of China[J].Scientific Reports,2021,11(1):1100-1125.

    • [31] Whiteside M D,Digman M A,Gratton E,et al.Organic nitrogen uptake by arbuscular mycorrhizal fungi in a boreal forest[J]. Soil Biology & Biochemistry,2012,55(6):7-13.

    • [32] BukovskáP,Bonkowski M,KonvalinkováT,et al.Utilization of organic nitrogen by arbuscular mycorrhizal fungi:is there a specific role for protists and ammonia oxidizers?[J].Mycorrhiza,2018,28(5):465.

    • [33] 左明雪,孙杰,徐如玉,等.丛枝菌根真菌与有机肥配施对甜玉米根际土壤氮素转化及氮循环微生物功能基因的影响 [J].福建农业学报,2020,35(9):1012-1025.

    • [34] 张学林,李晓立,何堂庆,等.丛枝菌根真菌对灌浆前期玉米子粒氮代谢及产量和品质的影响[J].河南农业大学学报,2021,3(6):1-7.

    • [35] Wang P,Wang Z,Pan Q,et al.Increased biomass accumulation in maize grown in mixed nitrogen supply is mediated by auxin synthesis[J].Journal of Experimental Botany,2019,70(6):1859-1873.

    • [36] Ou X,Li S,Liao P,et al.The transcriptome variations of Panaxnotoginseng roots treated with different forms of nitrogen fertilizers[J].BMC Genomics,2019,20(l9):3-5.

    • [37] Köhl L,Heijden M.Arbuscular mycorrhizal fungal species differ in their effect on nutrient leaching[J].Soil Biology & Biochemistry,2016,94(11):191-199.

    • [38] Eo J K,Eom A H.Differential growth response of various crop species to arbuscular mycorrhizal inoculation[J].Mycobiology,2009,37(1):72-76.

    • [39] 白灯莎·买买提艾力,张少民,孙良斌.接种丛枝菌根真菌对脱毒马铃薯微型薯生长及产量的影响[J].中国土壤与肥料,2011(1):80-82.

    • [40] Ramírez-Flores M R,Bello-Bello E,Rellán-Álvarez R,et al. Inoculation with the mycorrhizal fungus Rhizophagus irregularis modulates the relationship between root growth and nutrient content in maize(Zea mays ssp.L.)[J].Plant Direct,2019,3(12):192-206.

    • [41] 李煜,赵国红,尹峰,等.岩质边坡覆绿植物的根系形态变化特征及影响因子研究[J].湖南师范大学自然科学学报,2020,43(2):45-52,81.

    • [42] 张丽丽,谢文锦,付俊,等.不同耐密性玉米品种对根系生长空间的响应[J].玉米科学,2018,26(5):96-101,109.

    • [43] Zhang Y,Miao G.Effects of soil root-growing space on root physiological characteristics and grain yield of sorghum[J]. Journal of Applied Ecology,2006,17(4):635-639.

    • [44] 赵乾旭,史静,夏运生,等.AMF 与隔根对紫色土上玉米 || 大豆种间氮竞争的影响[J].中国农业科学,2017,50(14):2696-2705.

    • [45] 杨友琼,周锋,吴开贤,等.间作条件下玉米与马铃薯的养分利用特征[J].玉米科学,2016,24(4):116-121.

    • [46] 潘越,周冀琼,郭川,等.丛枝菌根真菌与根瘤菌对3种豆禾混播植物种间互作的影响[J].草地学报,2021,29(4):644-654.

    • [47] 金继运,何萍.氮钾营养对春玉米后期碳氮代谢与粒重形成的影响[J].中国农业科学,1999,15(4):57-64.

    • [48] 蔡明,刘吉利,杨亚亚,等.施氮量对间作马铃薯植株氮素累积及产量的影响[J].干旱地区农业研究,2020,38(2):148-155.

    • [49] 何萍,金继运,林葆,等,不同氮磷钾用量下春玉米生物产量及其组分动态与养分吸收模式研究[J].植物营养与肥料学报,1998,12(2):123-130.

  • 《中国土壤与肥料》招聘启事
    关闭