基于光谱预处理和机器学习算法的烤烟叶绿素含量预测
作者:
作者单位:

(1.中国农业科学院农业资源与农业区划研究所,北京 100081;2.四川省烟草公司凉山州公司,四川 西昌 615000;3.中国烟草总公司四川省公司,四川 成都 610041)

作者简介:

王韦燕(1997-),硕士研究生,研究方向为精准养分管理。E-mail:wwy15624277708@163.com。

通讯作者:

基金项目:

基金项目:中国烟草总公司四川省公司科技项目(SCYC202005)。


Prediction of chlorophyll content in flue-cured tobacco based on spectral pretreatment and machine learning algorithm
Author:
Affiliation:

(1.Institute of Agricul tural Resources and Regional Planning in Chinese Acade-my of Agricultural Sciences,Beijing 100081;2.Liangshan Prefecture Branch of Sichuan Tobacco Company,Xichang Sichuan 615000;3.Sichuan Branch of China National Tobacco Corporation,Chengdu Sichuan 610041)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    叶绿素是作物进行光合作用合成有机物的主要色素,实时监测烤烟叶片叶绿素含量对跟踪烟株氮素营养状况和判别烟叶成熟度具有重要的指导作用。基于对烤烟叶片光谱特征的分析,以不同供氮水平下实测的烟叶高光谱数据及叶绿素相对含量(SPAD)为数据源,采用一阶导数(1st Der)、多元散射校正(MSC)、标准正态变量(SNV)和SG平滑(SG)对原始光谱数据进行预处理,先采用连续投影法(SPA)挑选出每个预处理条件下的特征波长,后将各特征波段下的光谱反射率作为模型的输入变量,利用反向传播神经网络(BPNN)、随机森林(RF)和支持向量机(SVM)3种机器学习的方法分别构建烤烟叶片叶绿素含量估测模型。使用决定系数(R2)、均方根误差(RMSE)和平均绝对值误差(MAE)对每个机器学习模型的性能进行了评估和比较。结果表明:3种机器学习方法训练出的模型相比较,RF模型的预测准确率最高;烤烟叶片原始光谱经MSC和SNV预处理后的光谱信息作为输入变量,经RF算法建模具有较高的精度和良好的预测能力,模型为MSC-SPA-RF(R2=0.96,RMSE=1.15,MAE=0.94)和SNV-SPA-RF(R2=0.96,RMSE=1.14,MAE=0.94)。说明基于机器学习利用高光谱数据估算烤烟叶片叶绿素含量具有可行性,这为实时、精确地监控烤烟生长过程中叶片叶绿素含量变化状况以及合理科学的进行田间管理提供了一定的理论基础。

    Abstract:

    Chlorophyll is the main pigment in photosynthesis of crops to synthesize organic matter.Real-time monitoring of chlorophyll content in flue-cured tobacco leaf plays an important guiding role in tracking nitrogen nutrition status of tobacco and distinguishing the maturity of tobacco leaves. Based on the analysis of spectral characteristics of flue-cured tobacco leaves,the measured hyperspectral data and chlorophyll relative content(SPAD)of tobacco leaves under different nitrogen levels were used as data sources.The raw spectral data were preprocessed by first derivative(1st Der),multiple scattering correction(MSC),standard normal variable(SNV)and Savitzky-Golay smoothing(SG). First,the successive projection algorithm(SPA)was used to select characteristic wavelengths under the different preprocessing conditions,and then the spectral reflectance of the extracted characteristic wavelengths was used as input variable of back propagation neural network(BPNN),random forests(RF)and support vector machine(SVM)modeling.Three machine learning methods were used to construct estimation models of chlorophyll content in inverted three leaves of flue-cured tobacco,respectively.The performance of each machine learning model was evaluated and compared using the coefficient of determination(R2),root mean square error(RMSE)and mean absolute error(MAE). The results showed that:Compared with the models trained by the three machine learning methods,the RF model achieved the best prediction result.In this study,the raw spectral data of flue-cured tobacco leaves pretreated by MSC and SNV were used as the input variables of the model,and then the model was established by RF algorithm which had obtained the best prediction results.The three models were as follows:MSC-SPA-RF(R2=0.96,RMSE=1.15,MAE=0.94)and SNV-SPA-RF(R2=0.96,RMSE=1.14,MAE = 0.94). It is feasible to estimate chlorophyll content of flue-cured tobacco leaves using hyperspectral data based on machine learning.This provides a theoretical basis for monitoring real-time and accurate change of chlorophyll content in flue-cured tobacco leaf and for reasonable and scientific field management.

    参考文献
    相似文献
    引证文献
引用本文

王韦燕,冯文强,常乃杰,刘青丽,李志宏,陈玉蓝,黎昌明,陈曦,张云贵.基于光谱预处理和机器学习算法的烤烟叶绿素含量预测[J].中国土壤与肥料,2023,(3):194-201.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2022-02-17
  • 最后修改日期:
  • 录用日期:2022-04-02
  • 在线发布日期: 2023-06-27
《中国土壤与肥料》招聘启事
关闭