冀西山前冲积扇区土壤机械组成模型制图对比研究
作者:
作者单位:

(1.河北工程大学,河北 邯郸 056038;2.中国农业科学院农业资源与农业区划研究所,北京 100081)

作者简介:

马世豪(1995-),硕士研究生,主要从事数字土壤的相关研究。E-mail:784119824@qq.com。

通讯作者:

基金项目:

基金项目:中国农业科学院基本科研业务费专项(Y2020PT37);科技基础资源调查专项(2021FY100404)。


Comparative research on mapping of soil particle composition model in piedmont alluvial sector of western Hebei
Author:
Affiliation:

(1.Hebei University of Engineering,Handan Hebei 056038;2.Institute of Agricultural Resources and Regional Planning,Chinese Academy of Agricultural Sciences,Beijing 100081)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    探索适合地形平缓的山前冲积扇地区土壤机械组成的空间预测方法。以河北省灵寿、行唐、曲阳县400 m高程以下区域为研究区,结合地形因子、土壤类型、归一化植被指数、地表温度等环境变量,选择基于对称对数比(SLR)转换的普通克里格法(SLR-OK)、回归克里格法(SLR-RK)、随机森林法(SLR-RF)3种方法,对训练集114个样点表层土壤机械组成的空间分布进行预测,并通过验证集50个样点比较了3种方法的预测精度。(1)从空间预测图来看,砂粒呈现出西北低、东南高的空间分布趋势;粉粒和黏粒与砂粒相反。与SLR-OK法相比,SLR-RK法和SLR-RF法能够更好地反映局部变异并减小平滑效应。(2)对于砂粒和粉粒,SLR-RF法对验证集含量预测的平均绝对误差(MAE)和均方根误差(RMSE)均低于其他两种方法,且决定系数最高,表明SLR-RF的预测精度最高;对于黏粒,SLR-OK法对验证集含量预测的MAE和RMSE均低于其他两种方法,且决定系数最高,表明SLR-OK法的预测精度最高。(3)线性回归预测模型的辅助变量包括高程、土壤类型和风力作用指数;随机森林法模型的辅助变量包括高程、土壤类型、归一化植被指数、地表温度、风力作用指数和流量累积,对于砂粒和粉粒,土壤类型和高程是重要的辅助变量,归一化植被指数、地表温度、风力作用指数和流量累积重要性相对较低。研究区砂粒和粉粒空间预测的最优方法为SLR-RF法,在山前冲积扇地区地形较平缓,砂粒和粉粒对地形变量敏感;黏粒空间预测的最优方法为SLR-OK法。

    Abstract:

    The spatial prediction method of soil particle composition in piedmont alluvial plain with flat terrain was explored.Taking Lingshou,Xingtang and Quyang counties in Hebei province as the study area,combined with environmental variables such as topographic factors,soil types,normalized vegetation index and surface temperature variables,the spatial distribution of surface soil particle composition of 114 sample points in the training set was predicted by three methods:ordinary Kriging method(SLR-OK),regression Kriging method(SLR-RK)and random forest method(SLR-RF)based on symmetric logarithm ratio (SLR) transformation.The prediction accuracy of the three methods is compared through 50 sample points in the verification set.(1)According to the spatial prediction map,the sand particles show a spatial distribution trend of being low in the northwest and high in the southeast;The spatial distribution trend of silt and clay particles are opposite to that of sand.Compared with SLR-OK,SLR-RK and SLR-RF can better reflect local variation and reduce smoothing effect.(2)For sand and silt,the mean absolute error(MAE)and root mean square error(RMSE)of SLR-RF method for the content prediction of verification set are lower than the other two methods,and from the perspective of determination coefficient,they are higher than that of the other two methods,indicating that the prediction accuracy of SLR-RF is the highest;For clay particles,the MAE and RMSE of the SLR-OK method for the content prediction of the validation set are lower than the other two methods,and the coefficient of determination is the highest,indicating that the SLR-OK method has the highest prediction accuracy.(3)The auxiliary variables of the linear regression prediction model include elevation,soil type and wind effect index;Auxiliary variables for the random forest method model include elevation,soil type,normalized vegetation index,surface temperature,wind effect index,and flow accumulation,and for sand and silt,soil type and elevation are important auxiliary variables,and the normalized vegetation index,surface temperature,wind effect index and flow accumulation were relatively less important.The optimal method for spatial prediction of sand and silt in the study area is SLR-RF.In the piedmont alluvial fan area,the terrain is relatively gentle,and sand and silt are sensitive to topographic variables.The optimal method for spatial prediction of clay is SLR-OK.

    参考文献
    相似文献
    引证文献
引用本文

马世豪,王建霄,张认连,龙怀玉,申哲,王转,徐爱国.冀西山前冲积扇区土壤机械组成模型制图对比研究[J].中国土壤与肥料,2023,(6):12-22.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2022-04-29
  • 最后修改日期:
  • 录用日期:2022-06-10
  • 在线发布日期: 2023-09-22
《中国土壤与肥料》招聘启事
关闭