基于高光谱的退化高寒草甸土壤碳氮磷含量反演研究
作者:
作者单位:

(青海大学农牧学院,青海 西宁 810016)

作者简介:

柴瑜(1997-),硕士研究生,主要从事草地生态与环境保护的研究。E-mail:chaiyu0731@163.com。通讯作者:李希来,E-mail:xilai-li@163.com。

通讯作者:

基金项目:

基金项目:国家自然科学基金项目(U21A20191);青海省自然科学基金创新团队项目(2020-ZJ-904);高等学校学科创新引智计划项目(D18013);青海省科技创新创业团队项目。


Inversion of carbon,nitrogen and phosphorus contents in degraded alpine meadow soil based on hyperspectral analysis
Author:
Affiliation:

(College of Agriculture and AnimalHusbandry,QinghaiUniversity,Xining Qinghai810016)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    以黄河源区为研究区域,选取退化高寒草甸作为研究样地,通过野外调查采样,结合室内土壤养分与土壤高光谱数据测量,分析退化高寒草甸土壤植被及养分特征,对土壤高光谱数据进行数学变换与土壤养分含量相关系数计算,采用偏最小二乘回归(PLSR)和反向传播神经网络(BPNN)方法分别建立土壤有机碳、全氮、全磷含量的反演模型。结果表明:PLSR建立的土壤有机碳和土壤全磷含量预测模型优于BPNN模型,预测效果更好,其中,土壤有机碳含量PLSR预测模型建模集R2=0.9585,RMSE=0.1079,验证集R2=0.9493,RMSE=0.1210,模型精度较高,可以进行准确估算,土壤全磷含量PLSR预测模型建模集R2=0.7497,RMSE=0.2391,验证集R2=0.5977,RMSE=0.2445,达到基本估算要求;BPNN建立的土壤全氮含量预测模型优于PLSR模型,其建模集R2=0.8772,RMSE=0.7663,验证集R2=0.6887,RMSE=0.8556,模型精度较好,达到基本估算要求。

    Abstract:

    The study took the Yellow River source area as the research area,the degraded alpine meadow was selected asthe research samplesite,the soil vegetation and nutrient characteristics of degraded alpine meadow were analyzed throughfield survey sampling,combined with indoor soil nutrient and soil hyperspectral data measurement,the mathematical transformation of soil hyperspectral data was performed and the correlation coefficient with soil nutrient content was calculated.The inverse models of soil organic carbon,total nitrogen and total phosphorus contents were established by partial leastsquares regression(PLSR)and back propagation neuralnetwork(BPNN)methods,respectively. The results showed that the soil organic carbon and soil total phosphorus content prediction models established by PLSR were better than the BPNNmodels,it had better predictioneffects,in which the modeling set R2=0.9585 and RMSE=0.1079 for the PLSR prediction model of soil organic carbon content and the validation set R2=0.9493 and RMSE=0.1210 had higher model accuracy and could be accurately estimated. The modeling set R2=0.7497,RMSE=0.2391,validation set R2=0.5977,RMSE=0.2445 ofthe PLSR prediction model for total phosphorus content met the basic estimationrequirements;The prediction model for total soil nitrogen content established by BPNN was better than the PLSR model with modeling set R2=0.8772,RMSE=0.7663, validation set R2=0.6887,RMSE=0.8556,the model accuracy was better and met the basic estimation requirements.

    参考文献
    相似文献
    引证文献
引用本文

柴瑜,李希来,马盼盼,徐文印,段成伟,把熠晨.基于高光谱的退化高寒草甸土壤碳氮磷含量反演研究[J].中国土壤与肥料,2024,(6):241-251.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2023-07-20
  • 最后修改日期:
  • 录用日期:2023-09-12
  • 在线发布日期: 2024-09-06
《中国土壤与肥料》招聘启事
关闭