en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

黄均明(1983-),男,广东罗定人,硕士研究生,主要从事肥料和土壤调理剂方法研究及评价工作。E-mail:hjmsfac@163.com。

通讯作者:

王旭,E-mail:wangxu29@126.com。

参考文献 1
顾婕.砷形态分析方法研究[D].上海:东华大学,2008.
参考文献 2
Hung D Q,Nekrassova O,Compton R G.Analytical methods for inorganic arsenic in water:a review[J].Talanta,2004,64(2):269-277.
参考文献 3
Hughes M F.Arsenic toxicity and potential mechanisms of action [J].Toxicology Letters,2002,133(1):1-16.
参考文献 4
侯艳霞,刘丽萍,潘浩,等.高效液相色谱-电感耦合等离子体质谱分析大米中砷形态化合物[J].分析试验室,2013,32(10):103-107.
参考文献 5
Ma R,Shen J L,Wu J S,et al.Impact of agronomic practices on arsenic accumulation and speciation in rice grain[J].Environmental Pollution,2014,194:217-223.
参考文献 6
周秀清.水产品中砷和汞形态的测定方法及其应用研究[D].广州:华南理工大学,2014.
参考文献 7
NY 1110-2010,水溶肥料汞、砷、镉、铅、铬的限量要求 [S].
参考文献 8
闫湘,王旭,李秀英,等.我国水溶肥料中重金属含量、来源及安全现状[J].植物营养与肥料学报,2016,22(1):8-18.
参考文献 9
杨慧.蔬菜中不同形态砷的测定方法及其应用研究[D].武汉:华中农业大学,2009.
参考文献 10
Edmonds J S,Francesconi K A.Arsenic in seafoods:Human health aspects and regulations[J].Marine Pollution Bulletin,1993,26(12):665-674.
参考文献 11
Whyte J N C,Englar J R.Analysis of inorganic and organicbound arsenic in marine brown algae[J].Botanica Marina,1983,26(4):159-164.
参考文献 12
Guerin T,Astruc A,Astruc M.Speciation of arsenic and selenium compounds by HPLC hyphenated to specific detectors:a review of the main separation techniques[J].Talanta,1999,50(1):1-24.
参考文献 13
Moreira C M,Duarte F A,Lebherz J,et al.Arsenic speciation in white wine by LC-ICP-MS[J].Food Chemistry,2011,126(3):1406-1411.
参考文献 14
陈绍占,刘丽萍,杜振霞,等.高效液相色谱-电感耦合等离子体质谱联用技术测定畜禽肉制品中八种砷形态化合物 [J].质谱学报,2015,36(1):33-39.
参考文献 15
Schmeisser E,Goessler W,Kienzl N,et al.Volatile analytes formed from arsenosugars:Determination by HPLC-HG-ICPMS and implications for arsenic speciation analyses[J].Analytical Chemistry,2004,76(2):418-423.
参考文献 16
Yu H M,Du H,Wu L,et al.Trace arsenic speciation analysis of bones by high performance liquid chromatography-inductively coupled plasma mass spectrometry[J].Microchemical Journal,2018,141:176-180.
参考文献 17
Yehiayan L,Membreno N,Matulis S,et al.Extraction tool and matrix effects on arsenic speciation analysis in cell lines[J].Analytica Chimica Acta,2011,699(2):187-192.
参考文献 18
Jeong S,Lee H,Kim Y T,et al.Development of a simultaneous analytical method to determine arsenic speciation using HPLC-ICPMS:Arsenate,arsenite,monomethylarsonic acid,dimethylarsinic acid,dimethyldithioarsinic acid,and dimethylmonothioarsinic acid[J].Microchemical Journal,2017,134:295-300.
参考文献 19
Ciardullo S,Aureli F,Raggi A,et al.Arsenic speciation in freshwater fish:Focus on extraction and mass balance[J].Talanta,2010,81(1-2):213-221.
参考文献 20
Jia X Y,Gong D R,Wang J N,et al.Arsenic speciation in environmental waters by a new specific phosphine modified polymer microsphere preconcentration and HPLC-ICP-MS determination[J].Talanta,2016,160:437-443.
参考文献 21
Le X C,Lu X F,Ma M S,et al.Speciation of key arsenic metabolic intermediates in human urine[J].Analytical Chemistry,2000,72(21):5172-5177.
参考文献 22
Zhu M L,Zeng X C,Jiang Y X,et al.Determination of arsenic speciation and the possible source of methylated arsenic in Panax Notoginseng[J].Chemosphere,2017,168:1677-1683.
参考文献 23
VilanóM,PadróA,Rubio R.Coupled techniques based on liquid chromatography and atomic fluorescence detection for arsenic speciation[J].Analytica Chimica Acta,2000,411(1-2):71-79.
参考文献 24
Šlejkovec Z,van Elteren J T,Byrne A R.A dual arsenic speciation system combining liquid chromatographic and purge and trap-gas chromatographic separation with atomic fluorescence spectrometric detection[J].Analytica Chimica Acta,1998,358(1):51-60.
参考文献 25
Do B,Alet P,Pradeau D,et al.On-line reversed-phase liquid chromatography hydride generation emission spectrometry:speciation of arsenic in urine of patients intravenously treated with As2O3[J].Journal of Chromatography B:Biomedical Sciences and Applications,2000,740(2):179-186.
参考文献 26
Gettar R T,Garavaglia R N,Gautier E A,et al.Determination of inorganic and organic anionic arsenic species in water by ion chromatography coupled to hydride generation-inductively coupled plasma atomic emission spectrometry[J].Journal of Chromatography A,2000,884(1-2):211-221.
参考文献 27
Panther J G,Stillwell K P,Powell K J,et al.Perfluorosulfonated ionomer-modified diffusive gradients in thin films:Tool for inorganic arsenic speciation analysis[J].Analytical Chemistry,2008,80(24):9806-9811.
参考文献 28
Idowu A D,Dasgupta P K.Liquid chromatographic arsenic speciation with gas-phase chemiluminescence detection[J].Analytical Chemistry,2007,79(23):9197-9204.
参考文献 29
Mihucz V G,Móricz Á M,Kröpfl K,et al.Development of offline layer chromatographic and total reflection X-ray fluorescence spectrometric methods for arsenic speciation[J].Spectrochimica Acta Part B:Atomic Spectroscopy,2006,61(10-11):1124-1128.
参考文献 30
Keller N S,Stefánsson A,Sigfússon B.Determination of arsenic speciation in sulfidic waters by Ion Chromatography HydrideGeneration Atomic Fluorescence Spectrometry(IC-HG-AFS)[J].Talanta,2014,128:466-472.
参考文献 31
Hu S,Lu J S,Jing C Y.A novel colorimetric method for field arsenic speciation analysis[J].Journal of Environmental Sciences,2012,24(7):1341-1346.
参考文献 32
Lee H G,Kwon J Y,Chung D S.Sensitive arsenic speciation by capillary electrophoresis using UV absorbance detection with online sample preconcentration techniques[J].Talanta,2018,181:366-372.
参考文献 33
Vega L,Styblo M,Patterson R,et al.Differential effects of trivalent and pentavalent arsenicals on cell proliferation and cytokine secretion in normal human epidermal keratinocytes[J].Toxicology and Applied Pharmacology,2001,172:225-232.
目录contents

    摘要

    采用液相色谱-原子荧光光谱法联用技术,建立了水溶肥料中无机砷含量的检测方法。对样品前处理条件进行了优化。在最佳实验条件下,As3+ 和 As5+ 在线性范围内线性关系良好,线性相关系数(R)分别为 0.9996 和 0.9998,检出限分别为 0.8 和 2.7 ng/mL;对 3 个样品平行测定 6 次,无机砷测定相对标准偏差(RSD) 为 1.90% ~ 3.66%,加标回收率为 91.9% ~ 107.5%。研究表明,可将本方法应用于不同类型的水溶肥料中无机砷检测。

    Abstract

    A method for the determination of inorganic arsenic in water-soluble fertilizers was developed by using liquid chromatography-atomic fluorescence spectrometry(LC-AFS). The pretreatment conditions of samples were optimized. Under the optimal conditions,the linear correlation coefficient(R)of As3+ and As5+ were 0.9996 and 0.9998,and the detection limit were 0.8 and 2.7 ng/mL respectively. The relative standard deviation(RSD)of inorganic arsenic was in the range of 1.90% ~ 3.66%,and the standard recovery was in the range of 91.9% ~ 107.5%. This method has been applied to the determination of inorganic arsenic in several different types of water-soluble fertilizers with satisfactory results.

  • 砷的各种不同存在形态具有显著不同的物理和化学性质,常见的砷形态有:亚砷酸(As3+)、 砷酸(As5+)、一甲基砷酸(MMA)、二甲基砷酸(DMA)、砷甜菜碱(AsB)以及砷胆碱(AsC)、砷糖(AsS)等。不同形态的砷化合物毒性差异很大, 其毒性依次为As3+>As5+>MAA>DMA>AsC>AsB。无机砷毒性较大,有机砷毒性较小,砷与有机基团结合越多,毒性越小[1]。AsB和AsC常被认为是无毒的,通常存在于海洋动物体内;AsS无毒,通常存在于海洋植物中[2-4]。与有机砷相比,无机砷具有更高的植物有效性,容易被农作物吸收并积累在体内[5]。砷及其化合物进入体内后,通常会在骨骼、 肺、肝、肾等部位蓄积,并与细胞中的酶系统结合,导致许多酶的生物作用失去活性,从而造成代谢障碍[6]

  • 水溶肥料具有易被作物吸收,可以应用于喷滴灌等设施农业,实现水肥一体化等优点,具有广阔的应用前景。有统计发现,我国部分水溶肥料产品中有害元素含量不符合我国现行农业行业标准 《水溶肥料汞、砷、镉、铅、铬的限量要求》(NY 1110-2010)[7]的要求,其中As超标率为3.50%[8]。 然而,有些利用海藻等海洋资源作为原料的有机水溶肥料,砷主要以无毒的砷糖以及少量毒性很低的二甲基砷酸存在,几乎不含无机砷[9-11],所以有必要建立一种砷的形态分析方法,给出相关毒性的确切信息,从而客观、科学地分析评价该类产品的环境风险。

  • 目前,高效液相色谱(HPLC)是砷形态分析中常用的分离技术[12],与其联用的检测方法有质谱法(MS)[13-20]、原子荧光光谱法(AFS)[21-24]、 原子吸收分光光度法(AAS)[25-26]等。此外,其它分离检测方法也有报道[27-33]。本试验建立了一种利用液相色谱-原子荧光(LC-AFS)技术测定水溶肥料中无机砷含量的分析方法。

  • 1 材料与方法

  • 1.1 试剂

  • 亚砷酸根(As3+)标准物质(GBW08666)、砷酸根(As5+)标准物质(GBW08667)、一甲基砷酸(MMA)标准物质(GBW08668)、二甲基砷酸(DMA)标准物质(GBW08669):中国计量科学研究院;超纯水(电阻率18.2 MΩ·cm);盐酸、硝酸均为优级纯;磷酸氢二钠、磷酸二氢钾、氢氧化钾、硼氢化钾均为分析纯。

  • 王水:将盐酸与硝酸按体积比3∶1 混合。

  • 硼氢化钾溶液:ρ(KBH4)=20 g/L。称取20 g硼氢化钾,用5 g/L氢氧化钾溶液溶解并定容至1000 mL,现配现用。

  • 1.2 仪器

  • 液相色谱-原子荧光光谱联用仪(LC-AFS6500): 由液相色谱仪与原子荧光光谱仪组成;高速离心机(转速可达8000 r/min,TGL-20B);超纯水处理系统(UPW-20N);超声波清洗机(SK5200HP); pH计(FE20);真空泵(AP-01P);快速混匀器 (SK-1);微孔滤膜(水系)。

  • 1.3 供试样品

  • 大量元素水溶肥料、微量元素水溶肥料、含氨基酸水溶肥料、含腐植酸水溶肥料、有机水溶肥料等水溶肥料若干个。

  • 1.4 样品前处理

  • 1.4.1 试样的制备

  • 将样品缩分至约100 g,将其迅速研磨至全部通过0.50 mm孔径试验筛(如样品潮湿,可通过1.00 mm孔径试验筛),混合均匀,置于洁净、干燥容器中;液体样品经摇动均匀后,迅速取出约100 mL,置于洁净、干燥容器中。

  • 1.4.2 试样溶液的制备

  • 称取0.2~2 g(精确至0.0001 g)混合均匀的试样于50 mL塑料离心管中,加入20 mL 1%王水溶液,在室温下水浴超声30 min,取出,放至室温,置于离心机中以8000 r/min的转速离心10 min,过0.45 μm水系微孔滤膜后,待测。

  • 1.5 仪器条件

  • LC条件:色谱柱为Hamilton PRP-X100 分离柱(250 mm ×4.1 mm,10 μm)、Hamilton PRP-X100 保护柱(10 mm ×4.1 mm,10 μm);流动相为磷酸氢二钠(5 mmol/L)-磷酸二氢钾(44.5 mmol/L) 混合溶液,此时pH值约为5.9,流速为1.0 mL/min; 柱温为室温;进样量体积为100 μL。

  • AFS条件: 负高压为300 V; 砷灯总电流为60 mA;主电流/辅助电流为30/30;原子化方式为火焰原子化;载液为5%盐酸溶液,流速为4 mL/min;还原剂为20 g/L硼氢化钾溶液,流速为4 mL/min;载气流速为400 mL/min;屏蔽气流速为800 mL/min。

  • 1.6 色谱条件的选择

  • 试验发现,经过优化色谱条件后,As3+、DMA、 MMA和As5+ 4种砷形态化合物混合标准溶液能在6 min之内依次出峰,实现完全分离。其中,色谱柱:Hamilton PRP-X100 分离柱(250 mm×4.1 mm,10 μm);流动相为磷酸氢二钠(5 mmol/L)-磷酸二氢钾(44.5 mmol/L) 混合溶液, 此时pH值约为5.9, 流速为1.0 mL/min。 分析色谱图见  图1。

  • 图14 种砷形态化合物混合标准溶液色谱图(100 ng/mL)

  • 1.7 前处理方法的选择

  • 1.7.1 提取剂的选择

  • 分别选择水、1%硝酸、1%盐酸、1%王水4 种提取剂对F1~F3(有机水溶肥料)、F4(大量元素水溶肥料)以及F5(微量元素水溶肥料)5 个样品进行了试验。提取过程为超声提取30 min,结果见图2。

  • 图2 不同提取剂对无机砷检测的影响

  • 结果显示,试样F1、F3、F4、F5 以上述4 种不同提取剂提取,所测得的无机砷含量较一致,且平行测定结果也较好。在试样F2 中,以3 种稀酸为提取剂时,相互间结果较一致;而以水作为提取剂时无机砷测定值偏低,而且两个平行间测定值相差较大。综上所述,以水作为提取剂对于某些样品来说提取无机砷效果不佳,而1%硝酸、1%盐酸以及1%王水3 种稀酸是较为理想的无机砷提取剂。鉴于试样的复杂性,本方法选取稀王水作为提取剂。

  • 1.7.2 提取剂浓度的选择

  • 分别以0.1%、0.2%、0.5%、1%以及2%的王水溶液为提取剂,对试样F1~F5 进行提取。通过检测上述5 种提取剂提取试样后的pH值发现, 0.1%、0.2%、0.5%以及1%的王水溶液为提取剂的试样提取液pH值均符合该色谱柱的使用要求(色谱柱pH值的使用要求在1~13),可以直接上机检测,且对试样F1~F5 中无机砷含量的提取结果差异不大;而以2%的王水溶液为提取剂的试样提取液pH值小于1,因不符合色谱柱的使用要求, 故需用调节pH值后才能上机检测。此外,在调节pH值的过程中,个别试样还会出现沉淀,测定平行结果相差较大。所以综合考虑试样的复杂性和试验操作的简便性,本方法采用浓度1%的王水溶液作为提取剂。

  • 1.8 标准曲线的绘制

  • 用标准物质分别配制浓度为0、10、20、50、 80 和100 ng/mL系列As3+ 和As5+ 混合标准溶液。 过微孔滤膜后,按浓度由低到高进样检测,以标准系列溶液质量浓度(ng/mL)为横坐标,以峰面积为纵坐标,绘制标准曲线。

  • 1.9 试样溶液的测定

  • 将试样溶液或经稀释一定倍数后与测定标准系列溶液相同的条件下测定,在标准曲线上查出相应的质量浓度(ng/mL)。

  • 2 结果与分析

  • 2.1 回归方程、线性范围和检出限

  • 配制一系列浓度的As3+ 和As5+ 混合标准溶液, 在所选择的最佳试验条件下进行测定,分别以As3+ 和As5+ 质量浓度x(ng/mL)为横坐标、峰面积y作为纵坐标,得到回归方程、线性范围和相关系数(R), 并以信噪比(S/N)为3 确定检出限。结果见表1。

  • 表1 As3+ 和As5+ 测定的回归方程、 线性范围和检出限

  • 2.2 方法精密度

  • 为考察该方法的精密度,分别对3 个样品进行6 次平行测定,测定值的相对标准偏差(RSD)为1.90%~3.66%,结果见表2。

  • 表2 精密度试验结果

  • 2.3 方法准确度

  • 通过加标回收试验来评价本方法的准确性。在上述不同类型肥料试样(S01~S05,S10)中,加入定量的无机砷标准溶液。经两次平行测定,计算得出无机砷回收率为91.9%~107.5%,结果见表3。

  • 表3 回收率试验结果

  • 注:无机砷加标量是As3+ 和As5+ 总和,二者按1∶1 添加。

  • 2.4 前处理方法对砷形态化合物稳定性的影响

  • 取4 个空白样品(水),分别加入不同浓度的无机砷(As3+ 和As5+) 和有机砷(MMA和DMA) 4 种砷形态化合物混合标准溶液,按所建立方法考察4 种砷形态的加标回收率,每个试样经两次平行测定,结果见表4。

  • 表4 前处理方法对砷形态稳定性的影响

  • 注:无机砷加标量是As3+ 和As5+ 总和,二者按1∶1 添加;有机砷加标量是MMA和DMA总和,二者按1∶1 添加。

  • 结果表明,4 种不同浓度加标液所测的无机砷和有机砷的回收率为98.0%~103.5%,从而说明此方法可以作为水溶肥料中无机砷提取的前处理方法。

  • 2.5 试样溶液稳定性

  • 为了考察试样溶液稳定性,重复测定之前测过的并于4℃冰箱保存的试样溶液无机砷含量,结果见图3。

  • 图3 试样溶液稳定性试验结果

  • 结果表明,试样溶液的无机砷含量在第8 d和第1 d两次测定值变化不大,说明样品经过前处理后,保存在4℃冰箱,试样溶液的无机砷含量在8 d内较稳定。

  • 2.6 样品测定

  • 采用本方法对19 个不同类型的水溶肥料中无机砷含量进行测定,所测样品数据显示较好的平行性,见表5。其中一个样品的色谱图见图4。

  • 表5 水溶肥料中无机砷含量平行测定结果

  • 图4 样品色谱图

  • 3 结论

  • 本方法以1%王水溶液作为提取剂,在室温下水浴超声30 min提取水溶肥料中无机砷,然后采用液相色谱-原子荧光光谱法联用技术进行测定。试验结果表明,该方法具有快速、灵敏、准确等特点,是水溶肥料中无机砷含量测定的一种理想方法。该方法的建立,将进一步为水溶肥料产品危害性的客观评价、质量监督和市场监管提供技术支撑,为规范肥料的环境安全指标和肥料行业健康发展提供技术保障。

  • 参考文献

    • [1] 顾婕.砷形态分析方法研究[D].上海:东华大学,2008.

    • [2] Hung D Q,Nekrassova O,Compton R G.Analytical methods for inorganic arsenic in water:a review[J].Talanta,2004,64(2):269-277.

    • [3] Hughes M F.Arsenic toxicity and potential mechanisms of action [J].Toxicology Letters,2002,133(1):1-16.

    • [4] 侯艳霞,刘丽萍,潘浩,等.高效液相色谱-电感耦合等离子体质谱分析大米中砷形态化合物[J].分析试验室,2013,32(10):103-107.

    • [5] Ma R,Shen J L,Wu J S,et al.Impact of agronomic practices on arsenic accumulation and speciation in rice grain[J].Environmental Pollution,2014,194:217-223.

    • [6] 周秀清.水产品中砷和汞形态的测定方法及其应用研究[D].广州:华南理工大学,2014.

    • [7] NY 1110-2010,水溶肥料汞、砷、镉、铅、铬的限量要求 [S].

    • [8] 闫湘,王旭,李秀英,等.我国水溶肥料中重金属含量、来源及安全现状[J].植物营养与肥料学报,2016,22(1):8-18.

    • [9] 杨慧.蔬菜中不同形态砷的测定方法及其应用研究[D].武汉:华中农业大学,2009.

    • [10] Edmonds J S,Francesconi K A.Arsenic in seafoods:Human health aspects and regulations[J].Marine Pollution Bulletin,1993,26(12):665-674.

    • [11] Whyte J N C,Englar J R.Analysis of inorganic and organicbound arsenic in marine brown algae[J].Botanica Marina,1983,26(4):159-164.

    • [12] Guerin T,Astruc A,Astruc M.Speciation of arsenic and selenium compounds by HPLC hyphenated to specific detectors:a review of the main separation techniques[J].Talanta,1999,50(1):1-24.

    • [13] Moreira C M,Duarte F A,Lebherz J,et al.Arsenic speciation in white wine by LC-ICP-MS[J].Food Chemistry,2011,126(3):1406-1411.

    • [14] 陈绍占,刘丽萍,杜振霞,等.高效液相色谱-电感耦合等离子体质谱联用技术测定畜禽肉制品中八种砷形态化合物 [J].质谱学报,2015,36(1):33-39.

    • [15] Schmeisser E,Goessler W,Kienzl N,et al.Volatile analytes formed from arsenosugars:Determination by HPLC-HG-ICPMS and implications for arsenic speciation analyses[J].Analytical Chemistry,2004,76(2):418-423.

    • [16] Yu H M,Du H,Wu L,et al.Trace arsenic speciation analysis of bones by high performance liquid chromatography-inductively coupled plasma mass spectrometry[J].Microchemical Journal,2018,141:176-180.

    • [17] Yehiayan L,Membreno N,Matulis S,et al.Extraction tool and matrix effects on arsenic speciation analysis in cell lines[J].Analytica Chimica Acta,2011,699(2):187-192.

    • [18] Jeong S,Lee H,Kim Y T,et al.Development of a simultaneous analytical method to determine arsenic speciation using HPLC-ICPMS:Arsenate,arsenite,monomethylarsonic acid,dimethylarsinic acid,dimethyldithioarsinic acid,and dimethylmonothioarsinic acid[J].Microchemical Journal,2017,134:295-300.

    • [19] Ciardullo S,Aureli F,Raggi A,et al.Arsenic speciation in freshwater fish:Focus on extraction and mass balance[J].Talanta,2010,81(1-2):213-221.

    • [20] Jia X Y,Gong D R,Wang J N,et al.Arsenic speciation in environmental waters by a new specific phosphine modified polymer microsphere preconcentration and HPLC-ICP-MS determination[J].Talanta,2016,160:437-443.

    • [21] Le X C,Lu X F,Ma M S,et al.Speciation of key arsenic metabolic intermediates in human urine[J].Analytical Chemistry,2000,72(21):5172-5177.

    • [22] Zhu M L,Zeng X C,Jiang Y X,et al.Determination of arsenic speciation and the possible source of methylated arsenic in Panax Notoginseng[J].Chemosphere,2017,168:1677-1683.

    • [23] VilanóM,PadróA,Rubio R.Coupled techniques based on liquid chromatography and atomic fluorescence detection for arsenic speciation[J].Analytica Chimica Acta,2000,411(1-2):71-79.

    • [24] Šlejkovec Z,van Elteren J T,Byrne A R.A dual arsenic speciation system combining liquid chromatographic and purge and trap-gas chromatographic separation with atomic fluorescence spectrometric detection[J].Analytica Chimica Acta,1998,358(1):51-60.

    • [25] Do B,Alet P,Pradeau D,et al.On-line reversed-phase liquid chromatography hydride generation emission spectrometry:speciation of arsenic in urine of patients intravenously treated with As2O3[J].Journal of Chromatography B:Biomedical Sciences and Applications,2000,740(2):179-186.

    • [26] Gettar R T,Garavaglia R N,Gautier E A,et al.Determination of inorganic and organic anionic arsenic species in water by ion chromatography coupled to hydride generation-inductively coupled plasma atomic emission spectrometry[J].Journal of Chromatography A,2000,884(1-2):211-221.

    • [27] Panther J G,Stillwell K P,Powell K J,et al.Perfluorosulfonated ionomer-modified diffusive gradients in thin films:Tool for inorganic arsenic speciation analysis[J].Analytical Chemistry,2008,80(24):9806-9811.

    • [28] Idowu A D,Dasgupta P K.Liquid chromatographic arsenic speciation with gas-phase chemiluminescence detection[J].Analytical Chemistry,2007,79(23):9197-9204.

    • [29] Mihucz V G,Móricz Á M,Kröpfl K,et al.Development of offline layer chromatographic and total reflection X-ray fluorescence spectrometric methods for arsenic speciation[J].Spectrochimica Acta Part B:Atomic Spectroscopy,2006,61(10-11):1124-1128.

    • [30] Keller N S,Stefánsson A,Sigfússon B.Determination of arsenic speciation in sulfidic waters by Ion Chromatography HydrideGeneration Atomic Fluorescence Spectrometry(IC-HG-AFS)[J].Talanta,2014,128:466-472.

    • [31] Hu S,Lu J S,Jing C Y.A novel colorimetric method for field arsenic speciation analysis[J].Journal of Environmental Sciences,2012,24(7):1341-1346.

    • [32] Lee H G,Kwon J Y,Chung D S.Sensitive arsenic speciation by capillary electrophoresis using UV absorbance detection with online sample preconcentration techniques[J].Talanta,2018,181:366-372.

    • [33] Vega L,Styblo M,Patterson R,et al.Differential effects of trivalent and pentavalent arsenicals on cell proliferation and cytokine secretion in normal human epidermal keratinocytes[J].Toxicology and Applied Pharmacology,2001,172:225-232.

  • 参考文献

    • [1] 顾婕.砷形态分析方法研究[D].上海:东华大学,2008.

    • [2] Hung D Q,Nekrassova O,Compton R G.Analytical methods for inorganic arsenic in water:a review[J].Talanta,2004,64(2):269-277.

    • [3] Hughes M F.Arsenic toxicity and potential mechanisms of action [J].Toxicology Letters,2002,133(1):1-16.

    • [4] 侯艳霞,刘丽萍,潘浩,等.高效液相色谱-电感耦合等离子体质谱分析大米中砷形态化合物[J].分析试验室,2013,32(10):103-107.

    • [5] Ma R,Shen J L,Wu J S,et al.Impact of agronomic practices on arsenic accumulation and speciation in rice grain[J].Environmental Pollution,2014,194:217-223.

    • [6] 周秀清.水产品中砷和汞形态的测定方法及其应用研究[D].广州:华南理工大学,2014.

    • [7] NY 1110-2010,水溶肥料汞、砷、镉、铅、铬的限量要求 [S].

    • [8] 闫湘,王旭,李秀英,等.我国水溶肥料中重金属含量、来源及安全现状[J].植物营养与肥料学报,2016,22(1):8-18.

    • [9] 杨慧.蔬菜中不同形态砷的测定方法及其应用研究[D].武汉:华中农业大学,2009.

    • [10] Edmonds J S,Francesconi K A.Arsenic in seafoods:Human health aspects and regulations[J].Marine Pollution Bulletin,1993,26(12):665-674.

    • [11] Whyte J N C,Englar J R.Analysis of inorganic and organicbound arsenic in marine brown algae[J].Botanica Marina,1983,26(4):159-164.

    • [12] Guerin T,Astruc A,Astruc M.Speciation of arsenic and selenium compounds by HPLC hyphenated to specific detectors:a review of the main separation techniques[J].Talanta,1999,50(1):1-24.

    • [13] Moreira C M,Duarte F A,Lebherz J,et al.Arsenic speciation in white wine by LC-ICP-MS[J].Food Chemistry,2011,126(3):1406-1411.

    • [14] 陈绍占,刘丽萍,杜振霞,等.高效液相色谱-电感耦合等离子体质谱联用技术测定畜禽肉制品中八种砷形态化合物 [J].质谱学报,2015,36(1):33-39.

    • [15] Schmeisser E,Goessler W,Kienzl N,et al.Volatile analytes formed from arsenosugars:Determination by HPLC-HG-ICPMS and implications for arsenic speciation analyses[J].Analytical Chemistry,2004,76(2):418-423.

    • [16] Yu H M,Du H,Wu L,et al.Trace arsenic speciation analysis of bones by high performance liquid chromatography-inductively coupled plasma mass spectrometry[J].Microchemical Journal,2018,141:176-180.

    • [17] Yehiayan L,Membreno N,Matulis S,et al.Extraction tool and matrix effects on arsenic speciation analysis in cell lines[J].Analytica Chimica Acta,2011,699(2):187-192.

    • [18] Jeong S,Lee H,Kim Y T,et al.Development of a simultaneous analytical method to determine arsenic speciation using HPLC-ICPMS:Arsenate,arsenite,monomethylarsonic acid,dimethylarsinic acid,dimethyldithioarsinic acid,and dimethylmonothioarsinic acid[J].Microchemical Journal,2017,134:295-300.

    • [19] Ciardullo S,Aureli F,Raggi A,et al.Arsenic speciation in freshwater fish:Focus on extraction and mass balance[J].Talanta,2010,81(1-2):213-221.

    • [20] Jia X Y,Gong D R,Wang J N,et al.Arsenic speciation in environmental waters by a new specific phosphine modified polymer microsphere preconcentration and HPLC-ICP-MS determination[J].Talanta,2016,160:437-443.

    • [21] Le X C,Lu X F,Ma M S,et al.Speciation of key arsenic metabolic intermediates in human urine[J].Analytical Chemistry,2000,72(21):5172-5177.

    • [22] Zhu M L,Zeng X C,Jiang Y X,et al.Determination of arsenic speciation and the possible source of methylated arsenic in Panax Notoginseng[J].Chemosphere,2017,168:1677-1683.

    • [23] VilanóM,PadróA,Rubio R.Coupled techniques based on liquid chromatography and atomic fluorescence detection for arsenic speciation[J].Analytica Chimica Acta,2000,411(1-2):71-79.

    • [24] Šlejkovec Z,van Elteren J T,Byrne A R.A dual arsenic speciation system combining liquid chromatographic and purge and trap-gas chromatographic separation with atomic fluorescence spectrometric detection[J].Analytica Chimica Acta,1998,358(1):51-60.

    • [25] Do B,Alet P,Pradeau D,et al.On-line reversed-phase liquid chromatography hydride generation emission spectrometry:speciation of arsenic in urine of patients intravenously treated with As2O3[J].Journal of Chromatography B:Biomedical Sciences and Applications,2000,740(2):179-186.

    • [26] Gettar R T,Garavaglia R N,Gautier E A,et al.Determination of inorganic and organic anionic arsenic species in water by ion chromatography coupled to hydride generation-inductively coupled plasma atomic emission spectrometry[J].Journal of Chromatography A,2000,884(1-2):211-221.

    • [27] Panther J G,Stillwell K P,Powell K J,et al.Perfluorosulfonated ionomer-modified diffusive gradients in thin films:Tool for inorganic arsenic speciation analysis[J].Analytical Chemistry,2008,80(24):9806-9811.

    • [28] Idowu A D,Dasgupta P K.Liquid chromatographic arsenic speciation with gas-phase chemiluminescence detection[J].Analytical Chemistry,2007,79(23):9197-9204.

    • [29] Mihucz V G,Móricz Á M,Kröpfl K,et al.Development of offline layer chromatographic and total reflection X-ray fluorescence spectrometric methods for arsenic speciation[J].Spectrochimica Acta Part B:Atomic Spectroscopy,2006,61(10-11):1124-1128.

    • [30] Keller N S,Stefánsson A,Sigfússon B.Determination of arsenic speciation in sulfidic waters by Ion Chromatography HydrideGeneration Atomic Fluorescence Spectrometry(IC-HG-AFS)[J].Talanta,2014,128:466-472.

    • [31] Hu S,Lu J S,Jing C Y.A novel colorimetric method for field arsenic speciation analysis[J].Journal of Environmental Sciences,2012,24(7):1341-1346.

    • [32] Lee H G,Kwon J Y,Chung D S.Sensitive arsenic speciation by capillary electrophoresis using UV absorbance detection with online sample preconcentration techniques[J].Talanta,2018,181:366-372.

    • [33] Vega L,Styblo M,Patterson R,et al.Differential effects of trivalent and pentavalent arsenicals on cell proliferation and cytokine secretion in normal human epidermal keratinocytes[J].Toxicology and Applied Pharmacology,2001,172:225-232.