en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

边建文(1992-),男,甘肃武威人,硕士研究生,研究方向为微生物与发酵工程。E-mail:1004192852@qq.com。

通讯作者:

孟宪刚,E-mail:mengxg@mail.lzjtu.cn。

参考文献 1
石元亮,王玲莉,刘世彬,等.中国化学肥料发展及其对农业的作用[J].土壤学报,2008,45(5):852-863.
参考文献 2
张北赢,陈天林,王兵.长期施用化肥对土壤质量的影响 [J].中国农学通报,2010,26(11):182-187.
参考文献 3
Vessey J K.Plant growth promoting rhizobacteria as biofertilizers [J].Plant and Soil,2003,255(2):571-586.
参考文献 4
Bhardwaj D,Ansari M,Sahoo R,et al.Biofertilizers function as key player in sustainable agriculture by improving soil fertility,plant tolerance and crop productivity[J].Microbial Cell Factories,2014,13(1):66.
参考文献 5
Singh J S,Kumar A,Rai A N,et al.Cyanobacteria:a precious bio-resource in agriculture ecosystem,and environmental sustain-ability[J].Frontiers in Microbiology,2016,7:529.
参考文献 6
张杰,马亚君,贺志斌,等.微生物肥料替代化肥在苹果种植中的应用效果研究[J].中国农业科技导报,2019,21(7):128-135.
参考文献 7
Chen J,Wang Y,Benemann J,et al.Microalgal industry in China:challenges and prospects[J].Journal of Applied Phycology,2016,28(2):715-725.
参考文献 8
邓祥元.应用微藻生物学[M].北京:海洋出版社,2016.
参考文献 9
Coppens J,Grunert O,Sofie V D H,et al.The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels[J].Journal of Applied Phycology,2016,28(4):2367-2377.
参考文献 10
Spolaore P,Joannis-Cassan C,Duran E,et al.Commercial applications of microalgae[J].Journal of Bioscience and Bioengineering,2006,101(2):87-96.
参考文献 11
Gimondo J A.The horticultural potential of wastewater-grown algae fertilizers[D].Iowa State:Iowa State University,2018.
参考文献 12
Das P,Quadir M A,Thaher M I,et al.Microalgal nutrients recycling from the primary effluent of municipal wastewater and use of the produced biomass as bio-fertilizer[J].International Journal of Environmental Science and Technology,2019,16(7):3355-3364.
参考文献 13
Wuang S C,Khin M C,Chua P Q D,et al.Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers[J].Algal Research,2016,15:59-64.
参考文献 14
Cai T,Park S Y,Li Y.Nutrient recovery from wastewater streams by microalgae:status and prospects[J].Renewable and Sustainable Energy Reviews,2013,19:360-369.
参考文献 15
杜勇,杜雨润,朱绍萍,等.微藻在环境修复中的研究进展 [J].环境科学与技术,2014,37(S2):316-320.
参考文献 16
Colica G,Li H,Rossi F,et al.Microbial secreted exopolysaccharides affect the hydrological behavior of induced biological soil crusts in desert sandy soils[J].Soil Biology and Biochemistry,2014,68:62-70.
参考文献 17
Renuka N,Guldhe A,Prasanna R,et al.Microalgae as multi-functional options in modern agriculture:current trends,prospects and challenges[J].Biotechnology Advances,2018,36(4):1255-1273.
参考文献 18
Mulbry W,Westhead E K,Pizarro C,et al.Recycling of manure nutrients:use of algal biomass from dairy manure treatment as a slow release fertilizer[J].Bioresource Technology,2005,96(4):451-458.
参考文献 19
Dhar D W,Prasanna R,Singh B V.Comparative performance of three carrier based blue green algal biofertilizers for sustainable rice cultivation[J].Journal of Sustainable Agriculture,2007,30(2):41-50.
参考文献 20
Imen S,Rehab S,Rihab R,et al.Assessment of the algaebased biofertilizer influence on date palm(Phoenix dactylifera L.)cultivation[J].Journal of Applied Phycology,2018,31(1):457-463.
参考文献 21
Stewart W D P,Jones R F.Nitrogen fixation in plants[M].Cambs:Cambridge University Press,1966.
参考文献 22
Cleveland C C,Townsend A R,Schimel D S,et al.Global patterns of terrestrial biological nitrogen(N2)fixation in natural ecosystems[J].Global Biogeochemical Cycles,1999,13(2):623-645.
参考文献 23
杜琼,孔维宝,韩锐,等.土壤微藻的种类及其功能研究进展[J].生物学通报,2015,50(1):1-5.
参考文献 24
Adams D G,Duggan P S.Cyanobacteria-bryophyte symbioses [J].Journal of Experi-mental Botany,2008,59(5):1047-1058.
参考文献 25
Babu S,Prasanna R,Bidyarani N,et al.Analysing the colonisation of inoculated cyanobacteria in wheat plants using biochemical and molecular tools[J].Journal of Applied Phycology,2015,27(1):327-338.
参考文献 26
Renuka N,Prasanna R,Sood A,et al.Exploring the efficacy of wastewater-grown microalgal biomass as a biofertilizer for wheat [J].Environmental Science and Pollution Research,2016,23(7):6608-6620.
参考文献 27
De P K.The role of blue-green algae in nitrogen fixation in ricefields[J].Proceedings of the Royal Society B:Biological Sciences,1939,127:121-139.
参考文献 28
王秀红,沈健英,陆贻通.稻田施用固氮蓝藻与化肥的比较研究[J].安徽农业科学,2005,33(10):1814-1815,1853.
参考文献 29
Maqubela M P,Mnkeni P N S,Issa O M,et al.Nostoc cyanobacterial inoculation in South African agricultural soils enhances soil structure,fertility,and maize growth[J].Plant and Soil,2009,315(1-2):79-92.
参考文献 30
包江桥,周伊薇,何璐茜,等.固氮蓝藻的农业应用研究进展[J].中国生态农业学报,2018,26(4):574-583.
参考文献 31
Tripathi R D,Dwivedi S,Shukla M K,et al.Role of blue green algae biofertilizer in ameliorating the nitrogen demand and fly-ash stress to the growth and yield of rice(Oryza sativa L.)plants[J].Chemosphere,2008,70(10):1919-1929.
参考文献 32
黎尚豪.固氮蓝藻作为晚稻肥源的研究[J].水生生物学报,1981,7(3):417-423.
参考文献 33
Manjunath M,Kanchan A,Ranjan K,et al.Beneficial cyanobacteria and eubacteria synergistically enhance bioavailability of soil nutrients and yield of okra[J].Heliyon,2016,2(2):e00066.
参考文献 34
孔德柱,张树峰,周玉生,等.固氮鱼腥藻在小麦和西红柿上的肥效[J].江苏农业科学,2016,44(10):499-502.
参考文献 35
Pereira I,Ortega R,Barrientos L,et al.Development of a biofertilizer based on filamentous nitrogen-fixing cyanobacteria for rice crops in Chile[J].Journal of Applied Phycology,2009,21(1):135-144.
参考文献 36
Savci S.Investigation of effect of chemical fertilizers on environment[J].APCBEE Procedia,2012,1:287-292.
参考文献 37
Ma Y H,Gu D J,Liu L J.Changes in grain yield of rice and emission of greenhouse gases from paddy fields after application of organic fertilizers made from maize straw[J].Rice Science,2014,21(4):224-232.
参考文献 38
Lal R.Carbon emission from farm operations[J].Environment International,2004,30(7):981-990.
参考文献 39
Obana S,Miyamoto K,Morita S,et al.Effect of Nostoc sp.on soil characteristics,plant growth and nutrient uptake[J].Journal of Applied Phycology,2007,19(6):641-646.
参考文献 40
凌丽俐,卿人韦,傅华龙,等.藻类对土壤肥力的影响[J].四川大学学报(自然科学版),2003,40(1):135-138.
参考文献 41
Durall C,Lindblad P.Mechanisms of carbon fixation and engineering for increased carbon fixation in cyanobacteria[J].Algal Research,2015,11:263-270.
参考文献 42
Castro J S,Calijuri M L,Assemany P P,et al.Microalgae biofilm in soil:greenhouse gas emissions,ammonia volatilization and plant growth[J].Science of the Total Environment,2017,574:1640-1648.
参考文献 43
Wang R,Peng B,Huang K.The research progress of CO2 sequestration by algal biofertilizer in China[J].Journal of CO2 Utilization,2015,11:67-70.
参考文献 44
Voß U,Bishopp A,Farcot E,et al.Modelling hormonal response and development[J].Trends Plant Science,2014,19(5):311-319.
参考文献 45
Weiss T L,Roth R,Goodson C,et al.Colony organization in the green alga Botryococcus braunii(Race B)is specified by a complex extracellular matrix[J].Eukaryotic Cell,2012,11(12):1424-1440.
参考文献 46
Lu Y,Xu J.Phytohormones in microalgae:a new opportunity for microalgal biotechnology?[J].Trends in Plant Science,2015,20(5):273-282.
参考文献 47
Stirk W A,Ördög V,Staden J V,et al.Cytokinin-and auxinlike activity in cyanophyta and microalgae[J].Journal of Applied Phycology,2002,14(3):215-221.
参考文献 48
Tarakhovskaya E R,Maslov Y I,Shishova M F.Phytohormones in algae[J].Russian Journal of Plant Physiology,2007,54(2):163-170.
参考文献 49
Kholssi R,Marks E A N,Miñón J,et al.Biofertilizing effect of Chlorella sorokiniana suspensions on wheat growth[J].Journal of Plant Growth Regulation,2019,38(2):644-649.
参考文献 50
Hussain A,Hasnain S.Phytostimulation and biofertilization in wheat by cyanobacteria[J].Journal of Industrial Microbiology & Biotechnology,2011,38(1):85-92.
参考文献 51
Xiao R,Zheng Y.Overview of microalgal extracellular polymeric substances(EPS)and their applications[J].Biotechnology Advances,2016,34(7):1225-1244.
参考文献 52
Chittapun S,Limbipichai S,Amnuaysin N,et al.Effects of using cyanobacteria and fertilizer on growth and yield of rice,Pathum Thani I:a pot experiment[J].Journal of Applied Phycology,2018,30(1):79-85.
参考文献 53
Mazhar S,Cohen J D,Hasnain S.Auxin producing nonheterocystous cyanobacteria and their impact on the growth and endogenous auxin homeostasis of wheat[J].Journal of Basic Microbiology,2013,53(12):996-1003.
参考文献 54
Issa O M,Défarge C,Bissonnais Y L,et al.Effects of the inoculation of cyanobacteria on the microstructure and the structural stability of a tropical soil[J].Plant and Soil,2007,290(1-2):209-219.
参考文献 55
郑鹤龄.微量元素营养诊断[M].天津:天津科技翻译出版公司,2010.
参考文献 56
Rana A,Joshi M,Prasanna R,et al.Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria[J].European Journal Soil Biology,2012,50:118-126.
参考文献 57
Nisha R,Kaushik A,Kaushik C P.Effect of indigenous cyanobacterial application on structural stability and productivity of an organically poor semi-arid soil[J].Geoderma,2007,138(1-2):49-56.
参考文献 58
Renuka N,Prasanna R,Sood A,et al.Wastewater grown microalgal biomass as inoculants for improving micronutrient availability in wheat[J].Rhizosphere,2017,3:150-159.
参考文献 59
Simranjit K,Kanchan A,Prasanna R,et al.Microbial inoculants as plant growth stimulating and soil nutrient availability enhancing options for cucumber under protected cultivation[J].World Journal of Microbiology and Biotechnology,2019,35:51.
参考文献 60
Lavu R V S,De Schepper V,Steppe K,et al.Use of selenium fertilizers for production of Se-enriched Kenaf(Hibiscus cannabinus):Effect on Se concentration and plant productivity[J].Journal of Plant Nutrition and Soil Science,2013,176(4):634-639.
参考文献 61
Sood A,Singh P K,Kumar A,et al.Growth and biochemical characterization of associations between cyanobionts and wheat seedlings in co-culturing experiments[J].Biologia(Bratislava),2011,66(1):104-110.
参考文献 62
Hashtroudi M S,Ghassempour A,Riahi H,et al.Endogenous auxins in plant growth-promoting cyanobacteria-Anabaena vaginicola and Nostoc calcicola[J].Journal of Applied Phycology,2013,25(2):379-386.
参考文献 63
Garcia-Gonzalez J,Sommerfeld M.Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus[J].Journal of Applied Phycology,2016,28(2):1051-1061.
参考文献 64
Faheed F A,Fattah Z A.Effect of Chlorella vulgaris as biofertilizer on growth parameters and metabolic aspects of lettuce plant[J].Journal of Agriculture and Social Sciences,2008,4(4):165-169.
参考文献 65
Saadatnia H,Riahi H.Cyanobacteria from paddy fields in Iran as a biofertilizer in rice plants[J].Plant Soil Environment,2009,55(5):201-212.
参考文献 66
李羡,姜梦柔,何林乾,等.小球藻提取物对几种十字花科蔬菜种子萌发的影响[J].江苏农业科学,2010,(4):160-162.
参考文献 67
Osman M E H,EI-Sheekh M M,EI-Naggar A H,et al.Effect of two species of cyanobacteria as biofertilizers on some metabolic activities,growth,and yield of pea plant[J].Biology and Fertility of Soils,2010,46(8):861-875.
参考文献 68
Grzesik M,Romanowska-Duda Z.Improvements in germination,growth,and metabolic activity of corn seedlings by grain conditioning and root application with cyanobacteria and microalgae[J].Polish Journal of Environmental Studies,2014,23(4):1147-1153.
参考文献 69
Dias G A,Rocha R H C,Araújo J L,et al.Growth,yield,and postharvest quality in eggplant produced under different foliar fertilizer(Spirulina platensis)treatments[J].Semina:Ciências Agrárias,2016,37(6):3893-3902.
参考文献 70
Dineshkumar R,Subramanian J,Arumugam A,et al.Exploring the microalgae biofertilizer effect on onion cultivation by field experiment[J].Waste and Biomass Valorization,2018,1-11.
参考文献 71
郗焕芳,谢文娟,陈际才.“地福来”藻类活性细胞生物肥在冬马铃薯上的同田对比试验[J].农业科技通讯,2018,(11):146-148.
参考文献 72
代小,木其叶乐,敖敦,等.藻类活性细胞生物肥对苜蓿草产量及品质的影响[J].黑龙江畜牧兽医,2018,(22):164-167.
参考文献 73
刘永定,黎尚豪.土壤藻类及其生理生态[J].水生生物学报,1993,17(3):272-277.
参考文献 74
Yilmaz E,Sönmez M.The role of organic/bio-fertilizer amendment on aggregate stability and organic carbon content in different aggregate scales[J].Soil and Tillage Research,2017,168:118-124.
参考文献 75
唐东山,卿人韦,傅华龙,等.利用土壤微藻改良贫瘠土壤的研究[J].四川大学学报(自然科学版),2003,40(2):352-355.
参考文献 76
刘淑芳,吕俊平,冯佳,等.施用微藻对黄瓜生长及土壤质量的影响[J].山西农业科学,2016,44(9):1312-1315,1319.
参考文献 77
Emanga A,Leaka J R,Jagroop P.Circular economy fertilization:Testing micro and macro algal species as soil improvers and nutrient sources for crop production in greenhouse and field conditions[J].Geoderma,2019,334:113-123.
参考文献 78
Leloup M,Nicolau R,Pallier V,et al.Organic matter produced by algae and cyanobacteria:quantitative and qualitative characterization[J].Journal of Environmental Sciences,2013,25(6):1089-1097.
参考文献 79
王铭山献,兰利琼,卿人韦,等.土壤微藻对土壤质量影响的研究[J].水土保持学报,2001,15(4):103-107.
参考文献 80
叶华勋,兰利琼,卿人韦,等.土壤藻类对植物生长影响的研究[J].土壤通报,2007,38(5):950-956.
参考文献 81
Priya H,Prasanna R,Ramakrishnan B,et al.Influence of cyanobacterial inoculation on the culturable microbiome and growth of rice[J].Microbiological Research,2015,171:78-89.
参考文献 82
Marks E A N,Miñón J,Pascual A,et al.Application of a microalgal slurry to soil stimulates heterotrophic activity and promotes bacterial growth[J].Science of the Total Environment,2017,605-606:610-617.
参考文献 83
景丽百合.具鞘微鞘藻与爪哇伪枝藻混合藻种藻结皮条件的优化研究[D].甘肃:兰州理工大学,2016.
参考文献 84
陈兰周,刘永定,李敦海,等.荒漠藻类及其结皮的研究 [J].中国科学基金,2003,(3):90-93.
参考文献 85
吴丽,张高科,陈晓国,等.生物结皮的发育演替与微生物生物量变化[J].环境科学,2014,35(4):1479-1485.
参考文献 86
杜宇.人工藻类生物结皮固沙效果的研究[D].内蒙古:内蒙古农业大学,2008.
参考文献 87
饶本强,王伟波,兰书斌,等.库布齐沙地三年生人工藻结皮发育特征及微生物分布[J].水生生物学报,2009,33(5):937-943.
参考文献 88
高丽倩.黄土高原生物结皮土壤抗水蚀机理研究[D].北京:中国科学院大学,2017.
参考文献 89
Rengasamy P,Chittleborough D,Helyar K.Root-zone constraints and plant-based solutions for dryland salinity[J].Plant and Soil,2003,257(2):249-260.
参考文献 90
郭世乾,崔增团,傅亲民.甘肃省盐碱地现状及治理思路与建议[J].中国农业资源与区划,2013,34(4):75-79.
参考文献 91
Nisha R,Kiran B,Kaushik A,et al.Bioremediation of salt affected soils using cyanobacteria in terms of physical structure,nutrient status and microbial activity[J].International Journal of Environment Science Technology,2018,15:571-580.
参考文献 92
Philippi R D,Vincenzini M.Exocellular polysaccharides from cyanobacteria and their possible applications[J].FEMS Microbiology Reviews,1998,22(3):151-175.
参考文献 93
张巍.固氮蓝藻在松嫩平原盐碱土生态修复中作用的研究 [D].黑龙江:哈尔滨工业大学,2008.
目录contents

    摘要

    土壤是农业生产的基础,土壤质量的好坏直接影响作物的品质和产量。微藻是土壤微生物的重要组成部分,资源丰富,并具有固氮、固碳和分泌植物生长激素等特性,在促进作物生长、提高土壤肥力和改善土壤结构方面具有良好的效果。综述了微藻作为生物肥料的优异特性,微藻生物肥料在农业生产和农业生态保护方面的应用,以及近年来新技术的发展、商业化的现状和未来的发展方向,为微藻生物肥料的应用提供一定的科学理论基础。

    Abstract

    Soil is the basis of agricultural production,and its quality directly affects the quality and yield of crops. Microalgae,being rich in resource,is an important component of soil microorganisms,and has the functions of nitrogen fixation,carbon fixation and secretion of plant growth hormones.It has good effects in promoting crop growth,improving soil fertility and soil structure.In this paper,the advantages of microalgae as bio-fertilizer,the application of microalgae bio-fertilizer in agricultural production and agro-ecological protection,and the development of new technologies in recent years,the status of commercialization and the development direction in future were summarized,and it can provide a scientific theoretical basis for the application of microalgae bio-fertilizer

    关键词

    微藻生物肥料植物生长土壤肥力固氮

  • 我国是一个农业大国,为满足人口不断增长的需要,在过去几十年的农业生产中单一大量的使用化学肥料以促进农产品的增产增收,同时也造成了土壤肥力下降和环境污染等问题[1-2]。近年来,随着人民生活水平的提高,对高产优质农产品和营养保健食品的需求日益增加。国家在“十三五”规划中明确提出要推广“生态农业”。为了发展生态农业,提高化肥利用率,减少不合理投入,促进农业可持续发展,农业部制订了《到2020 年化肥使用量零增长行动方案》,强调了合理利用有机养分资源,减少或不使用化学肥料。生物肥料是一类含有有益微生物的制品[3],它能够通过微生物的生命活动,促进土壤和水质中的物质转化,促进作物对环境中营养的吸收,刺激和调控作物生长,同时可以防治病虫害,从而达到作物增产的目的,在为作物提供养分、调节有机质动态、增强土壤生物活性等方面起着至关重要的作用[4-5]。生物肥料有着微量高效、对环境无危害的特点,所用的微生物都是环境友好型的,不会出现化学肥料污染水源、破坏土壤质量等各种环境问题,因此,生物肥料是一种化学肥料的最佳替代品[6]

  • 微藻是一类个体微小、结构简单、光合利用度高的低等自养生物,广泛分布于土壤、海洋、河流和湖泊等不同生境,甚至生活在一些极端环境(南北极、干旱和盐碱土壤等)[7]。微藻种类繁多,地球上约有3 万余种不同的微藻,占全球已知藻类的70%左右[8],其中包括原核生物,如蓝藻门种类, 也有真核生物,如绿藻门、硅藻门等。微藻作为一种生物肥料的优势有以下几点:1)它可以通过缓慢释放氮、磷、钾来防止养分流失,满足植物的生长需求[9];2)除了含有大量营养元素外,还含有微量元素和促进植物生长的物质,如植物激素、维生素、类胡萝卜素、氨基酸和抗真菌物质[10],这些物质能促进作物生长和提高土壤肥力;3)微藻繁殖速度快,可规模化培养,其生物质可直接用于土壤接种,不会污染地下水和土壤等周边环境; 4)利用微藻净化养殖废水或城市污水后收获微藻生物来作为肥料[11-13],在净化水质的同时也极大地降低了生产成本[14];5)能够修复被破坏的土壤,如荒漠化土壤和盐碱地等[15-16]。基于以上优势,微藻生物肥料在实验室环境和大田种植方面获得了广泛的研究[17-20]

  • 1 微藻肥料的生物特性

  • 1.1 固氮作用

  • 生物固氮是自然生态系统最主要的氮来源[21-22]。 固氮蓝藻是地球上年固氮量仅次于豆科植物和根瘤菌共生结合体的固氮生物,是重要的可利用生物氮肥资源[23]。固氮蓝藻通过异形胞将空气中的分子氮转化合成为氮素化合物[24],从而满足土壤中动植物的需要[25]。同时,固氮蓝藻是目前唯一发现的可以同时进行光合作用和固氮作用的生物,它不与植物竞争对氮的需求,并且在生长繁殖过程中会不断分泌出氨基酸、糖类、多肽和少量激素等含氮化合物和活性物质,促进其他微生物的生长,提高土壤中的有效氮的浓度[26]

  • 自1939 年印度首次报道用固氮蓝藻肥田开始[27],许多研究证明使用固氮蓝藻可以增加农业生产的产量[28-30],提高土壤中的氮含量[2631]。国内最初由黎尚豪院士率领的团队研究表明,接种固氮蓝藻后水稻平均增产超过15%,最高达33%,是很有发展前景的晚稻肥源[32]。之后,国内外许多学者研究表明在土壤中接种固氮蓝藻后,土壤氮含量显著提高。Manjunath等[33]以南非东开普省的两种土壤为研究对象,研究了接种念珠藻对土壤结构的影响,结果表明接种念珠藻后两种土壤中氮含量分别增加了17%和40%。孔德柱等[34]研究固氮鱼腥藻在小麦和西红柿上的肥效,发现施用蓝藻肥料的土壤在90 d后,土壤含氮量从最初的0.023%上升到0.075%;而施用尿素的土壤,刚施入时土壤中氮含量较高,达到0.083%,但之后迅速下降,在90 d后土壤含氮量基本回到最初的水平(0.018%)。上述研究表明固氮鱼腥藻肥料肥效比较缓慢,但十分持久。Pereira等[35]研究表明,在水稻作物上接种丝状蓝藻,可以减少50%的化肥用量,且粮食产量和品质与施用化肥相近。

  • 1.2 固碳作用

  • 近年来,化肥的使用增加了各种温室气体的排放[36], 它们会以CO2、CH4 和NO2 的形式从土壤中排出,对全球气候变暖具有重要影响[37]。 Lal[38]报道了化学肥料中不同营养成分的碳排放量,估算了N、P2O5、K2O和CaCO3 碳排放量分别是0.9 ~ 1.8、0.1 ~ 0.3、0.1 ~ 0.2 和0.03 ~ 0.23 CE kg/kg。

  • 微藻是光养微生物,光合效率高,其固碳效率是一般陆生植物的10 ~ 50 倍[8]。土壤中的藻类通过光合作用吸收空气中的CO2,释放O2 可以提高土壤氧含量,为好氧微生物提供生存条件,改善土壤性质[39]。凌丽俐等[40]研究发现在正常光照下, 藻类通过光合作用,能使土壤的有机质不断增加, 并且在藻类和微生物的共同作用下,能够将土壤中的难溶磷释放出来,为植物生长提供营养。Durall等[41]发现绿藻和蓝藻通过光合作用可以利用各种工业排放烟气中的CO2 产生营养丰富的藻生物量, 收获藻生物质可以生产高附加值产品,如生物燃料、饲料和生物肥料等。藻类分泌的胞外多糖和土壤微生物在土壤表面形成的藻生物膜还有助于封存大气中的CO2,并增加土壤中的有机碳[42]。Wang等[43]报道,藻类生物肥料除了固定CO2 和减少温室气体排放之外,藻细胞死亡后可以转化为有机肥,改善土壤结构,提高水稻产量和品质。

  • 1.3 生物活性物质

  • 土壤微藻除了进行固氮和固碳作用以外,还能够分泌多种生物活性物质,如类胡萝卜素、蛋白质、脂肪酸、植物激素、胞外多糖、维生素和抗生素等。其中,植物激素是一类小分子,是协调高等植物细胞活动的化学信使[44],在植物的生长发育中起着重要的作用;而胞外多糖能够为土壤微生物提供营养物质和增加土壤有机碳含量,进而对土壤性质产生影响[45]

  • Lu等[46]从基因组的代谢重建出发,认为现代高等植物激素生物合成途径起源于古代微藻,虽然其中的一些微藻激素信号通路尚不清楚,但这表明了微藻在植物激素合成和分泌过程中的重要性。微藻的细胞提取物和生长液中已被证明含有植物激素(如生长素、细胞分裂素、赤霉素、脱落酸和水杨酸),在植物发育中起着至关重要的作用[47-49]。Hussain等[50]研究了在实验室和田间条件下,蓝藻菌株分泌激素刺激植物生长的能力。研究表明,蓝藻分泌的激素(细胞分裂素和生长素) 与植物生长参数如芽长、根长、穗长和种子重量之间存在正相关关系,植物中植物激素水平的增加可能是根际的蓝藻与植物相互作用的结果。胞外多糖是由微藻通过光合作用及代谢合成的另一种生物活性物质。许多绿藻和蓝藻都被证明在周围环境中产生和分泌胞外多糖[51]。Chittapun等[52]从水稻田中分离出了两株念珠藻,它们能够分泌较高含量的胞外多糖和吲哚乙酸,胞外多糖能够提高土壤团聚体的稳定性,并且可以通过生物吸附作用降低重金属的毒性;吲哚乙酸则可以促进种子萌发和植物生长[53]。Issa等[54]研究发现绿藻和蓝藻产生的胞外多糖具有粘附性,有助于土壤颗粒的聚集,改善土壤结构,更大程度上防止土壤侵蚀。

  • 1.4 微量元素

  • 植物正常生长所需要的营养元素除大量元素氮、磷、钾外,还包括中量元素和微量元素,尤其是微量元素对植物的正常生长和各项生理活动都起着非常重要的作用。微量元素的缺乏与过剩和病虫危害一样,会威胁植物正常的生长发育,并且对作物的产量和品质造成一定的影响[55]

  • 微藻中含有Cu、Fe、Se、Mn、Zn等多种微量元素,在土壤中接种微藻后能够增加土壤中微量元素的含量,促进植物生长。研究表明,项圈藻可以提高土壤中微量元素(Zn、Cu、Fe等)和大量元素(C、N、P、K等)的有效性,以及它们在植物体内向籽粒的转运[56-57]。Renuka等[58]报道了细菌与蓝藻和绿藻的共同作用能够强化植物根部微量元素Cu、Mn、Fe和Zn的富集。Simranjit等[59]在土壤中同时接种鱼腥藻和固氮菌,发现土壤Zn、Mn、Cu和Fe的有效浓度增加,叶片中叶绿素a含量提高了51.13%。Wuang等[13]利用水产养殖废水培养的螺旋藻生物质作为农业肥料,与化学肥料的成分相对比,发现藻类中氮、磷和钾的含量较低,但检测到钙、铁、锰、锌和硒等微量元素的存在。钙是细胞壁的重要组成部分,不仅可以促进新的生长点和根尖的形成,也可以增强细胞壁的弹性和膨胀,使生长点不会变得僵硬和脆弱。铁是几种必需酶的重要结构成分之一,铁缺乏会造成植物叶绿素难以形成,导致叶片黄化,植物光合作用降低等问题。藻类生物质中的锰含量也显著高于化学肥料[13],锰元素作为同化氮的酶活化剂,对叶绿素的合成至关重要。此外,参与生物质和酶系统合成的锌元素与具有提高种子苗期根系活力作用的硒元素在化学肥料中并未检测到,但是,它们对于叶绿素和碳水化合物的产生以及促进某些代谢反应是非常重要的[60]

  • 2 农业生产的应用

  • 2.1 对作物生长的影响

  • 微藻对作物的影响主要是它可以合成和分泌多种促生长物质,如生长素、赤霉素和细胞分裂素[61-63], 这些生物活性物质在植物发育、植物代谢和植物生长调节等方面具有重要的作用,可以促进种子萌发、幼苗生长,影响果实品质以及作物产量。

  • 在促进种子萌发方面,Faheed等[64] 研究了小球藻对生菜的影响,结果表明,经过藻液处理可以显著提高种子的发芽速率,在土壤中添加藻液也显著增加了幼苗的鲜重、干重和色素含量。 Saadatnia等[65]研究发现用0.1 g蓝藻藻泥和水混合浸泡的水稻种子萌发速度快于对照,2 d后观察到种子萌发,20 d后测量幼苗高7 cm,根长3 cm;而对照组中,5 d后观察到种子发芽,20 d后测量幼苗高4 cm,根长0.5 cm。李羡等[66] 探究了不同浓度的小球藻提取液对蔬菜种子萌发的影响,结果表明,不同浓度小球藻提取物处理种子均可提高发芽率、发芽势和发芽指数,当小球藻提取物浓度为4%时,白菜、芥菜、萝卜的发芽率分别比对照增高15%、12%、10%;发芽势分别增高14%、10%、20%;发芽指数分别比对照增加10.53%、17.98%、9.87%。 另外, 小球藻提取物还可促进种子萌发过程中胚根生长和缩短种子萌发周期。Osman等[67]研究接种两种蓝藻(念珠藻和颤藻)藻液对豌豆生长的影响,发现土壤中单独接种念珠藻和颤藻藻液或者接种两种蓝藻混合藻液,均能显著提高豌豆的发芽率,分别比对照增加25.98%、22.55%、35.47%,同时指出豌豆种子萌发、幼苗根和茎长度的增加可能是蓝藻中存在的生长素、细胞分裂素和赤霉素共同作用的结果。

  • 在促进幼苗生长方面,Chittapun等[52]分别研究了蓝藻和化肥对水稻生长的影响,蓝藻的施加促进了水稻幼苗的生长,与未施加蓝藻和化肥的对照组相比,接种蓝藻对水稻幼苗的根长、芽长、鲜重和干重均有提高的作用。Das等[12]利用城市污水培养的微藻生物质作为小麦生长的生物肥料,与常规N、P、K肥料相比,藻肥组的植株叶片数和平均叶片大小均较高,说明微藻对促进幼苗生长有积极的作用。Grzesik等[68]通过使用蓝藻和绿藻改善玉米种子萌发、幼苗生长和代谢活性,结果表明, 单株培养的铜绿微囊藻、鱼腥藻和小球藻均能显著提高玉米幼苗的生长,并强化了酶的代谢活性,如核糖核酸酶、脱氢酶等。Wuang等[13]利用富含螺旋藻的土壤中栽培的芝麻菜植物,与未使用任何肥料的对照组相比,植物株高增加55.3%,鲜重和干重分别增加18.7%和21.1%;与使用商用化肥的植物相比,在富含螺旋藻的土壤中生长的植物株高增加了71.8%。

  • 在改善果实品质方面,Coppens等[9] 通过实验发现藻肥能够使番茄果实中糖浓度显著升高,施用微拟球藻藻肥生长的番茄果实中葡萄糖浓度比有机肥处理高18%,比无机肥处理高33%;类胡萝卜素含量比无机肥处理高36%。Dias等[69] 研究了不同浓度的螺旋藻叶面肥处理对茄子品质的影响,发现施用低浓度螺旋藻叶面肥虽然不影响果实的颜色和可溶性物质,但延长了果实的保质期。Dineshkumar等[70] 通过田间试验研究了藻肥对洋葱栽培的影响,结果表明,添加螺旋藻与牛粪或者小球藻与牛粪的处理组效果均好于只添加牛粪的对照组,处理组中的洋葱色素含量、总可溶性糖、总游离氨基酸等成分都有所增加。

  • 在提高作物产量方面,郗焕芳等[71] 通过田间试验,研究了藻类活性生物肥在马铃薯上的肥效。试验结果表明,马铃薯的产量随着施肥浓度的增加而增加,使用浓度为3 L/hm2 时与对照相比增产33.59%,使用浓度为6 L/hm2 时与对照相比增产36.95%。代小等[72]研究了藻类活性细胞生物肥对苜蓿草产量及品质的影响,施用生物肥料的两茬平均增产502.50 kg/hm2,增产率为15.07%。

  • 2.2 对土壤理化性质的影响

  • 土壤理化性质的变化直接影响土壤质量,而土壤质量的好坏是制约农业生产的重要因素之一。目前改善土壤质量的方法有很多,如物理法、化学法和生物法等,但如何高效、环保、经济地改善土壤质量是当前农业生产面临的问题。微藻在土壤中普遍存在,是一种重要的有机质来源,它在提高土壤肥力和改善土壤微生态系统方面具有独特的生态学功能[73]。因此,利用微藻改善土壤质量是一种经济可行的方法。

  • 微藻一方面能增强土壤团聚体的稳定性,另一方面能提高土壤中有机质和氮、磷的含量,同时对土壤pH产生重要影响。稳定的土壤团聚体是维持土壤肥力的一个重要因素,土壤团聚体为植物提供了生长和根部渗入土壤所需的最小孔隙,良好的土壤团聚结构能够增加土壤中氧含量和提高土壤的持水能力。Issa等[54]研究表明,在土壤中接种蓝藻6 周后形成由藻丝和胞外多糖组成的有机土壤团聚体,与未接种的对照组相比,明显增强了土壤团聚体的稳定性。Yilmaz等[74]研究了不同微藻生物肥料处理对土壤团聚体稳定性的影响,结果表明,单独接种小球藻或与蛭石联合接种均能提高土壤团聚体的稳定性。藻类生物质还能够增加土壤中的有机质,改善土壤结构和提高土壤肥力。唐东山等[75] 利用肥沃土壤中的微藻改良贫瘠土壤,研究发现, 在无光照条件下的微藻在30 d内进入休眠状态或死亡;但在光照条件下,微藻的数量在第30 d以后迅速增殖,随着藻类的生长,土壤pH值发生了一定变化;土壤有机质含量第90 d时分别为第30 d的1.57、1.75 和1.95 倍;土壤有效磷含量第90 d时分别为第30 d的1.37、1.41 和1.40 倍。这表明土壤微藻能改善贫瘠土壤的微生态环境和提高土壤肥力。刘淑芳等[76]施用3 种微藻液体肥种植黄瓜后发现土壤有机质、碱解氮、有效磷和速效钾含量明显增加,土壤脲酶和蔗糖酶活性也有不同程度的增加。Yilmaz等[74]在温室条件下进行盆栽试验,研究不同有机肥和生物肥料对土壤有机碳含量的影响,结果表明,与未加肥料对照组相比,藻类生物肥料的施用显著增加了土壤的有机碳;Emanga等[77]研究了温室中两种藻类(小球藻和螺旋藻) 对土壤C、N、P含量和土壤团聚体稳定性的影响, 发现两种藻均可以增加土壤中总碳、总氮和有效磷的浓度,其中螺旋藻还可以增加土壤中硝态氮的浓度。

  • 2.3 对土壤生物性质的影响

  • 一般来讲,土壤生物性质即指土壤微生物性质。微藻对土壤微生物的影响主要是藻细胞通过其生命活动,利用环境中的营养物质,释放胞外物质,或者藻细胞发生死亡,微生物分解死亡细胞,利用其营养成分,改变环境pH,同时影响环境中微生物群落的构建,促使土壤形成不同数量及种类的微生物群落[78-79]。叶华勋等[80]研究了土壤藻类在植物生长过程中对植物生长及基质状况的影响,结果表明,在正常光照下,单细胞土壤藻类(沙角衣藻)可以促进土壤微生物的生长,能够转化磷矿粉中作物不能吸收的磷为可吸收的磷,从而提高土壤中有效磷的含量,增强土壤酶活性,最终达到改善土壤质量的作用。Priya等[81]的研究表明,接种蓝藻会导致根际微生物群的变化,使参与营养物质矿化和溶解的微生物群落的结构和丰度发生变化。Marks等[82]将污水处理产生的活性微藻生物作为生物肥料研究藻类对土壤性质的影响,发现自养藻类促进了异养细菌的生长,光合藻悬液的应用增加了土壤中真核微生物和原核微生物的生物量以及异养微生物的活性。

  • 3 农业环境保护

  • 3.1 土壤荒漠化治理

  • 在我国北方干旱和半干旱地区,由于降水稀少,植被难以生长,土壤荒漠化严重,致使水土流失导致土壤退化、土地生产力下降,并带来一系列生态环境问题。为治理生态环境,防止土壤进一步沙化,通常采用向荒漠化土壤中人为地接入一定量的藻类使其在土壤表面形成结皮[83],并获得了较好的效果。土壤生物结皮是由细菌、真菌、藻类、地衣和苔藓等形成的一种混合体,而藻结皮是土壤生物结皮的主要组成部分[84]。吴丽等[85]在研究生物结皮演替过程中发现,藻结皮是以蓝藻为优势群落,尤其是丝状蓝藻,如具鞘微鞘藻、爪哇伪枝藻,它们能够通过改善表土微环境为异养微生物的生长提供良好条件。许多蓝藻和绿藻分泌的胞外多糖可以为农业上有益微生物的生长提供有机碳,并在植物根际形成有用的生物絮团和生物膜[4551],其生物膜对于水土保持、流沙固定、其他生物类群的生长繁殖以及土壤微生态系统的最终形成具有重要的促进作用。杜宇[86]进行了人工藻类生物结皮固沙效果的研究,发现流沙表面生长的人工荒漠藻结皮可以改变土壤的理化性质,随着藻结皮的增厚,土壤含水量、有机质、总氮、总磷含量增加,土壤pH呈下降趋势,但都大于7,呈弱碱性。说明在沙土中接种藻类能够提高土壤养分含量,增强土壤持水力,使得土壤微生物和沙生植物生长,从而改变荒漠化土壤表面单一、松散的原始状态,使土壤表面趋于固定化。饶本强等[87]研究发现,将荒漠蓝藻接种到沙地表面,丝状蓝藻通过紧密和高强度的机械束缚作用以及藻体胞外分泌物对沙粒的黏结作用,对维持藻结皮的强度起着至关重要的作用。高丽倩[88]研究发现生物结皮后显著增加了土壤有机质、全氮、土壤细颗粒含量及土壤粘结力,降低了土壤容重。同时生物结皮显著降低了土壤可蚀性,增强了土壤抗蚀性。由此表明,在荒漠土壤中接种藻,形成的藻结皮能使菌类和低等植物繁殖生长,进而改善土壤性质,有效地减小风和水对荒漠化地表的侵蚀,从一定程度上遏制了荒漠化进程。

  • 3.2 盐碱地修复

  • 盐渍土通常氮、碳和磷含量较低,电导率较高,并含有一些有毒离子,这极大地限制了植物的生长[89]。据统计,我国目前盐碱地约有9913 万hm2,尤其是西北地区的甘肃、宁夏、新疆等省区都不同程度发生盐渍化危害。以甘肃省为例,全省目前受盐渍化影响的土壤已接近3 万hm2,特别是河西及沿黄灌区,由于受不合理灌溉所致,土壤盐渍化面积逐年增加,因土地盐渍化损失的粮食每年超过1 亿kg[90]。蓝藻在盐渍土改良中发挥着重要作用,它不仅改善了土壤中的氮、碳等营养物质含量,而且有助于土壤中有害钠离子的螯合[91]。蓝藻分泌的胞外多糖,具有螯合阳离子的趋势,这些胞外多糖具有像尿酸这样的带负电荷的基团[92],它们与Na离子结合,从而降低了Na离子在土壤溶液中的有效性,有利于植物的生长。张巍[93]研究了藻类对盐碱土的改良发现,固氮蓝藻提高了土壤有机质和土壤氮含量,分别达530.01%和269.12%,降低了土壤交换性Na+ 86.28%,使土壤pH下降到8.0 以下,且改变了根际微生物构成, 促进了植物生长。这说明固氮蓝藻可以改善土质, 促进植物生长,这对于生态修复盐碱化土壤具有一定的作用。Nisha等[91]从盐碱地中分离出了几株耐盐耐干旱的蓝藻,将蓝藻作为生物肥料来修复盐渍土,通过盆栽实验240 d后,蓝藻肥料处理后的土壤中碳、氮、磷、钾、镁阳离子交换能力和土壤持水能量均有明显提高,而钠离子和电导率均有降低。

  • 4 展望

  • 在当前国家要求农业生产中化肥和农药减量化的背景下,微藻生物肥料具有广阔的应用前景。但是藻类生物肥料的应用依赖于其生物质生产的经济性。利用农业废弃物或废水培养藻类是一种经济可行的策略,且具有环境效益。此外,单一藻细胞分泌生物活性物质含量较低,结合两种或两种以上具有不同潜在性状的藻种,是提高藻类生物肥料活性的有效策略;同时,筛选能与微藻互利共生的有益土壤微生物,利用微藻与微生物混合发酵,制备具有藻菌双重作用的微生物肥料,是微生物肥料开发领域的研究热点之一。现代分子生物技术的发展为进一步阐明微藻、土壤和植物的作用机制提供了工具,有助于验证藻类生物肥料的商业化潜力。微藻是发展可持续和环境友好型农业的重要资源,藻类生物肥料的发展需要建立更广泛的认识和更深入的研究。

  • 参考文献

    • [1] 石元亮,王玲莉,刘世彬,等.中国化学肥料发展及其对农业的作用[J].土壤学报,2008,45(5):852-863.

    • [2] 张北赢,陈天林,王兵.长期施用化肥对土壤质量的影响 [J].中国农学通报,2010,26(11):182-187.

    • [3] Vessey J K.Plant growth promoting rhizobacteria as biofertilizers [J].Plant and Soil,2003,255(2):571-586.

    • [4] Bhardwaj D,Ansari M,Sahoo R,et al.Biofertilizers function as key player in sustainable agriculture by improving soil fertility,plant tolerance and crop productivity[J].Microbial Cell Factories,2014,13(1):66.

    • [5] Singh J S,Kumar A,Rai A N,et al.Cyanobacteria:a precious bio-resource in agriculture ecosystem,and environmental sustain-ability[J].Frontiers in Microbiology,2016,7:529.

    • [6] 张杰,马亚君,贺志斌,等.微生物肥料替代化肥在苹果种植中的应用效果研究[J].中国农业科技导报,2019,21(7):128-135.

    • [7] Chen J,Wang Y,Benemann J,et al.Microalgal industry in China:challenges and prospects[J].Journal of Applied Phycology,2016,28(2):715-725.

    • [8] 邓祥元.应用微藻生物学[M].北京:海洋出版社,2016.

    • [9] Coppens J,Grunert O,Sofie V D H,et al.The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels[J].Journal of Applied Phycology,2016,28(4):2367-2377.

    • [10] Spolaore P,Joannis-Cassan C,Duran E,et al.Commercial applications of microalgae[J].Journal of Bioscience and Bioengineering,2006,101(2):87-96.

    • [11] Gimondo J A.The horticultural potential of wastewater-grown algae fertilizers[D].Iowa State:Iowa State University,2018.

    • [12] Das P,Quadir M A,Thaher M I,et al.Microalgal nutrients recycling from the primary effluent of municipal wastewater and use of the produced biomass as bio-fertilizer[J].International Journal of Environmental Science and Technology,2019,16(7):3355-3364.

    • [13] Wuang S C,Khin M C,Chua P Q D,et al.Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers[J].Algal Research,2016,15:59-64.

    • [14] Cai T,Park S Y,Li Y.Nutrient recovery from wastewater streams by microalgae:status and prospects[J].Renewable and Sustainable Energy Reviews,2013,19:360-369.

    • [15] 杜勇,杜雨润,朱绍萍,等.微藻在环境修复中的研究进展 [J].环境科学与技术,2014,37(S2):316-320.

    • [16] Colica G,Li H,Rossi F,et al.Microbial secreted exopolysaccharides affect the hydrological behavior of induced biological soil crusts in desert sandy soils[J].Soil Biology and Biochemistry,2014,68:62-70.

    • [17] Renuka N,Guldhe A,Prasanna R,et al.Microalgae as multi-functional options in modern agriculture:current trends,prospects and challenges[J].Biotechnology Advances,2018,36(4):1255-1273.

    • [18] Mulbry W,Westhead E K,Pizarro C,et al.Recycling of manure nutrients:use of algal biomass from dairy manure treatment as a slow release fertilizer[J].Bioresource Technology,2005,96(4):451-458.

    • [19] Dhar D W,Prasanna R,Singh B V.Comparative performance of three carrier based blue green algal biofertilizers for sustainable rice cultivation[J].Journal of Sustainable Agriculture,2007,30(2):41-50.

    • [20] Imen S,Rehab S,Rihab R,et al.Assessment of the algaebased biofertilizer influence on date palm(Phoenix dactylifera L.)cultivation[J].Journal of Applied Phycology,2018,31(1):457-463.

    • [21] Stewart W D P,Jones R F.Nitrogen fixation in plants[M].Cambs:Cambridge University Press,1966.

    • [22] Cleveland C C,Townsend A R,Schimel D S,et al.Global patterns of terrestrial biological nitrogen(N2)fixation in natural ecosystems[J].Global Biogeochemical Cycles,1999,13(2):623-645.

    • [23] 杜琼,孔维宝,韩锐,等.土壤微藻的种类及其功能研究进展[J].生物学通报,2015,50(1):1-5.

    • [24] Adams D G,Duggan P S.Cyanobacteria-bryophyte symbioses [J].Journal of Experi-mental Botany,2008,59(5):1047-1058.

    • [25] Babu S,Prasanna R,Bidyarani N,et al.Analysing the colonisation of inoculated cyanobacteria in wheat plants using biochemical and molecular tools[J].Journal of Applied Phycology,2015,27(1):327-338.

    • [26] Renuka N,Prasanna R,Sood A,et al.Exploring the efficacy of wastewater-grown microalgal biomass as a biofertilizer for wheat [J].Environmental Science and Pollution Research,2016,23(7):6608-6620.

    • [27] De P K.The role of blue-green algae in nitrogen fixation in ricefields[J].Proceedings of the Royal Society B:Biological Sciences,1939,127:121-139.

    • [28] 王秀红,沈健英,陆贻通.稻田施用固氮蓝藻与化肥的比较研究[J].安徽农业科学,2005,33(10):1814-1815,1853.

    • [29] Maqubela M P,Mnkeni P N S,Issa O M,et al.Nostoc cyanobacterial inoculation in South African agricultural soils enhances soil structure,fertility,and maize growth[J].Plant and Soil,2009,315(1-2):79-92.

    • [30] 包江桥,周伊薇,何璐茜,等.固氮蓝藻的农业应用研究进展[J].中国生态农业学报,2018,26(4):574-583.

    • [31] Tripathi R D,Dwivedi S,Shukla M K,et al.Role of blue green algae biofertilizer in ameliorating the nitrogen demand and fly-ash stress to the growth and yield of rice(Oryza sativa L.)plants[J].Chemosphere,2008,70(10):1919-1929.

    • [32] 黎尚豪.固氮蓝藻作为晚稻肥源的研究[J].水生生物学报,1981,7(3):417-423.

    • [33] Manjunath M,Kanchan A,Ranjan K,et al.Beneficial cyanobacteria and eubacteria synergistically enhance bioavailability of soil nutrients and yield of okra[J].Heliyon,2016,2(2):e00066.

    • [34] 孔德柱,张树峰,周玉生,等.固氮鱼腥藻在小麦和西红柿上的肥效[J].江苏农业科学,2016,44(10):499-502.

    • [35] Pereira I,Ortega R,Barrientos L,et al.Development of a biofertilizer based on filamentous nitrogen-fixing cyanobacteria for rice crops in Chile[J].Journal of Applied Phycology,2009,21(1):135-144.

    • [36] Savci S.Investigation of effect of chemical fertilizers on environment[J].APCBEE Procedia,2012,1:287-292.

    • [37] Ma Y H,Gu D J,Liu L J.Changes in grain yield of rice and emission of greenhouse gases from paddy fields after application of organic fertilizers made from maize straw[J].Rice Science,2014,21(4):224-232.

    • [38] Lal R.Carbon emission from farm operations[J].Environment International,2004,30(7):981-990.

    • [39] Obana S,Miyamoto K,Morita S,et al.Effect of Nostoc sp.on soil characteristics,plant growth and nutrient uptake[J].Journal of Applied Phycology,2007,19(6):641-646.

    • [40] 凌丽俐,卿人韦,傅华龙,等.藻类对土壤肥力的影响[J].四川大学学报(自然科学版),2003,40(1):135-138.

    • [41] Durall C,Lindblad P.Mechanisms of carbon fixation and engineering for increased carbon fixation in cyanobacteria[J].Algal Research,2015,11:263-270.

    • [42] Castro J S,Calijuri M L,Assemany P P,et al.Microalgae biofilm in soil:greenhouse gas emissions,ammonia volatilization and plant growth[J].Science of the Total Environment,2017,574:1640-1648.

    • [43] Wang R,Peng B,Huang K.The research progress of CO2 sequestration by algal biofertilizer in China[J].Journal of CO2 Utilization,2015,11:67-70.

    • [44] Voß U,Bishopp A,Farcot E,et al.Modelling hormonal response and development[J].Trends Plant Science,2014,19(5):311-319.

    • [45] Weiss T L,Roth R,Goodson C,et al.Colony organization in the green alga Botryococcus braunii(Race B)is specified by a complex extracellular matrix[J].Eukaryotic Cell,2012,11(12):1424-1440.

    • [46] Lu Y,Xu J.Phytohormones in microalgae:a new opportunity for microalgal biotechnology?[J].Trends in Plant Science,2015,20(5):273-282.

    • [47] Stirk W A,Ördög V,Staden J V,et al.Cytokinin-and auxinlike activity in cyanophyta and microalgae[J].Journal of Applied Phycology,2002,14(3):215-221.

    • [48] Tarakhovskaya E R,Maslov Y I,Shishova M F.Phytohormones in algae[J].Russian Journal of Plant Physiology,2007,54(2):163-170.

    • [49] Kholssi R,Marks E A N,Miñón J,et al.Biofertilizing effect of Chlorella sorokiniana suspensions on wheat growth[J].Journal of Plant Growth Regulation,2019,38(2):644-649.

    • [50] Hussain A,Hasnain S.Phytostimulation and biofertilization in wheat by cyanobacteria[J].Journal of Industrial Microbiology & Biotechnology,2011,38(1):85-92.

    • [51] Xiao R,Zheng Y.Overview of microalgal extracellular polymeric substances(EPS)and their applications[J].Biotechnology Advances,2016,34(7):1225-1244.

    • [52] Chittapun S,Limbipichai S,Amnuaysin N,et al.Effects of using cyanobacteria and fertilizer on growth and yield of rice,Pathum Thani I:a pot experiment[J].Journal of Applied Phycology,2018,30(1):79-85.

    • [53] Mazhar S,Cohen J D,Hasnain S.Auxin producing nonheterocystous cyanobacteria and their impact on the growth and endogenous auxin homeostasis of wheat[J].Journal of Basic Microbiology,2013,53(12):996-1003.

    • [54] Issa O M,Défarge C,Bissonnais Y L,et al.Effects of the inoculation of cyanobacteria on the microstructure and the structural stability of a tropical soil[J].Plant and Soil,2007,290(1-2):209-219.

    • [55] 郑鹤龄.微量元素营养诊断[M].天津:天津科技翻译出版公司,2010.

    • [56] Rana A,Joshi M,Prasanna R,et al.Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria[J].European Journal Soil Biology,2012,50:118-126.

    • [57] Nisha R,Kaushik A,Kaushik C P.Effect of indigenous cyanobacterial application on structural stability and productivity of an organically poor semi-arid soil[J].Geoderma,2007,138(1-2):49-56.

    • [58] Renuka N,Prasanna R,Sood A,et al.Wastewater grown microalgal biomass as inoculants for improving micronutrient availability in wheat[J].Rhizosphere,2017,3:150-159.

    • [59] Simranjit K,Kanchan A,Prasanna R,et al.Microbial inoculants as plant growth stimulating and soil nutrient availability enhancing options for cucumber under protected cultivation[J].World Journal of Microbiology and Biotechnology,2019,35:51.

    • [60] Lavu R V S,De Schepper V,Steppe K,et al.Use of selenium fertilizers for production of Se-enriched Kenaf(Hibiscus cannabinus):Effect on Se concentration and plant productivity[J].Journal of Plant Nutrition and Soil Science,2013,176(4):634-639.

    • [61] Sood A,Singh P K,Kumar A,et al.Growth and biochemical characterization of associations between cyanobionts and wheat seedlings in co-culturing experiments[J].Biologia(Bratislava),2011,66(1):104-110.

    • [62] Hashtroudi M S,Ghassempour A,Riahi H,et al.Endogenous auxins in plant growth-promoting cyanobacteria-Anabaena vaginicola and Nostoc calcicola[J].Journal of Applied Phycology,2013,25(2):379-386.

    • [63] Garcia-Gonzalez J,Sommerfeld M.Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus[J].Journal of Applied Phycology,2016,28(2):1051-1061.

    • [64] Faheed F A,Fattah Z A.Effect of Chlorella vulgaris as biofertilizer on growth parameters and metabolic aspects of lettuce plant[J].Journal of Agriculture and Social Sciences,2008,4(4):165-169.

    • [65] Saadatnia H,Riahi H.Cyanobacteria from paddy fields in Iran as a biofertilizer in rice plants[J].Plant Soil Environment,2009,55(5):201-212.

    • [66] 李羡,姜梦柔,何林乾,等.小球藻提取物对几种十字花科蔬菜种子萌发的影响[J].江苏农业科学,2010,(4):160-162.

    • [67] Osman M E H,EI-Sheekh M M,EI-Naggar A H,et al.Effect of two species of cyanobacteria as biofertilizers on some metabolic activities,growth,and yield of pea plant[J].Biology and Fertility of Soils,2010,46(8):861-875.

    • [68] Grzesik M,Romanowska-Duda Z.Improvements in germination,growth,and metabolic activity of corn seedlings by grain conditioning and root application with cyanobacteria and microalgae[J].Polish Journal of Environmental Studies,2014,23(4):1147-1153.

    • [69] Dias G A,Rocha R H C,Araújo J L,et al.Growth,yield,and postharvest quality in eggplant produced under different foliar fertilizer(Spirulina platensis)treatments[J].Semina:Ciências Agrárias,2016,37(6):3893-3902.

    • [70] Dineshkumar R,Subramanian J,Arumugam A,et al.Exploring the microalgae biofertilizer effect on onion cultivation by field experiment[J].Waste and Biomass Valorization,2018,1-11.

    • [71] 郗焕芳,谢文娟,陈际才.“地福来”藻类活性细胞生物肥在冬马铃薯上的同田对比试验[J].农业科技通讯,2018,(11):146-148.

    • [72] 代小,木其叶乐,敖敦,等.藻类活性细胞生物肥对苜蓿草产量及品质的影响[J].黑龙江畜牧兽医,2018,(22):164-167.

    • [73] 刘永定,黎尚豪.土壤藻类及其生理生态[J].水生生物学报,1993,17(3):272-277.

    • [74] Yilmaz E,Sönmez M.The role of organic/bio-fertilizer amendment on aggregate stability and organic carbon content in different aggregate scales[J].Soil and Tillage Research,2017,168:118-124.

    • [75] 唐东山,卿人韦,傅华龙,等.利用土壤微藻改良贫瘠土壤的研究[J].四川大学学报(自然科学版),2003,40(2):352-355.

    • [76] 刘淑芳,吕俊平,冯佳,等.施用微藻对黄瓜生长及土壤质量的影响[J].山西农业科学,2016,44(9):1312-1315,1319.

    • [77] Emanga A,Leaka J R,Jagroop P.Circular economy fertilization:Testing micro and macro algal species as soil improvers and nutrient sources for crop production in greenhouse and field conditions[J].Geoderma,2019,334:113-123.

    • [78] Leloup M,Nicolau R,Pallier V,et al.Organic matter produced by algae and cyanobacteria:quantitative and qualitative characterization[J].Journal of Environmental Sciences,2013,25(6):1089-1097.

    • [79] 王铭山献,兰利琼,卿人韦,等.土壤微藻对土壤质量影响的研究[J].水土保持学报,2001,15(4):103-107.

    • [80] 叶华勋,兰利琼,卿人韦,等.土壤藻类对植物生长影响的研究[J].土壤通报,2007,38(5):950-956.

    • [81] Priya H,Prasanna R,Ramakrishnan B,et al.Influence of cyanobacterial inoculation on the culturable microbiome and growth of rice[J].Microbiological Research,2015,171:78-89.

    • [82] Marks E A N,Miñón J,Pascual A,et al.Application of a microalgal slurry to soil stimulates heterotrophic activity and promotes bacterial growth[J].Science of the Total Environment,2017,605-606:610-617.

    • [83] 景丽百合.具鞘微鞘藻与爪哇伪枝藻混合藻种藻结皮条件的优化研究[D].甘肃:兰州理工大学,2016.

    • [84] 陈兰周,刘永定,李敦海,等.荒漠藻类及其结皮的研究 [J].中国科学基金,2003,(3):90-93.

    • [85] 吴丽,张高科,陈晓国,等.生物结皮的发育演替与微生物生物量变化[J].环境科学,2014,35(4):1479-1485.

    • [86] 杜宇.人工藻类生物结皮固沙效果的研究[D].内蒙古:内蒙古农业大学,2008.

    • [87] 饶本强,王伟波,兰书斌,等.库布齐沙地三年生人工藻结皮发育特征及微生物分布[J].水生生物学报,2009,33(5):937-943.

    • [88] 高丽倩.黄土高原生物结皮土壤抗水蚀机理研究[D].北京:中国科学院大学,2017.

    • [89] Rengasamy P,Chittleborough D,Helyar K.Root-zone constraints and plant-based solutions for dryland salinity[J].Plant and Soil,2003,257(2):249-260.

    • [90] 郭世乾,崔增团,傅亲民.甘肃省盐碱地现状及治理思路与建议[J].中国农业资源与区划,2013,34(4):75-79.

    • [91] Nisha R,Kiran B,Kaushik A,et al.Bioremediation of salt affected soils using cyanobacteria in terms of physical structure,nutrient status and microbial activity[J].International Journal of Environment Science Technology,2018,15:571-580.

    • [92] Philippi R D,Vincenzini M.Exocellular polysaccharides from cyanobacteria and their possible applications[J].FEMS Microbiology Reviews,1998,22(3):151-175.

    • [93] 张巍.固氮蓝藻在松嫩平原盐碱土生态修复中作用的研究 [D].黑龙江:哈尔滨工业大学,2008.

  • 参考文献

    • [1] 石元亮,王玲莉,刘世彬,等.中国化学肥料发展及其对农业的作用[J].土壤学报,2008,45(5):852-863.

    • [2] 张北赢,陈天林,王兵.长期施用化肥对土壤质量的影响 [J].中国农学通报,2010,26(11):182-187.

    • [3] Vessey J K.Plant growth promoting rhizobacteria as biofertilizers [J].Plant and Soil,2003,255(2):571-586.

    • [4] Bhardwaj D,Ansari M,Sahoo R,et al.Biofertilizers function as key player in sustainable agriculture by improving soil fertility,plant tolerance and crop productivity[J].Microbial Cell Factories,2014,13(1):66.

    • [5] Singh J S,Kumar A,Rai A N,et al.Cyanobacteria:a precious bio-resource in agriculture ecosystem,and environmental sustain-ability[J].Frontiers in Microbiology,2016,7:529.

    • [6] 张杰,马亚君,贺志斌,等.微生物肥料替代化肥在苹果种植中的应用效果研究[J].中国农业科技导报,2019,21(7):128-135.

    • [7] Chen J,Wang Y,Benemann J,et al.Microalgal industry in China:challenges and prospects[J].Journal of Applied Phycology,2016,28(2):715-725.

    • [8] 邓祥元.应用微藻生物学[M].北京:海洋出版社,2016.

    • [9] Coppens J,Grunert O,Sofie V D H,et al.The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels[J].Journal of Applied Phycology,2016,28(4):2367-2377.

    • [10] Spolaore P,Joannis-Cassan C,Duran E,et al.Commercial applications of microalgae[J].Journal of Bioscience and Bioengineering,2006,101(2):87-96.

    • [11] Gimondo J A.The horticultural potential of wastewater-grown algae fertilizers[D].Iowa State:Iowa State University,2018.

    • [12] Das P,Quadir M A,Thaher M I,et al.Microalgal nutrients recycling from the primary effluent of municipal wastewater and use of the produced biomass as bio-fertilizer[J].International Journal of Environmental Science and Technology,2019,16(7):3355-3364.

    • [13] Wuang S C,Khin M C,Chua P Q D,et al.Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers[J].Algal Research,2016,15:59-64.

    • [14] Cai T,Park S Y,Li Y.Nutrient recovery from wastewater streams by microalgae:status and prospects[J].Renewable and Sustainable Energy Reviews,2013,19:360-369.

    • [15] 杜勇,杜雨润,朱绍萍,等.微藻在环境修复中的研究进展 [J].环境科学与技术,2014,37(S2):316-320.

    • [16] Colica G,Li H,Rossi F,et al.Microbial secreted exopolysaccharides affect the hydrological behavior of induced biological soil crusts in desert sandy soils[J].Soil Biology and Biochemistry,2014,68:62-70.

    • [17] Renuka N,Guldhe A,Prasanna R,et al.Microalgae as multi-functional options in modern agriculture:current trends,prospects and challenges[J].Biotechnology Advances,2018,36(4):1255-1273.

    • [18] Mulbry W,Westhead E K,Pizarro C,et al.Recycling of manure nutrients:use of algal biomass from dairy manure treatment as a slow release fertilizer[J].Bioresource Technology,2005,96(4):451-458.

    • [19] Dhar D W,Prasanna R,Singh B V.Comparative performance of three carrier based blue green algal biofertilizers for sustainable rice cultivation[J].Journal of Sustainable Agriculture,2007,30(2):41-50.

    • [20] Imen S,Rehab S,Rihab R,et al.Assessment of the algaebased biofertilizer influence on date palm(Phoenix dactylifera L.)cultivation[J].Journal of Applied Phycology,2018,31(1):457-463.

    • [21] Stewart W D P,Jones R F.Nitrogen fixation in plants[M].Cambs:Cambridge University Press,1966.

    • [22] Cleveland C C,Townsend A R,Schimel D S,et al.Global patterns of terrestrial biological nitrogen(N2)fixation in natural ecosystems[J].Global Biogeochemical Cycles,1999,13(2):623-645.

    • [23] 杜琼,孔维宝,韩锐,等.土壤微藻的种类及其功能研究进展[J].生物学通报,2015,50(1):1-5.

    • [24] Adams D G,Duggan P S.Cyanobacteria-bryophyte symbioses [J].Journal of Experi-mental Botany,2008,59(5):1047-1058.

    • [25] Babu S,Prasanna R,Bidyarani N,et al.Analysing the colonisation of inoculated cyanobacteria in wheat plants using biochemical and molecular tools[J].Journal of Applied Phycology,2015,27(1):327-338.

    • [26] Renuka N,Prasanna R,Sood A,et al.Exploring the efficacy of wastewater-grown microalgal biomass as a biofertilizer for wheat [J].Environmental Science and Pollution Research,2016,23(7):6608-6620.

    • [27] De P K.The role of blue-green algae in nitrogen fixation in ricefields[J].Proceedings of the Royal Society B:Biological Sciences,1939,127:121-139.

    • [28] 王秀红,沈健英,陆贻通.稻田施用固氮蓝藻与化肥的比较研究[J].安徽农业科学,2005,33(10):1814-1815,1853.

    • [29] Maqubela M P,Mnkeni P N S,Issa O M,et al.Nostoc cyanobacterial inoculation in South African agricultural soils enhances soil structure,fertility,and maize growth[J].Plant and Soil,2009,315(1-2):79-92.

    • [30] 包江桥,周伊薇,何璐茜,等.固氮蓝藻的农业应用研究进展[J].中国生态农业学报,2018,26(4):574-583.

    • [31] Tripathi R D,Dwivedi S,Shukla M K,et al.Role of blue green algae biofertilizer in ameliorating the nitrogen demand and fly-ash stress to the growth and yield of rice(Oryza sativa L.)plants[J].Chemosphere,2008,70(10):1919-1929.

    • [32] 黎尚豪.固氮蓝藻作为晚稻肥源的研究[J].水生生物学报,1981,7(3):417-423.

    • [33] Manjunath M,Kanchan A,Ranjan K,et al.Beneficial cyanobacteria and eubacteria synergistically enhance bioavailability of soil nutrients and yield of okra[J].Heliyon,2016,2(2):e00066.

    • [34] 孔德柱,张树峰,周玉生,等.固氮鱼腥藻在小麦和西红柿上的肥效[J].江苏农业科学,2016,44(10):499-502.

    • [35] Pereira I,Ortega R,Barrientos L,et al.Development of a biofertilizer based on filamentous nitrogen-fixing cyanobacteria for rice crops in Chile[J].Journal of Applied Phycology,2009,21(1):135-144.

    • [36] Savci S.Investigation of effect of chemical fertilizers on environment[J].APCBEE Procedia,2012,1:287-292.

    • [37] Ma Y H,Gu D J,Liu L J.Changes in grain yield of rice and emission of greenhouse gases from paddy fields after application of organic fertilizers made from maize straw[J].Rice Science,2014,21(4):224-232.

    • [38] Lal R.Carbon emission from farm operations[J].Environment International,2004,30(7):981-990.

    • [39] Obana S,Miyamoto K,Morita S,et al.Effect of Nostoc sp.on soil characteristics,plant growth and nutrient uptake[J].Journal of Applied Phycology,2007,19(6):641-646.

    • [40] 凌丽俐,卿人韦,傅华龙,等.藻类对土壤肥力的影响[J].四川大学学报(自然科学版),2003,40(1):135-138.

    • [41] Durall C,Lindblad P.Mechanisms of carbon fixation and engineering for increased carbon fixation in cyanobacteria[J].Algal Research,2015,11:263-270.

    • [42] Castro J S,Calijuri M L,Assemany P P,et al.Microalgae biofilm in soil:greenhouse gas emissions,ammonia volatilization and plant growth[J].Science of the Total Environment,2017,574:1640-1648.

    • [43] Wang R,Peng B,Huang K.The research progress of CO2 sequestration by algal biofertilizer in China[J].Journal of CO2 Utilization,2015,11:67-70.

    • [44] Voß U,Bishopp A,Farcot E,et al.Modelling hormonal response and development[J].Trends Plant Science,2014,19(5):311-319.

    • [45] Weiss T L,Roth R,Goodson C,et al.Colony organization in the green alga Botryococcus braunii(Race B)is specified by a complex extracellular matrix[J].Eukaryotic Cell,2012,11(12):1424-1440.

    • [46] Lu Y,Xu J.Phytohormones in microalgae:a new opportunity for microalgal biotechnology?[J].Trends in Plant Science,2015,20(5):273-282.

    • [47] Stirk W A,Ördög V,Staden J V,et al.Cytokinin-and auxinlike activity in cyanophyta and microalgae[J].Journal of Applied Phycology,2002,14(3):215-221.

    • [48] Tarakhovskaya E R,Maslov Y I,Shishova M F.Phytohormones in algae[J].Russian Journal of Plant Physiology,2007,54(2):163-170.

    • [49] Kholssi R,Marks E A N,Miñón J,et al.Biofertilizing effect of Chlorella sorokiniana suspensions on wheat growth[J].Journal of Plant Growth Regulation,2019,38(2):644-649.

    • [50] Hussain A,Hasnain S.Phytostimulation and biofertilization in wheat by cyanobacteria[J].Journal of Industrial Microbiology & Biotechnology,2011,38(1):85-92.

    • [51] Xiao R,Zheng Y.Overview of microalgal extracellular polymeric substances(EPS)and their applications[J].Biotechnology Advances,2016,34(7):1225-1244.

    • [52] Chittapun S,Limbipichai S,Amnuaysin N,et al.Effects of using cyanobacteria and fertilizer on growth and yield of rice,Pathum Thani I:a pot experiment[J].Journal of Applied Phycology,2018,30(1):79-85.

    • [53] Mazhar S,Cohen J D,Hasnain S.Auxin producing nonheterocystous cyanobacteria and their impact on the growth and endogenous auxin homeostasis of wheat[J].Journal of Basic Microbiology,2013,53(12):996-1003.

    • [54] Issa O M,Défarge C,Bissonnais Y L,et al.Effects of the inoculation of cyanobacteria on the microstructure and the structural stability of a tropical soil[J].Plant and Soil,2007,290(1-2):209-219.

    • [55] 郑鹤龄.微量元素营养诊断[M].天津:天津科技翻译出版公司,2010.

    • [56] Rana A,Joshi M,Prasanna R,et al.Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria[J].European Journal Soil Biology,2012,50:118-126.

    • [57] Nisha R,Kaushik A,Kaushik C P.Effect of indigenous cyanobacterial application on structural stability and productivity of an organically poor semi-arid soil[J].Geoderma,2007,138(1-2):49-56.

    • [58] Renuka N,Prasanna R,Sood A,et al.Wastewater grown microalgal biomass as inoculants for improving micronutrient availability in wheat[J].Rhizosphere,2017,3:150-159.

    • [59] Simranjit K,Kanchan A,Prasanna R,et al.Microbial inoculants as plant growth stimulating and soil nutrient availability enhancing options for cucumber under protected cultivation[J].World Journal of Microbiology and Biotechnology,2019,35:51.

    • [60] Lavu R V S,De Schepper V,Steppe K,et al.Use of selenium fertilizers for production of Se-enriched Kenaf(Hibiscus cannabinus):Effect on Se concentration and plant productivity[J].Journal of Plant Nutrition and Soil Science,2013,176(4):634-639.

    • [61] Sood A,Singh P K,Kumar A,et al.Growth and biochemical characterization of associations between cyanobionts and wheat seedlings in co-culturing experiments[J].Biologia(Bratislava),2011,66(1):104-110.

    • [62] Hashtroudi M S,Ghassempour A,Riahi H,et al.Endogenous auxins in plant growth-promoting cyanobacteria-Anabaena vaginicola and Nostoc calcicola[J].Journal of Applied Phycology,2013,25(2):379-386.

    • [63] Garcia-Gonzalez J,Sommerfeld M.Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus[J].Journal of Applied Phycology,2016,28(2):1051-1061.

    • [64] Faheed F A,Fattah Z A.Effect of Chlorella vulgaris as biofertilizer on growth parameters and metabolic aspects of lettuce plant[J].Journal of Agriculture and Social Sciences,2008,4(4):165-169.

    • [65] Saadatnia H,Riahi H.Cyanobacteria from paddy fields in Iran as a biofertilizer in rice plants[J].Plant Soil Environment,2009,55(5):201-212.

    • [66] 李羡,姜梦柔,何林乾,等.小球藻提取物对几种十字花科蔬菜种子萌发的影响[J].江苏农业科学,2010,(4):160-162.

    • [67] Osman M E H,EI-Sheekh M M,EI-Naggar A H,et al.Effect of two species of cyanobacteria as biofertilizers on some metabolic activities,growth,and yield of pea plant[J].Biology and Fertility of Soils,2010,46(8):861-875.

    • [68] Grzesik M,Romanowska-Duda Z.Improvements in germination,growth,and metabolic activity of corn seedlings by grain conditioning and root application with cyanobacteria and microalgae[J].Polish Journal of Environmental Studies,2014,23(4):1147-1153.

    • [69] Dias G A,Rocha R H C,Araújo J L,et al.Growth,yield,and postharvest quality in eggplant produced under different foliar fertilizer(Spirulina platensis)treatments[J].Semina:Ciências Agrárias,2016,37(6):3893-3902.

    • [70] Dineshkumar R,Subramanian J,Arumugam A,et al.Exploring the microalgae biofertilizer effect on onion cultivation by field experiment[J].Waste and Biomass Valorization,2018,1-11.

    • [71] 郗焕芳,谢文娟,陈际才.“地福来”藻类活性细胞生物肥在冬马铃薯上的同田对比试验[J].农业科技通讯,2018,(11):146-148.

    • [72] 代小,木其叶乐,敖敦,等.藻类活性细胞生物肥对苜蓿草产量及品质的影响[J].黑龙江畜牧兽医,2018,(22):164-167.

    • [73] 刘永定,黎尚豪.土壤藻类及其生理生态[J].水生生物学报,1993,17(3):272-277.

    • [74] Yilmaz E,Sönmez M.The role of organic/bio-fertilizer amendment on aggregate stability and organic carbon content in different aggregate scales[J].Soil and Tillage Research,2017,168:118-124.

    • [75] 唐东山,卿人韦,傅华龙,等.利用土壤微藻改良贫瘠土壤的研究[J].四川大学学报(自然科学版),2003,40(2):352-355.

    • [76] 刘淑芳,吕俊平,冯佳,等.施用微藻对黄瓜生长及土壤质量的影响[J].山西农业科学,2016,44(9):1312-1315,1319.

    • [77] Emanga A,Leaka J R,Jagroop P.Circular economy fertilization:Testing micro and macro algal species as soil improvers and nutrient sources for crop production in greenhouse and field conditions[J].Geoderma,2019,334:113-123.

    • [78] Leloup M,Nicolau R,Pallier V,et al.Organic matter produced by algae and cyanobacteria:quantitative and qualitative characterization[J].Journal of Environmental Sciences,2013,25(6):1089-1097.

    • [79] 王铭山献,兰利琼,卿人韦,等.土壤微藻对土壤质量影响的研究[J].水土保持学报,2001,15(4):103-107.

    • [80] 叶华勋,兰利琼,卿人韦,等.土壤藻类对植物生长影响的研究[J].土壤通报,2007,38(5):950-956.

    • [81] Priya H,Prasanna R,Ramakrishnan B,et al.Influence of cyanobacterial inoculation on the culturable microbiome and growth of rice[J].Microbiological Research,2015,171:78-89.

    • [82] Marks E A N,Miñón J,Pascual A,et al.Application of a microalgal slurry to soil stimulates heterotrophic activity and promotes bacterial growth[J].Science of the Total Environment,2017,605-606:610-617.

    • [83] 景丽百合.具鞘微鞘藻与爪哇伪枝藻混合藻种藻结皮条件的优化研究[D].甘肃:兰州理工大学,2016.

    • [84] 陈兰周,刘永定,李敦海,等.荒漠藻类及其结皮的研究 [J].中国科学基金,2003,(3):90-93.

    • [85] 吴丽,张高科,陈晓国,等.生物结皮的发育演替与微生物生物量变化[J].环境科学,2014,35(4):1479-1485.

    • [86] 杜宇.人工藻类生物结皮固沙效果的研究[D].内蒙古:内蒙古农业大学,2008.

    • [87] 饶本强,王伟波,兰书斌,等.库布齐沙地三年生人工藻结皮发育特征及微生物分布[J].水生生物学报,2009,33(5):937-943.

    • [88] 高丽倩.黄土高原生物结皮土壤抗水蚀机理研究[D].北京:中国科学院大学,2017.

    • [89] Rengasamy P,Chittleborough D,Helyar K.Root-zone constraints and plant-based solutions for dryland salinity[J].Plant and Soil,2003,257(2):249-260.

    • [90] 郭世乾,崔增团,傅亲民.甘肃省盐碱地现状及治理思路与建议[J].中国农业资源与区划,2013,34(4):75-79.

    • [91] Nisha R,Kiran B,Kaushik A,et al.Bioremediation of salt affected soils using cyanobacteria in terms of physical structure,nutrient status and microbial activity[J].International Journal of Environment Science Technology,2018,15:571-580.

    • [92] Philippi R D,Vincenzini M.Exocellular polysaccharides from cyanobacteria and their possible applications[J].FEMS Microbiology Reviews,1998,22(3):151-175.

    • [93] 张巍.固氮蓝藻在松嫩平原盐碱土生态修复中作用的研究 [D].黑龙江:哈尔滨工业大学,2008.