en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

欧阳湖(1996-),女,贵州黔西人,硕士研究生,研究方向为环境卫生学。E-mail:923694845@qq.com。

通讯作者:

王俊丽,E-mail:411395583@qq.com。

参考文献 1
Wu L,Chen J,Wu H,et al.Effects of consecutive monoculture of Pseudostellaria heterophylla on soil fungal community as determined by pyrosequencing[J].Scientific Reports,2016,6(1):26601.
参考文献 2
Hu J,Pang W,Bai S,et al.Hypoglycemic effect of polysaccharides with different molecular weight of Pseudostellaria heterophylla[J].BMC Complementary and Alternative Medicine,2013,13(1):267.
参考文献 3
Pang W,Lin S,Dai Q,et al.Antitussive activity of Pseudostellaria heterophylla(Miq.)Pax extracts and improvement in lung function via adjustment of multi-cytokine levels[J]. Molecules,2011,16(4):3360-3370.
参考文献 4
Wang G R,Qi N M.Influence of mist intervals and aeration rate on growth and second metabolite production of Pseudostellaria heterophylla adventitious roots in a siphon-mist bioreactor[J]. Biotechnology and Bioprocess Engineering,2010,15(6):1059-1064.
参考文献 5
Wang Z,Liao S G,He Y,et al.Protective effects of fractions from Pseudostellaria heterophylla against cobalt chloride-induced hypoxic injury in H9c2 cell[J].Journal of Ethnopharmacology,2013,147(2):540-545.
参考文献 6
刘训红,陈彬,王玉玺.太子参总皂甙药理作用的初步研究 [J].江苏药学与临床研究,2000(3):6-8.
参考文献 7
Samuel I M,Robert K E,Martin W B.LPS,TLR4 and infectious disease diversity[J].Nature Reviews Microbiology,2005,3(1):36-46.
参考文献 8
Van Loon L C.Plant responses to plant growth-promoting rhizobacteria[M]//New perspectives and approaches in plant growth-promoting rhizobacteria research.Dordrecht:Springer,2007.243-254.
参考文献 9
Khalid A,Arshad M,Zahir Z A.Screening plant growthpromoting rhizobacteria for improving growth and yield of wheat[J]. Journal of Applied Microbiology,2004,96(3):473-480.
参考文献 10
Cattelan A J,Hartel P G,Fuhrmann J J.Screening for plant growth-promoting rhizobacteria to promote early soybean growth [J].Soil Science Society of America Journal,1999,63(6):1670-1680.
参考文献 11
Hamdali H,Hafidi M,Virolle M J,et al.Rock phosphatesolubilizing Actinomycetes:screening for plant growth-promoting activities[J].World Journal of Microbiology and Biotechnology,2008,24(11):2565-2575.
参考文献 12
梁运江,许广波.生物菌肥对水稻营养特性和土壤养分可持续性的影响[J].延边大学农学学报,2000,22(2):91-95.
参考文献 13
Molla A H,Haque Md M,Haque Md A,et al.Trichodermaenriched biofertilizer enhances production and nutritional quality of tomato(Lycopersiconesculentum Mill.)and minimizes NPK fertilizer use[J].Agricultural Research,2012,1(3):265-272.
参考文献 14
陈敏洁,满梅莲,宋雁飞,等.Bacillus pumilus 菌剂与化肥配施对油麦菜生长和品质的影响[J].广东农业科学,2018(8):13.
参考文献 15
Nosheen A,Bano A,Yasmin H,et al.Protein quantity and quality of safflower seed improved by NP fertilizer and Rhizobacteria(Azospirillum and Azotobacter spp.)[J].Frontiers in Plant Science,2016,7:104.
参考文献 16
Gholami A,Shahsavani S,Nezarat S.The effect of plant growth promoting rhizobacteria(PGPR)on germination,seedling growth and yield of maize[J].International Journal of Biological and Life Sciences,2009,1(1):35-40.
参考文献 17
Ashrafuzzaman M,Hossen F A,Ismail M R,et al. Efficiency of plant growth-promoting rhizobacteria(PGPR)for the enhancement of rice growth[J].African Journal of Biotechnology,2009,8(7):1247-1252.
参考文献 18
Adesemoye A O,Torbert H A,Kloepper J W.Plant growthpromoting rhizobacteria allow reduced application rates of chemical fertilizers[J].Microbial Ecology,2009,58(4):921-929.
参考文献 19
祁娟,师尚礼,姚拓,等.复合菌肥与化肥配施对寒旱区苜蓿生长特性及土壤养分的影响[J].草原与草坪,2013,33(4):48-53.
参考文献 20
Mishra A,Prasad K,Rai G.Effect of bio-fertilizer inoculations on growth and yield of dwarf field pea(Pisum sativum L.)in conjunction with different doses of chemical fertilizers[J]. Journal of Agronomy,2010,9(4):163-168.
参考文献 21
Duarah I,Deka M,Saikia N,et al.Phosphate solubilizers enhance NPK fertilizer use efficiency in rice and legume cultivation [J].3 Biotech,2011,1(4):227-238.
参考文献 22
Shaharoona B,Naveed M,Arshad M,et al.Fertilizerdependent efficiency of Pseudomonads for improving growth,yield,and nutrient use efficiency of wheat(Triticum aestivum L.)[J].Applied Microbiology and Biotechnology,2008,79(1):147-155.
参考文献 23
Baset M,Shamsuddin Z H,Wahab Z,et al.Effect of plant growth promoting rhizobacterial(PGPR)inoculation on growth and nitrogen incorporation of tissue-cultured Musa plantlets under nitrogen-free hydroponics condition[J].Australian Journal of Crop Science,2010,4(2):85-90.
参考文献 24
Amir H G,Shamsuddin Z H,Halimi M S,et al.Enhancement in nutrient accumulation and growth of oil palm seedlings caused by PGPR under field nursery conditions[J].Communications in Soil Science and Plant Analysis,2005,36(15-16):2059-2066.
参考文献 25
Lopez-Cantarero I,Lorente F A,Romero L.Are chlorophylls good indicators of nitrogen and phosphorus levels?[J]. Journal of Plant Nutrition,1994,17(6):979-990.
参考文献 26
Huppe H C,Turpin D H.Integration of carbon and nitrogen metabolism in plant and algal cells[J].Annual Review of Plant Biology,1994,45(1):577-607.
参考文献 27
Vashvaei R M,Ghanbari A,Fakheri B A.Effect of different fertilization systems(chemical,biological and integrated)on nitrogen and phosphorus concentration,biochemical attributes and sepals dry weight of Roselle(Hibiscus sabdariffa L.)[J]. Journal of Agroecology,2017,9(3):652-674.
参考文献 28
Kang S M,Khan A L,Hamayun M,et al.Acinetobacter calcoaceticus ameliorated plant growth and influenced gibberellins and functional biochemicals[J].Pakistan Journal of Botany,2012,44(1):365-372.
参考文献 29
Osman S M.Effect of mineral,bio-NPK soil application of young olive trees and foliar fertilization on leaf and shooot chemical composition[J].Research Journal of Agriculture and Biological Sciences,2010,6(3):311-318.
参考文献 30
赵大华,杨靖,李友勇.D-氨基酸抑制植物生长的现象[J]. 华北农学报,2007,22(2):60-63.
参考文献 31
彭正萍.植物氮素吸收、运转和分配调控机制研究[J].河北农业大学学报,2019,42(2):1-5.
参考文献 32
Vishwakarma D,Thakur J K,Singh P P.Effect of PGPR consortia on nitrate reductase and chlorophyll content of flag leaf of wheat[J].Int J Chem Studies,2017,5(6):672-674.
参考文献 33
Xu Z Z,Yu Z W.Nitrogen metabolism in flag leaf and grain of wheat in response to irrigation regimes[J].Journal of Plant Nutrition and Soil Science,2006,169(1):118-126.
参考文献 34
Li Z L,Tian D S,Wang B X,et al.Microbes drive global soil nitrogen mineralization and availability[J].Global Change Biology,2019,25(3):1078-1088.
参考文献 35
Boldaji S A H,Khavari-Nejad R A,Sajedi R H,et al.Water availability effects on antioxidant enzyme activities,lipid peroxidation,and reducing sugar contents of alfalfa(Medicago sativa L.)[J].Acta Physiologiae Plantarum,2012,34(3):1177-1186.
参考文献 36
Sivakumar T,Ravikumar M,Prakash M,et al.Comparative effect on bacterial biofertilizers on growth and yield of green gram(Phaseolus radiata L.)and cow pea(Vigna siensis Edhl.)[J].International Journal of Current Research and Academic Review,2013,1(2):20-28.
参考文献 37
Gohil S N,Patil R V,Tiwari U S,et al.Use of bio-fertilizers to improve yield and quality in sweet orange(Citrus Sinensis Osbeck)cv Mosambi under sub-arid zone of Maharashtra[J]. Ecology Environment Conservation,2007,13(1):119-121.
参考文献 38
Reddy P P.Potential role of PGPR in agriculture[M]//Plant growth promoting rhizobacteria for horticultural crop protection.Springer Publishing,2014.17-34.
参考文献 39
Chen C,Belanger R R,Benhamou N,et al.Defense enzymes induced in cucumber roots by treatment with plant growthpromoting rhizobacteria(PGPR)and Pythium aphanidermatum[J]. Physiological and Molecular Plant Pathology,2000,56(1):13-23.
参考文献 40
Singh R P,Jha P N.The PGPR Stenotrophomonas maltophilia SBP-9 augments resistance against biotic and abiotic stress in wheat plants[J].Frontiers in Microbiology,2017,8:1945.
参考文献 41
Dell’Amico E,Cavalca L,Andreoni V.Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria[J].Soil Biology and Biochemistry,2008,40(1):74-84.
参考文献 42
Barka E A,Nowak J,Clément C.Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growthpromoting rhizobacterium,Burkholderia phytofirmans strain PsJN [J].Applied and Environmental Microbiology,2006,72(11):7246-7252.
参考文献 43
郝娜,靳学慧,杨瑒.氮对马铃薯防御酶系活性及抗性的影响[J].黑龙江八一农垦大学学报,2012,24(2):8-11.
参考文献 44
Xiang L I,Yan-mei Z,Li-tao Y,et al.Effects of different nitrogen levels on key enzymes of nitrogen metabolism and contents of related active substances for three sugarcane varieties[J]. Journal of Southern Agriculture,2015,46(5):766-771.
参考文献 45
Shahzad A,Saddiqui S,Bano A.The response of maize(Zea mays L.)plant assisted with bacterial consortium and fertilizer under oily sludge[J].International Journal of Phytoremediation,2016,18(5):521-526.
参考文献 46
Lee S W,Heinz R,Robb J,et al.Differential utilization of alterante initiation sites in a plant defense gene responding to environmental stimuli[J].European Journal of Biochemistry,1994,226(1):109-114.
参考文献 47
Pandey S,Fartyal D,Agarwal A,et al.Abiotic stress tolerance in plants:myriad roles of ascorbate peroxidase[J].Frontiers in Plant Science,2017,8:581.
参考文献 48
Khalid M,Hassani D,Bilal M,et al.Influence of bio-fertilizer containing beneficial fungi and rhizospheric bacteria on health promoting compounds and antioxidant activity of Spinacia oleracea L.[J].Botanical Studies,2017,58(1):35.
参考文献 49
梁建根,张炳欣,喻景权,等.植物根围促生菌(PGPR)对黄瓜生长及生理生化特性的影响[J].浙江大学学报(农业与生命科学版),2007,33(2):202-206.
参考文献 50
Raj S N,Lavanya S N,Amruthesh K N,et al.Histo-chemical changes induced by PGPR during induction of resistance in pearl millet against downy mildew disease[J].Biological Control,2012,60(2):90-102.
参考文献 51
Khanna K,Jamwal V L,Sharma A,et al.Supplementation with plant growth promoting rhizobacteria(PGPR)alleviates cadmium toxicity in Solanum lycopersicum by modulating the expression of secondary metabolites[J].Chemosphere,2019,230:628-639.
参考文献 52
del Rosario Cappellari L,Chiappero J,Santoro M V,et al.Inducing phenolic production and volatile organic compounds emission by inoculating Mentha piperita with plant growth-promoting rhizobacteria[J].Scientia Horticulturae,2017,220:193-198.
参考文献 53
刘艳玲.PGPR 抑制紫花苜蓿根腐病的作用研究[D].哈尔滨:哈尔滨师范大学,2017.
参考文献 54
Fahad S,Hussain S,Bano A,et al.Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses:consequences for changing environment[J]. Environmental Science and Pollution Research,2015,22(7):4907-4921.
参考文献 55
Turan M,Ekinci M,Yildirim E,et al.Plant growth-promoting rhizobacteria improved growth,nutrient,and hormone content of cabbage(Brassica oleracea)seedlings[J].Turkish Journal of Agriculture and Forestry,2014,38(3):327-333.
参考文献 56
Aslantaş R,Cakmakçi R,Şahin F.Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions[J].Scientia Horticulturae,2007,111(4):371-377.
参考文献 57
Huang X F,Zhou D,Guo J,et al.Bacillus spp.from rainforest soil promote plant growth under limited nitrogen conditions[J]. Journal of Applied Microbiology,2015,118(3):672-684.
目录contents

    摘要

    为了研究促生菌 Bacillus sp. KTS-1-1 和 / 或氮磷钾复合肥对太子参生长及代谢的影响,试验采用盆栽方式,且设置了 7 个处理:T1:KTS-1-1+0.25 g 氮磷钾复合肥(100 mL 3×108 CFU·mL-1 菌悬液 +100 mL 含 0.25 g 复合肥的水溶液);T2:KTS-1-1+0.5 g 氮磷钾复合肥(100 mL 3×108 CFU·mL-1 菌悬液 +100 mL 含 0.5 g 复合肥的水溶液);T3:KTS-1-1+1.0 g 氮磷钾复合肥(100 mL 3×108 CFU·mL-1 菌悬液 +100 mL 含 1.0 g 复合肥的水溶液); T4:2 g 复合肥(200 mL 含 2.0 g 复合肥的水溶液);T5:单独喷施 KTS-1-1(200 mL 3×108 CFU·mL-1 菌悬液); T6:浸种(200 mL 3×108 CFU·mL-1 菌悬液);T7:对照(200 mL 自来水)。太子参开花后进行喷施处理,一个月后采样测定太子参生长及代谢相关指标。结果表明:与 T4、T7 相比,促生菌 Bacillus sp. KTS-1-1 与氮磷钾复合肥配施可提高太子参生物量;促生菌 Bacillus sp. KTS-1-1 与低中剂量氮磷钾复合肥配施(T1、T2)有利于太子参叶片碳代谢产物还原糖和叶绿素,氮代谢产物铵态氮、总蛋白质、总氨基酸、硝酸还原酶和抗逆性指标过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APx)、苯丙氨酸解氨酶(PAL)、丙二醛(MDA)、总酚和木质素的改善,且降低植株体内脱落酸含量。因此采用促生菌 Bacillus sp.KTS-1-1 和减施 75.0% ~ 87.5% 氮磷钾复合肥配施的方案(T1、T2),既可以促进太子参的生长和碳氮代谢物的积累,同时还可提高其田间抗逆性。

    Abstract

    Pot experiment was conducted to study the effects of Bacillus sp.KTS-1-1 and/or NPK compound fertilizer on the growth and metabolism of Pseudostellaria heterophylla,and seven treatments were set up as follows:T1:KTS-1-1+0.25 g NPK compound fertilizer(100 mL 3×108 CFU·mL-1 cell suspension +100 mL solution containing 0.25 g of compound fertilizer);T2:KTS-1-1+0.5 g NPK compound fertilizer(100 mL 3×108 CFU·mL-1 cell suspension +100 mL solution containing 0.5 g of compound fertilizer);T3:KTS-1-1+1.0 g NPK compound fertilizer(100 mL 3×108 CFU·mL-1 cell suspension +100 mL solution containing 1.0 g of compound fertilizer);T4:2 g compound fertilizer(200 mL solution containing 2.0 g of compound fertilizer);T5:Spraying KTS-1-1 alone(200 mL 3×108 CFU·mL-1 cell suspension);T6: Soaking seeds(200 mL 3×108 CFU·mL-1 cell suspension);T7:Control(200 mL tap water).Pseudostellaria heterophylla was sprayed as the above-mentioned seven treatments after flowering,and sampled to measure the items related to the growth and metabolism a month later.The results showed that,in comparison with T4 and T7,the combined application of growth-promoting rhizobacteria Bacillus sp. KTS-1-1 and NPK compound fertilizer increased the biomass of Pseudostellaria heterophylla,and the combined application of growth-promoting rhizobacteria Bacillus sp. KTS-1-1 and low or medium dose of NPK compound fertilizer(T1,T2)would be beneficial to the improvements of the carbon metabolites-reducing sugar and chlorophyll,nitrogen metabolites-ammonium nitrogen,total proteins,total amino acid and nitrate reductase and the indexes of adverse circumstances-resistance viz.peroxidase,catalase,ascorbate peroxidase,phenylalanine ammonialyase, malondialdehyde,total phenolics and lignin,and decrease the contents of abscisic acid in leaves.Therefore,the schemes of the combined application of growth-promoting rhizobacteria Bacillus sp. KTS-1-1 and reduction of 75.0% ~ 87.5% of NPK compound fertilizer were adopted to promote the plant growth and the accumulation of carbon and nitrogen metabolites in Pseudostellaria heterophylla and improve the resistance towards the adverse circumstances in the fields.

  • 太子参(Pseudostellaria heterophylla)是石竹科多年生草本植物,在中药中具有很高的药用价值。 太子参含有多种活性成分,包括皂苷、多糖、氨基酸、环肽和皂苷元[1]。现代药理学研究表明,太子参具有降血糖、止咳、抗疲劳,还可用于治疗心悸等疾病,太子参多糖类成分具有免疫活性,在抗炎和调节机体免疫功能方面具有显著作用[2-7]。近年来,随着野生太子参资源的稀缺,为满足市场需求,人工栽培迅速成为太子参生产的主流。但在人工栽培过程中,长期大量施用化肥和农药,使栽培太子参的土壤日益贫瘠,产量和品质逐年下降,病虫害危害严重。

  • 植物根际促生菌(PGPR)在改善土壤环境的同时,还能起到促进植物生长、抑制病虫害、提高植物的抗逆性等作用。PGPR通过改善植物对养分的获取或激素的刺激以达到促进植物生长的目的[8]。研究表明,PGPR可以促进小麦的生长并增加其产量[9]。从大块土壤和大豆根际分离到的PGPR菌株不仅能拮抗 Sclerotium rolfsiiSclerotinia sclerotiorum,而且还可促进大豆的生长[10]。有学者从无机磷肥土中分离得到的8 株解磷放线菌,能使小麦地上部增加70%,根系增加30%[11]。与化学肥料的增产效果相比,促生菌的能力有限。如梁运江等[12]研究不同处理(菌肥、化肥、菌肥 + 化肥、对照)对水稻营养特性和土壤养分可持续的影响,结果表明:单施菌肥,其产量低于单施化肥处理,而菌肥与化肥配施,既保证了水稻的产量,又使土壤肥力得到改善;Molla等[13]的研究结果表明: 与单独施用氮磷钾复合肥、不施用菌肥和复合肥的对照相比,施用含 Trichoderma 的微生物肥料能明显提高番茄产量和全糖、Vc、β-胡萝卜素、番茄红素含量,但产量均低于氮磷钾复合肥,而微生物肥料和适当比例的氮磷钾复合肥配合施用却能获得高于复合肥的产量,且使果实品质(全糖、Vc、 β-胡萝卜素、番茄红素、Ca、Mg、Na)有所改善;在陈敏洁等[14]的研究中发现化肥与 Bacillus pumilus 菌剂配施可显著增加油麦菜维生素C和可溶性糖。在Nosheen等[15]的研究中表明,促生菌 Azotobacter 与25%氮磷复合肥配施后可显著提高红花种子的粗蛋白含量和氨基酸含量,促生菌 Azospirillum 与50%氮磷复合肥配施及 Azotobacter 与25%氮磷复合肥配施均可提高红花叶中内源激素(生长素和赤霉素)的水平。由以上研究可看出,促生菌与化学肥料配施,能够保证植物产量,且对其代谢也有一定的影响。为此,本研究利用已获得的一株具有抑菌、溶解无机磷、解钾功能的太子参根际促生菌 Bacillus sp.KTS-1-1 与氮磷钾复合肥进行太子参盆栽种植试验,研究两者及其配合施用对太子参生长和代谢的影响,为合理利用微生物肥料提供科学依据。

  • 1 材料与方法

  • 1.1 盆栽试验及促生菌 Bacillus sp.KTS-1-1 和氮磷钾复合肥处理设计

  • 将于贵州省施秉县三泓药业有限公司购买的太子参筛选出健康、无病、大小一致的太子参块根作为种子进行盆栽(盆高40 cm,直径35 cm) 种植试验,在容器中盛土壤(黄壤土,有机质1.28%,全氮0.16%,有效磷4.21 mg·kg-1,速效钾113.54 mg·kg-1,pH 7.03)8 kg后放入15 株太子参块根,用4 kg的土壤将太子参覆盖,每个处理3 个重复,共45 盆。

  • 促生菌 Bacillus sp.KTS-1-1( 课题组前期获取)和氮磷钾复合肥(总养分>48%,氮∶磷∶ 钾=15∶18∶15)施用处理设计见表1。待太子参长出开花后对每个处理组太子参地上部喷施200 mL处理溶液,期间根据土壤状况适当补充自来水,以保证土壤湿润。促生菌施用的浓度为3×108 CFU·mL-1(菌悬液由牛肉膏蛋白胨琼脂平板涂布培养后,用玻璃刮铲刮取菌苔于自来水中制取标定浓度)。T1 为含0.25 g复合肥的100 mL水溶液和100 mL菌悬液(3×108 CFU·mL-1),T2 为含0.5 g复合肥的100 mL水溶液和100 mL菌悬液(3×108 CFU·mL-1),T3 为含1 g复合肥的100 mL水溶液和100 mL菌悬液(3×108 CFU·mL-1),T4 为含2 g复合肥的200 mL水溶液,T5 为200 mL菌悬液(3×108 CFU·mL-1),T6 处理(浸种)是利用浓度为3×108 CFU·mL-1 的促生菌悬液浸泡太子参块根0.5 h后阴干再种植,施洒200 mL自来水, T7 为200 mL自来水。盆栽试验期限为2019 年1 月至7 月。

  • 表1 促生菌 Bacillus sp.KTS-1-1(3×108 CFU·mL-1)与氮磷钾复合肥施用处理设计

  • 注:2 g氮磷钾复合肥为推荐使用量;T6 为浸种。

  • 1.2 样品的采集与预处理

  • 太子参开花后按照表1 对太子参进行处理,每隔1 月对各处理的3 个重复分别随机抽取3 盆植株(15 株/盆)进行采样且每盆样品单独包装存放, 之后进行下一次促生菌和/或复合肥处理试验,直至成熟(本文数据源于第一次处理后1 个月采集的样品)。采样时尽量保证植株的完整性,将采回的样品去除杂叶用蒸馏水洗净自然晾干后,叶片去茎剪碎,液氮研磨后-80℃冰箱保存,用于以下除生物量之外的各指标测定。

  • 1.3 生物量

  • 每个处理随机采20 株太子参,称量植株鲜重, 测量地上部株高,用叶面积仪(GDY-500M)测定平均叶面积,以分析促生菌、复合肥、促生菌/复合肥对太子参生物量的影响。

  • 1.4 叶绿素及碳氮代谢

  • 测定总叶绿素、还原糖、硝酸还原酶(NR)、 总蛋白质、铵态氮、总氨基酸,以分析促生菌、复合肥、促生菌/复合肥对太子参光合作用及碳氮代谢指标的影响,每个处理3 个重复,每个重复3 盆(15 株 ×3 盆=45 株)。

  • 1.5 抗逆性

  • 测定过氧化氢酶(CAT)、过氧化物酶(POD)、 苯丙氨酸解氨酶(PAL)、超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APx)、木质素、丙二醛(MDA)、总酚、脯氨酸(Pro),以分析促生菌、复合肥、促生菌/复合肥对太子参抗逆性的影响,每个处理3 个重复。

  • 1.6 植物激素

  • 测定太子参赤霉素(GA)、脱落酸(ABA)、 细胞分裂素(CTK)、吲哚乙酸(IAA),以分析促生菌、复合肥、促生菌/复合肥对太子参激素的影响,每个处理3 个重复。

  • 2 结果与分析

  • 2.1 促生菌 Bacillus sp.KTS-1-1 和/或氮磷钾复合肥对太子参生物量的影响

  • 不同处理对太子参生物量的影响如表2 所示。 与单独施用复合肥(T4)相比:促生菌与氮磷钾复合肥配施(T1、T2 和T3)可使太子参鲜重、株高和叶面积有所增加,特别是T1 和T2 在鲜重和株高上表现尤为明显;单独施用促生菌的T5(喷雾)和T6(浸种)在生物量各指标上能达到与T4 大致相同的效果。与单独施用自来水(T7)相比, T1 ~ T6 均会不同程度对植株鲜重、株高和叶面积起促进作用,但这种促生效果因促生菌施用方式以及促生菌和复合肥配施比例不同而不同。单独施用复合肥(T4)效果优于T7,尤其表现在株高上。

  • 表2 不同处理对太子参生物量的影响

  • 注:同列含有相同字母表示处理间差异不显著(P>0.05),不含相同字母表示处理间差异显著(P<0.05)。下同。

  • 2.2 促生菌 Bacillus sp.KTS-1-1 和/或氮磷钾复合肥对太子参光合色素及碳氮代谢的影响

  • 7 个处理对光合色素的影响无显著差异,而对碳氮代谢影响具有差异性。从表3 可知,在碳代谢方面:T1 ~ T4 还原糖含量均显著高于T7 处理, 其中T1 含量最高,T2 仅次于T1。在氮代谢方面: T1 ~ T6 与T7 相比,促生菌和/或氮磷钾复合肥对太子参叶片总蛋白质合成无不良作用,T1、T4、 T5、T6 处理对叶片总蛋白质的合成有明显促进作用,且之间无显著差异,表明单独施用促生菌、促生菌与低剂量氮磷钾复合肥配合施用的效果与单独施用氮磷钾复合肥一致。

  • 表3 不同处理对太子参光合色素及碳氮代谢的影响

  • 注:同列无字母表示处理间差异不显著(P>0.05)。下同。

  • 与T4 相比,施用促生菌(T1、T2、T3、T5、 T6)后太子参叶片铵态氮和氨基酸含量及硝酸还原酶活力均有增加;与T7 相比,促生菌与氮磷钾复合肥配施(T1、T2、T3) 处理铵态氮和氨基酸含量及硝酸还原酶活力均增加,而T5 和T6 处理在铵态氮、硝酸还原酶上表现一致(均增加)。

  • 2.3 促生菌 Bacillus sp.KTS-1-1 和/或氮磷钾复合肥对太子参抗逆性的影响

  • 促生菌和/或氮磷钾复合肥对太子参抗逆性的影响如表4。各处理组间太子参叶片SOD无显著差异,但施用促生菌的各处理其SOD活性均低于T4、 T7,其中以T7 处理SOD活性最强,由此可见,促生菌的施用会对叶片SOD活性产生一定的抑制作用。

  • 表4 不同处理对太子参抗逆性的影响

  • 各处理POD、CAT、PAL、APx、MDA、Pro、木质素及总酚存在一定差异。促生菌和/或复合肥的使用均可提高POD的活性,其中以T1 和T5 活性最强。上述结果表明,施促生菌可提高叶片POD的活性,但其作用效果与氮磷钾复合肥的有无及使用剂量密切相关,总体表现为促生菌处理(T5、 T6)、低剂量氮磷钾复合肥配施处理(T1)> 高剂量氮磷钾复合肥配施处理(T2、T3)。

  • 与T4、T7 相比,T1、T2、T3 和T6 处理CAT活性显著增强,T5 无显著差异,但CAT活性较高。 T4 和T7 间CAT活性并无差异。该结果表明:单独使用促生菌或促生菌和复合肥配施处理均能提高叶片CAT活性;单独使用促生菌以浸种(T6)CAT活性最高,促生菌与复合肥配施以低中剂量复合肥与促生菌配施(T1 和T2)CAT活性最高,单独施用氮磷钾复合肥不会对叶片CAT活性产生影响。

  • 与T7 相比,促生菌和/或氮磷钾复合肥对PAL活性无显著影响;与单施用复合肥(T4)相比,T5 可显著提高PAL活性,促生菌与氮磷钾复合肥配施处理(T1、T2 和T3)的PAL活性均高于T4。该结果表明,喷施促生菌、促生菌与氮磷钾复合肥配施均可提高叶片PAL活性。

  • T1、T2、T3、T6 处理APx活性均显著高于T7;与T4 处理相比,单施用促生菌处理(T5 和T6)的APx活性明显降低,而促生菌与低剂量复合肥配施处理(T1 和T2)的APx活性明显增加。由此可见,促生菌与复合肥配施(T1 和T2)可明显提高叶片APx的活性。

  • 与T7 相比,促生菌和/或氮磷钾复合肥均可显著提高木质素含量。在常规施肥(T4)水平上减少氮磷钾复合肥的使用量,增施促生菌(T1、T2、 T3)可显著增加木质素含量,其中以T1 处理含量最高。单施促生菌(T5 和T6)与单施氮磷钾复合肥(T4)间木质素含量无差异,但T5、T6 处理木质素含量均比T4 高,该结果表明,单施促生菌或与氮磷钾复合肥配施均利于叶片木质素的生物生成。

  • 促生菌(T5、T6)、促生菌与复合肥配施(T1、 T2、T3)两类处理MDA含量与T4 无显著差异,T1 处理MDA含量最低; 与T7 相比,T1 和T6 处理MDA含量显著降低,说明浸种或促生菌与低剂量氮磷钾复合肥(T1)可以降低植株叶片MDA含量。

  • 与T4 和T7 相比,促生菌的施用可以显著增加太子参叶片总酚的含量,其中T5 处理总酚含量最高,其次是T1。结果表明喷施促生菌或促生菌与低剂量氮磷钾复合肥配施可促进叶片总酚的生物生成。

  • 各处理组与T7 间的Pro含量无显著差异。T1 处理脯氨酸含量显著低于T4,其余处理与T4 无显著差异。各处理中以T4 的Pro含量最高,其次为单施用促生菌处理(T5、T6)。结果说明促生菌与氮磷钾复合肥配施诱导叶片生成的Pro含量低于单独施用促生菌 Bacillus sp.KTS-1-1 或氮磷钾复合肥。

  • 2.4 促生菌 Bacillus sp.KTS-1-1 和/或氮磷钾复合肥对太子参激素的影响

  • 由表5 可知,各处理组间赤霉素、细胞分裂素及脱落酸含量无显著差异,生长素有一定差异。与T7 相比,T2 ~ T6 处理赤霉素含量均有提高,其中T2 处理组赤霉素含量最高。T7 处理脱落酸含量均高于其余各处理,其它处理中促生菌和低剂量复合肥配施处理(T1 和T2)脱落酸含量最低。T4 处理细胞分裂素含量最高,其次是T7,而T6 和T1 含量最低。T1 和T7 生长素含量显著低于其余处理, 其中T6 处理生长素含量最高。由此可见,促生菌和/或氮磷钾复合肥配施对以上4 种植物激素作用效果有所不同。

  • 表5 不同处理对太子参激素的影响(ng·mL-1

  • 3 讨论

  • 3.1 促生菌和/或氮磷钾复合肥对太子参生物量的影响

  • 植物的生物量是表征其长势的重要指标, PGPR是一种有益的细菌,通过多种机制在植物根系上定植,促进植物生长。Gholami等[16]研究表明促生菌 Pseudomonas putida R-168、P.fluorescens R-93、P.fluorescens DSM 50090、P.putida DSM291、 A.lipoferum DSM 1691、A.brasilense DSM 1690 可使玉米株高、叶面积显著增加。本研究结果表明增施促生菌(T5、T6)(相对T7 来说)可使太子参的株高分别增加28.1%、39.3%,鲜重分别增加4.1%、 39.3%,平均叶面积分别增加22.9%、20.6%,这必然与促生菌Bacillus sp.KTS-1-1 发挥其促生作用功能相关[17]。有研究表明促生菌与低中剂量氮磷钾复合肥配合施用对植物生长有显著的促进作用[18-21],与过量氮磷钾复合肥配合施用,其促生增产效果则表现下降[22],这与本试验中促生菌 Bacillus sp.KTS-1-1 与低中剂量氮磷钾复合肥(T1、T2)及高剂量复合肥(T3)配合施用的作用效果类似。

  • 3.2 促生菌和/或氮磷钾复合肥对太子参光合色素及碳氮代谢的影响

  • 有研究表明,接种PGPR后对提高植物叶绿素含量有积极作用[23-24],而在本研究中太子参叶片总叶绿素含量虽不受促生菌 Bacillus sp. KTS-1-1 的影响,但却表现出随复合肥施用量的增多而增加的趋势(T4 除外),这与LopezCantarero等[25]报道的氮对植株叶片叶绿素含量的影响结果一致,而本研究中T4 处理叶片叶绿素没有达到受复合肥影响的预期最高含量,或许也表明促生菌 Bacillus sp.KTS-1-1 与复合肥的互作对叶片叶绿素含量提升有积极作用。

  • 碳氮代谢作为植物体内两大最基本的代谢过程,二者共同调节碳水化合物和蛋白质的合成,且决定着植物的产量和品质[26]。本研究结果表明无论单施促生菌、复合肥或促生菌与复合肥配施均能提高叶片蛋白质含量,其中以单施氮磷钾复合肥的效果为最佳,其次为单施促生菌,再者为促生菌与复合肥配施(其中以低剂量复合肥和促生菌配施较有利于叶片蛋白质的生物合成)。生物肥 Biophosphate(含溶磷促生菌)和氮磷钾复合肥在药用植物Roselle(Hibiscus sabdariffa L.)上的试验表明,单施氮磷钾复合肥同样能最大程度提高叶片蛋白质含量,其次为 Biophosphate 与氮磷钾复合肥减量配施,再者为单施 Biophosphate[27],造成本研究结果与文献[27]结果有差异的原因可能在于本试验所获得的促生菌 Bacillus sp.KTS-1-1 为一种具有多种促生(抑菌、溶解无机磷、解钾) 功能的菌株,而 Biophosphate 中的菌株则只具有溶磷作用。另外,本研究结果表明单施促生菌的叶片蛋白质含量(T5 和T6)明显高于对照(T7),而文献[27]表明二者之间无差异,进一步确定了促生菌Bacillus sp.KTS-1-1 作为生物肥料菌株的应用价值。

  • 已有研究表明PGPR施用于植物后,会使植物体内氨基酸含量增加[28],在本研究中,无论单独施用促生菌或促生菌与复合肥配施基本均能提高叶片氨基酸含量(特别是促生菌与复合肥配施)。与T7 相比,促生菌喷施(T5)对叶片氨基酸含量的影响大于种子处理(T6),可能是由于喷施在叶片上的促生菌 Bacillus sp.KTS-1-1 激活光合作用和代谢导致的结果[28]。有研究表明氮磷钾复合肥可提高叶片中氨基酸总量[29],而本研究显示T4 处理(氮磷钾复合肥)太子参叶片氨基酸总量降低,究其原因可能是植株为了维持其生长而采取一定的措施来减除氨基酸积累带来的反馈抑制作用[30]

  • 铵态氮是高等植物吸收无机氮的形式之一,其被植物体吸收受铵态氮转运体家族调控,而这些转运体家族表达通常又受植物体内碳氮代谢、营养状况、光照、温度、外源氮素供应状况等外部环境因素的影响[31],本研究结果表明外源氮素供应状况对植物体铵态氮的吸收无显著影响(T4 和T7 相比),而促生菌的施用对植物体铵态氮吸收影响作用明显,具体表现在单独施用促生菌(T5 和T6)或促生菌与复合肥配施(T1、T2 和T3)均能提高叶片铵态氮含量。硝酸还原酶是植物器官中硝态氮还原同化过程中的限速酶,其活性高低与植物体内氮同化能力密切相关。不同施肥方案对小麦旗叶硝酸还原酶活力大小的影响结果表明,PGPR与推荐剂量氮磷钾肥料处理> 单施推荐剂量氮磷钾肥料处理>PGPR与氮磷钾肥料(75%N)配施>PGPR与氮磷钾肥料(50%N)配施> 单施PGPR[32],而本研究结果中硝酸还原酶活力却表现为PGPR+0.25 g氮磷钾复合肥配施(T1)>PGPR+0.5 g氮磷钾复合肥配施(T2)=PGPR+1.0 g氮磷钾复合肥配施(T3)> 单施PGPR(T5 和T6)> 单施推荐剂量氮磷钾复合肥(T4)。鉴于硝酸还原酶活性与土壤中可利用氮量的正相关性[33],造成上述两试验结果差异的原因主要是不同试验条件下土壤中可利用氮量不同,而这种不同量可利用氮的获得或许与不同环境中土壤微生物(包括外施PGPR)的作用有关[34]

  • 植物光合作用产物-还原糖作为渗透保护剂参与植物对水份胁迫反应[35]。已有研究表明促生菌对植物体还原糖含量的提升作用因促生菌种类和组成不同而有所差别,如溶磷菌 Phosphobacteria 对豇豆叶还原糖含量几乎无提升作用(1.65 mg·g-1, 对照为1.62 mg·g-1),而 Azospirillum 则有大幅度提升(1.90 mg·g-1),Phosphobacteria+Azospirillum 配合施用提升作用尤为明显(3.33 mg·g-1[36],本研究中同样具有溶磷特性的促生菌 Bacillus sp.KTS1-1 单独施用(T6 和T5)对太子参叶片还原糖含量的影响也表现出与 Phosphobacteria 作用相似的结果。关于促生菌Bacillus sp.KTS-1-1 和氮磷钾复合肥配合施用(T1、T2 和T3)对叶片还原糖含量的影响结果与Gohil等[37]的研究结果基本一致, 表现为促生菌与复合肥配合施用效果大于氮磷钾复合肥推荐使用浓度,进而确定Bacillus sp.KTS1-1 和氮磷钾复合肥配施的实践可行性。

  • 3.3 促生菌和/或氮磷钾复合肥对太子参抗逆性的影响

  • PGPR作为生物诱导因子,可引起植株生理和形态改变及植物防御素的积累以促进植物的生长[38]。有研究表明PGPR处理植株后会使植物组织中PAL、SOD、CAT等活性增强,脯氨酸、 酚类物质的含量增加,MDA降低以提高植物对逆境的抵抗[39-42]。单独施用促生菌的各处理防御酶POD、CAT、PAL( 除T6)、APx( 除T5) 活性增强,这与上述研究结果(除SOD)基本一致;促生菌与氮磷钾复合肥配施处理的POD与APx活性随氮磷钾复合肥使用量的增加活性逐渐降低,原因可能是促生菌促进植物对N、P元素的吸收,当植物体内N、P含量过多积累时会抑制植物氮代谢途径,使防御酶的活性降低[43-44]。在本研究中, 尽管促生菌和/或氮磷钾复合肥处理间SOD活性变化无显著差异,但酶活性总体上表现为促生菌 Bacillus sp.KTS-1-1 与复合肥配施处理=促生菌 Bacillus sp.KTS-1-1 处理< 复合肥处理< 对照,这与Shahzad等[45]研究结果相一致,说明促生菌的施用降低了植株氧胁迫。本研究中促生菌不同施用方式(T5、T6)对太子参叶片PAL和APx活性的影响存在明显差异,可能与促生菌两种不同施用环境对PAL的选择性表达有关[46-47]。任何植物的抗氧化能力都高度依赖于酚类物质的种类和相对比例[48],本研究中T4 和T7 处理总酚、木质素含量最低,其它处理两者含量相对较高,究其原因可能是促生菌可通过激发植物体内酚类物质代谢的酶(PAL、PPO等)活性导致酚类物质的积累[49]、增强木质化过程,进而引起木质素沉积[50] 所致,这与前人报道的PGPR作用结果一致[51-53]

  • 3.4 促生菌和/或氮磷钾复合肥对太子参激素的影响

  • 植物激素在调节植物生长发育、提高植物抗逆性、促进植物生存和适应不同环境等方面发挥着重要作用[54]。本试验中,与T4、T7 相比,单独施用促生菌及促生菌与氮磷钾复合肥配合施用对赤霉素、脱落酸和细胞分裂素的生成无显著影响,这与Turan等[55]关于PGPR处理植物后可使植物激素含量增加的报道不符。与T4 相比,促生菌与氮磷钾复合肥配施(T1、T2、T3)处理生长素含量有所下降,其中以T1 降低最为显著,本试验结果与文献[15]报道的促生菌与低剂量氮磷肥料配施可显著提高植株生长素水平结果相反。造成上述结果不符的原因可能是植物激素的生成受多方面(氮信号、蛋白质含量等)调控所致[15];与T7 相比, 单施用促生菌可显著增加植株生长素含量,表明 Bacillus sp.KTS-1-1 可以诱导植株生长素的生成, 这与前人的研究结果相符[55-56];施用促生菌后各处理组脱落酸低于T7,可能是 Bacillus sp.KTS-1-1 参与调控脱落酸信号通路基因表达导致脱落酸水平降低,进而减弱其对植株生长的抑制作用[57]

  • 4 结论

  • 相对太子参种植中常规施用氮磷钾复合肥来说,本研究结果表明,氮磷钾复合肥和促生菌 Bacillus sp.KTS-1-1(T1、T2)配施,不仅可以减少75.0%~ 87.5%化学肥料的使用量,还可同时促进太子参的生长代谢活动。

  • 参考文献

    • [1] Wu L,Chen J,Wu H,et al.Effects of consecutive monoculture of Pseudostellaria heterophylla on soil fungal community as determined by pyrosequencing[J].Scientific Reports,2016,6(1):26601.

    • [2] Hu J,Pang W,Bai S,et al.Hypoglycemic effect of polysaccharides with different molecular weight of Pseudostellaria heterophylla[J].BMC Complementary and Alternative Medicine,2013,13(1):267.

    • [3] Pang W,Lin S,Dai Q,et al.Antitussive activity of Pseudostellaria heterophylla(Miq.)Pax extracts and improvement in lung function via adjustment of multi-cytokine levels[J]. Molecules,2011,16(4):3360-3370.

    • [4] Wang G R,Qi N M.Influence of mist intervals and aeration rate on growth and second metabolite production of Pseudostellaria heterophylla adventitious roots in a siphon-mist bioreactor[J]. Biotechnology and Bioprocess Engineering,2010,15(6):1059-1064.

    • [5] Wang Z,Liao S G,He Y,et al.Protective effects of fractions from Pseudostellaria heterophylla against cobalt chloride-induced hypoxic injury in H9c2 cell[J].Journal of Ethnopharmacology,2013,147(2):540-545.

    • [6] 刘训红,陈彬,王玉玺.太子参总皂甙药理作用的初步研究 [J].江苏药学与临床研究,2000(3):6-8.

    • [7] Samuel I M,Robert K E,Martin W B.LPS,TLR4 and infectious disease diversity[J].Nature Reviews Microbiology,2005,3(1):36-46.

    • [8] Van Loon L C.Plant responses to plant growth-promoting rhizobacteria[M]//New perspectives and approaches in plant growth-promoting rhizobacteria research.Dordrecht:Springer,2007.243-254.

    • [9] Khalid A,Arshad M,Zahir Z A.Screening plant growthpromoting rhizobacteria for improving growth and yield of wheat[J]. Journal of Applied Microbiology,2004,96(3):473-480.

    • [10] Cattelan A J,Hartel P G,Fuhrmann J J.Screening for plant growth-promoting rhizobacteria to promote early soybean growth [J].Soil Science Society of America Journal,1999,63(6):1670-1680.

    • [11] Hamdali H,Hafidi M,Virolle M J,et al.Rock phosphatesolubilizing Actinomycetes:screening for plant growth-promoting activities[J].World Journal of Microbiology and Biotechnology,2008,24(11):2565-2575.

    • [12] 梁运江,许广波.生物菌肥对水稻营养特性和土壤养分可持续性的影响[J].延边大学农学学报,2000,22(2):91-95.

    • [13] Molla A H,Haque Md M,Haque Md A,et al.Trichodermaenriched biofertilizer enhances production and nutritional quality of tomato(Lycopersiconesculentum Mill.)and minimizes NPK fertilizer use[J].Agricultural Research,2012,1(3):265-272.

    • [14] 陈敏洁,满梅莲,宋雁飞,等.Bacillus pumilus 菌剂与化肥配施对油麦菜生长和品质的影响[J].广东农业科学,2018(8):13.

    • [15] Nosheen A,Bano A,Yasmin H,et al.Protein quantity and quality of safflower seed improved by NP fertilizer and Rhizobacteria(Azospirillum and Azotobacter spp.)[J].Frontiers in Plant Science,2016,7:104.

    • [16] Gholami A,Shahsavani S,Nezarat S.The effect of plant growth promoting rhizobacteria(PGPR)on germination,seedling growth and yield of maize[J].International Journal of Biological and Life Sciences,2009,1(1):35-40.

    • [17] Ashrafuzzaman M,Hossen F A,Ismail M R,et al. Efficiency of plant growth-promoting rhizobacteria(PGPR)for the enhancement of rice growth[J].African Journal of Biotechnology,2009,8(7):1247-1252.

    • [18] Adesemoye A O,Torbert H A,Kloepper J W.Plant growthpromoting rhizobacteria allow reduced application rates of chemical fertilizers[J].Microbial Ecology,2009,58(4):921-929.

    • [19] 祁娟,师尚礼,姚拓,等.复合菌肥与化肥配施对寒旱区苜蓿生长特性及土壤养分的影响[J].草原与草坪,2013,33(4):48-53.

    • [20] Mishra A,Prasad K,Rai G.Effect of bio-fertilizer inoculations on growth and yield of dwarf field pea(Pisum sativum L.)in conjunction with different doses of chemical fertilizers[J]. Journal of Agronomy,2010,9(4):163-168.

    • [21] Duarah I,Deka M,Saikia N,et al.Phosphate solubilizers enhance NPK fertilizer use efficiency in rice and legume cultivation [J].3 Biotech,2011,1(4):227-238.

    • [22] Shaharoona B,Naveed M,Arshad M,et al.Fertilizerdependent efficiency of Pseudomonads for improving growth,yield,and nutrient use efficiency of wheat(Triticum aestivum L.)[J].Applied Microbiology and Biotechnology,2008,79(1):147-155.

    • [23] Baset M,Shamsuddin Z H,Wahab Z,et al.Effect of plant growth promoting rhizobacterial(PGPR)inoculation on growth and nitrogen incorporation of tissue-cultured Musa plantlets under nitrogen-free hydroponics condition[J].Australian Journal of Crop Science,2010,4(2):85-90.

    • [24] Amir H G,Shamsuddin Z H,Halimi M S,et al.Enhancement in nutrient accumulation and growth of oil palm seedlings caused by PGPR under field nursery conditions[J].Communications in Soil Science and Plant Analysis,2005,36(15-16):2059-2066.

    • [25] Lopez-Cantarero I,Lorente F A,Romero L.Are chlorophylls good indicators of nitrogen and phosphorus levels?[J]. Journal of Plant Nutrition,1994,17(6):979-990.

    • [26] Huppe H C,Turpin D H.Integration of carbon and nitrogen metabolism in plant and algal cells[J].Annual Review of Plant Biology,1994,45(1):577-607.

    • [27] Vashvaei R M,Ghanbari A,Fakheri B A.Effect of different fertilization systems(chemical,biological and integrated)on nitrogen and phosphorus concentration,biochemical attributes and sepals dry weight of Roselle(Hibiscus sabdariffa L.)[J]. Journal of Agroecology,2017,9(3):652-674.

    • [28] Kang S M,Khan A L,Hamayun M,et al.Acinetobacter calcoaceticus ameliorated plant growth and influenced gibberellins and functional biochemicals[J].Pakistan Journal of Botany,2012,44(1):365-372.

    • [29] Osman S M.Effect of mineral,bio-NPK soil application of young olive trees and foliar fertilization on leaf and shooot chemical composition[J].Research Journal of Agriculture and Biological Sciences,2010,6(3):311-318.

    • [30] 赵大华,杨靖,李友勇.D-氨基酸抑制植物生长的现象[J]. 华北农学报,2007,22(2):60-63.

    • [31] 彭正萍.植物氮素吸收、运转和分配调控机制研究[J].河北农业大学学报,2019,42(2):1-5.

    • [32] Vishwakarma D,Thakur J K,Singh P P.Effect of PGPR consortia on nitrate reductase and chlorophyll content of flag leaf of wheat[J].Int J Chem Studies,2017,5(6):672-674.

    • [33] Xu Z Z,Yu Z W.Nitrogen metabolism in flag leaf and grain of wheat in response to irrigation regimes[J].Journal of Plant Nutrition and Soil Science,2006,169(1):118-126.

    • [34] Li Z L,Tian D S,Wang B X,et al.Microbes drive global soil nitrogen mineralization and availability[J].Global Change Biology,2019,25(3):1078-1088.

    • [35] Boldaji S A H,Khavari-Nejad R A,Sajedi R H,et al.Water availability effects on antioxidant enzyme activities,lipid peroxidation,and reducing sugar contents of alfalfa(Medicago sativa L.)[J].Acta Physiologiae Plantarum,2012,34(3):1177-1186.

    • [36] Sivakumar T,Ravikumar M,Prakash M,et al.Comparative effect on bacterial biofertilizers on growth and yield of green gram(Phaseolus radiata L.)and cow pea(Vigna siensis Edhl.)[J].International Journal of Current Research and Academic Review,2013,1(2):20-28.

    • [37] Gohil S N,Patil R V,Tiwari U S,et al.Use of bio-fertilizers to improve yield and quality in sweet orange(Citrus Sinensis Osbeck)cv Mosambi under sub-arid zone of Maharashtra[J]. Ecology Environment Conservation,2007,13(1):119-121.

    • [38] Reddy P P.Potential role of PGPR in agriculture[M]//Plant growth promoting rhizobacteria for horticultural crop protection.Springer Publishing,2014.17-34.

    • [39] Chen C,Belanger R R,Benhamou N,et al.Defense enzymes induced in cucumber roots by treatment with plant growthpromoting rhizobacteria(PGPR)and Pythium aphanidermatum[J]. Physiological and Molecular Plant Pathology,2000,56(1):13-23.

    • [40] Singh R P,Jha P N.The PGPR Stenotrophomonas maltophilia SBP-9 augments resistance against biotic and abiotic stress in wheat plants[J].Frontiers in Microbiology,2017,8:1945.

    • [41] Dell’Amico E,Cavalca L,Andreoni V.Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria[J].Soil Biology and Biochemistry,2008,40(1):74-84.

    • [42] Barka E A,Nowak J,Clément C.Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growthpromoting rhizobacterium,Burkholderia phytofirmans strain PsJN [J].Applied and Environmental Microbiology,2006,72(11):7246-7252.

    • [43] 郝娜,靳学慧,杨瑒.氮对马铃薯防御酶系活性及抗性的影响[J].黑龙江八一农垦大学学报,2012,24(2):8-11.

    • [44] Xiang L I,Yan-mei Z,Li-tao Y,et al.Effects of different nitrogen levels on key enzymes of nitrogen metabolism and contents of related active substances for three sugarcane varieties[J]. Journal of Southern Agriculture,2015,46(5):766-771.

    • [45] Shahzad A,Saddiqui S,Bano A.The response of maize(Zea mays L.)plant assisted with bacterial consortium and fertilizer under oily sludge[J].International Journal of Phytoremediation,2016,18(5):521-526.

    • [46] Lee S W,Heinz R,Robb J,et al.Differential utilization of alterante initiation sites in a plant defense gene responding to environmental stimuli[J].European Journal of Biochemistry,1994,226(1):109-114.

    • [47] Pandey S,Fartyal D,Agarwal A,et al.Abiotic stress tolerance in plants:myriad roles of ascorbate peroxidase[J].Frontiers in Plant Science,2017,8:581.

    • [48] Khalid M,Hassani D,Bilal M,et al.Influence of bio-fertilizer containing beneficial fungi and rhizospheric bacteria on health promoting compounds and antioxidant activity of Spinacia oleracea L.[J].Botanical Studies,2017,58(1):35.

    • [49] 梁建根,张炳欣,喻景权,等.植物根围促生菌(PGPR)对黄瓜生长及生理生化特性的影响[J].浙江大学学报(农业与生命科学版),2007,33(2):202-206.

    • [50] Raj S N,Lavanya S N,Amruthesh K N,et al.Histo-chemical changes induced by PGPR during induction of resistance in pearl millet against downy mildew disease[J].Biological Control,2012,60(2):90-102.

    • [51] Khanna K,Jamwal V L,Sharma A,et al.Supplementation with plant growth promoting rhizobacteria(PGPR)alleviates cadmium toxicity in Solanum lycopersicum by modulating the expression of secondary metabolites[J].Chemosphere,2019,230:628-639.

    • [52] del Rosario Cappellari L,Chiappero J,Santoro M V,et al.Inducing phenolic production and volatile organic compounds emission by inoculating Mentha piperita with plant growth-promoting rhizobacteria[J].Scientia Horticulturae,2017,220:193-198.

    • [53] 刘艳玲.PGPR 抑制紫花苜蓿根腐病的作用研究[D].哈尔滨:哈尔滨师范大学,2017.

    • [54] Fahad S,Hussain S,Bano A,et al.Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses:consequences for changing environment[J]. Environmental Science and Pollution Research,2015,22(7):4907-4921.

    • [55] Turan M,Ekinci M,Yildirim E,et al.Plant growth-promoting rhizobacteria improved growth,nutrient,and hormone content of cabbage(Brassica oleracea)seedlings[J].Turkish Journal of Agriculture and Forestry,2014,38(3):327-333.

    • [56] Aslantaş R,Cakmakçi R,Şahin F.Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions[J].Scientia Horticulturae,2007,111(4):371-377.

    • [57] Huang X F,Zhou D,Guo J,et al.Bacillus spp.from rainforest soil promote plant growth under limited nitrogen conditions[J]. Journal of Applied Microbiology,2015,118(3):672-684.

  • 参考文献

    • [1] Wu L,Chen J,Wu H,et al.Effects of consecutive monoculture of Pseudostellaria heterophylla on soil fungal community as determined by pyrosequencing[J].Scientific Reports,2016,6(1):26601.

    • [2] Hu J,Pang W,Bai S,et al.Hypoglycemic effect of polysaccharides with different molecular weight of Pseudostellaria heterophylla[J].BMC Complementary and Alternative Medicine,2013,13(1):267.

    • [3] Pang W,Lin S,Dai Q,et al.Antitussive activity of Pseudostellaria heterophylla(Miq.)Pax extracts and improvement in lung function via adjustment of multi-cytokine levels[J]. Molecules,2011,16(4):3360-3370.

    • [4] Wang G R,Qi N M.Influence of mist intervals and aeration rate on growth and second metabolite production of Pseudostellaria heterophylla adventitious roots in a siphon-mist bioreactor[J]. Biotechnology and Bioprocess Engineering,2010,15(6):1059-1064.

    • [5] Wang Z,Liao S G,He Y,et al.Protective effects of fractions from Pseudostellaria heterophylla against cobalt chloride-induced hypoxic injury in H9c2 cell[J].Journal of Ethnopharmacology,2013,147(2):540-545.

    • [6] 刘训红,陈彬,王玉玺.太子参总皂甙药理作用的初步研究 [J].江苏药学与临床研究,2000(3):6-8.

    • [7] Samuel I M,Robert K E,Martin W B.LPS,TLR4 and infectious disease diversity[J].Nature Reviews Microbiology,2005,3(1):36-46.

    • [8] Van Loon L C.Plant responses to plant growth-promoting rhizobacteria[M]//New perspectives and approaches in plant growth-promoting rhizobacteria research.Dordrecht:Springer,2007.243-254.

    • [9] Khalid A,Arshad M,Zahir Z A.Screening plant growthpromoting rhizobacteria for improving growth and yield of wheat[J]. Journal of Applied Microbiology,2004,96(3):473-480.

    • [10] Cattelan A J,Hartel P G,Fuhrmann J J.Screening for plant growth-promoting rhizobacteria to promote early soybean growth [J].Soil Science Society of America Journal,1999,63(6):1670-1680.

    • [11] Hamdali H,Hafidi M,Virolle M J,et al.Rock phosphatesolubilizing Actinomycetes:screening for plant growth-promoting activities[J].World Journal of Microbiology and Biotechnology,2008,24(11):2565-2575.

    • [12] 梁运江,许广波.生物菌肥对水稻营养特性和土壤养分可持续性的影响[J].延边大学农学学报,2000,22(2):91-95.

    • [13] Molla A H,Haque Md M,Haque Md A,et al.Trichodermaenriched biofertilizer enhances production and nutritional quality of tomato(Lycopersiconesculentum Mill.)and minimizes NPK fertilizer use[J].Agricultural Research,2012,1(3):265-272.

    • [14] 陈敏洁,满梅莲,宋雁飞,等.Bacillus pumilus 菌剂与化肥配施对油麦菜生长和品质的影响[J].广东农业科学,2018(8):13.

    • [15] Nosheen A,Bano A,Yasmin H,et al.Protein quantity and quality of safflower seed improved by NP fertilizer and Rhizobacteria(Azospirillum and Azotobacter spp.)[J].Frontiers in Plant Science,2016,7:104.

    • [16] Gholami A,Shahsavani S,Nezarat S.The effect of plant growth promoting rhizobacteria(PGPR)on germination,seedling growth and yield of maize[J].International Journal of Biological and Life Sciences,2009,1(1):35-40.

    • [17] Ashrafuzzaman M,Hossen F A,Ismail M R,et al. Efficiency of plant growth-promoting rhizobacteria(PGPR)for the enhancement of rice growth[J].African Journal of Biotechnology,2009,8(7):1247-1252.

    • [18] Adesemoye A O,Torbert H A,Kloepper J W.Plant growthpromoting rhizobacteria allow reduced application rates of chemical fertilizers[J].Microbial Ecology,2009,58(4):921-929.

    • [19] 祁娟,师尚礼,姚拓,等.复合菌肥与化肥配施对寒旱区苜蓿生长特性及土壤养分的影响[J].草原与草坪,2013,33(4):48-53.

    • [20] Mishra A,Prasad K,Rai G.Effect of bio-fertilizer inoculations on growth and yield of dwarf field pea(Pisum sativum L.)in conjunction with different doses of chemical fertilizers[J]. Journal of Agronomy,2010,9(4):163-168.

    • [21] Duarah I,Deka M,Saikia N,et al.Phosphate solubilizers enhance NPK fertilizer use efficiency in rice and legume cultivation [J].3 Biotech,2011,1(4):227-238.

    • [22] Shaharoona B,Naveed M,Arshad M,et al.Fertilizerdependent efficiency of Pseudomonads for improving growth,yield,and nutrient use efficiency of wheat(Triticum aestivum L.)[J].Applied Microbiology and Biotechnology,2008,79(1):147-155.

    • [23] Baset M,Shamsuddin Z H,Wahab Z,et al.Effect of plant growth promoting rhizobacterial(PGPR)inoculation on growth and nitrogen incorporation of tissue-cultured Musa plantlets under nitrogen-free hydroponics condition[J].Australian Journal of Crop Science,2010,4(2):85-90.

    • [24] Amir H G,Shamsuddin Z H,Halimi M S,et al.Enhancement in nutrient accumulation and growth of oil palm seedlings caused by PGPR under field nursery conditions[J].Communications in Soil Science and Plant Analysis,2005,36(15-16):2059-2066.

    • [25] Lopez-Cantarero I,Lorente F A,Romero L.Are chlorophylls good indicators of nitrogen and phosphorus levels?[J]. Journal of Plant Nutrition,1994,17(6):979-990.

    • [26] Huppe H C,Turpin D H.Integration of carbon and nitrogen metabolism in plant and algal cells[J].Annual Review of Plant Biology,1994,45(1):577-607.

    • [27] Vashvaei R M,Ghanbari A,Fakheri B A.Effect of different fertilization systems(chemical,biological and integrated)on nitrogen and phosphorus concentration,biochemical attributes and sepals dry weight of Roselle(Hibiscus sabdariffa L.)[J]. Journal of Agroecology,2017,9(3):652-674.

    • [28] Kang S M,Khan A L,Hamayun M,et al.Acinetobacter calcoaceticus ameliorated plant growth and influenced gibberellins and functional biochemicals[J].Pakistan Journal of Botany,2012,44(1):365-372.

    • [29] Osman S M.Effect of mineral,bio-NPK soil application of young olive trees and foliar fertilization on leaf and shooot chemical composition[J].Research Journal of Agriculture and Biological Sciences,2010,6(3):311-318.

    • [30] 赵大华,杨靖,李友勇.D-氨基酸抑制植物生长的现象[J]. 华北农学报,2007,22(2):60-63.

    • [31] 彭正萍.植物氮素吸收、运转和分配调控机制研究[J].河北农业大学学报,2019,42(2):1-5.

    • [32] Vishwakarma D,Thakur J K,Singh P P.Effect of PGPR consortia on nitrate reductase and chlorophyll content of flag leaf of wheat[J].Int J Chem Studies,2017,5(6):672-674.

    • [33] Xu Z Z,Yu Z W.Nitrogen metabolism in flag leaf and grain of wheat in response to irrigation regimes[J].Journal of Plant Nutrition and Soil Science,2006,169(1):118-126.

    • [34] Li Z L,Tian D S,Wang B X,et al.Microbes drive global soil nitrogen mineralization and availability[J].Global Change Biology,2019,25(3):1078-1088.

    • [35] Boldaji S A H,Khavari-Nejad R A,Sajedi R H,et al.Water availability effects on antioxidant enzyme activities,lipid peroxidation,and reducing sugar contents of alfalfa(Medicago sativa L.)[J].Acta Physiologiae Plantarum,2012,34(3):1177-1186.

    • [36] Sivakumar T,Ravikumar M,Prakash M,et al.Comparative effect on bacterial biofertilizers on growth and yield of green gram(Phaseolus radiata L.)and cow pea(Vigna siensis Edhl.)[J].International Journal of Current Research and Academic Review,2013,1(2):20-28.

    • [37] Gohil S N,Patil R V,Tiwari U S,et al.Use of bio-fertilizers to improve yield and quality in sweet orange(Citrus Sinensis Osbeck)cv Mosambi under sub-arid zone of Maharashtra[J]. Ecology Environment Conservation,2007,13(1):119-121.

    • [38] Reddy P P.Potential role of PGPR in agriculture[M]//Plant growth promoting rhizobacteria for horticultural crop protection.Springer Publishing,2014.17-34.

    • [39] Chen C,Belanger R R,Benhamou N,et al.Defense enzymes induced in cucumber roots by treatment with plant growthpromoting rhizobacteria(PGPR)and Pythium aphanidermatum[J]. Physiological and Molecular Plant Pathology,2000,56(1):13-23.

    • [40] Singh R P,Jha P N.The PGPR Stenotrophomonas maltophilia SBP-9 augments resistance against biotic and abiotic stress in wheat plants[J].Frontiers in Microbiology,2017,8:1945.

    • [41] Dell’Amico E,Cavalca L,Andreoni V.Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria[J].Soil Biology and Biochemistry,2008,40(1):74-84.

    • [42] Barka E A,Nowak J,Clément C.Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growthpromoting rhizobacterium,Burkholderia phytofirmans strain PsJN [J].Applied and Environmental Microbiology,2006,72(11):7246-7252.

    • [43] 郝娜,靳学慧,杨瑒.氮对马铃薯防御酶系活性及抗性的影响[J].黑龙江八一农垦大学学报,2012,24(2):8-11.

    • [44] Xiang L I,Yan-mei Z,Li-tao Y,et al.Effects of different nitrogen levels on key enzymes of nitrogen metabolism and contents of related active substances for three sugarcane varieties[J]. Journal of Southern Agriculture,2015,46(5):766-771.

    • [45] Shahzad A,Saddiqui S,Bano A.The response of maize(Zea mays L.)plant assisted with bacterial consortium and fertilizer under oily sludge[J].International Journal of Phytoremediation,2016,18(5):521-526.

    • [46] Lee S W,Heinz R,Robb J,et al.Differential utilization of alterante initiation sites in a plant defense gene responding to environmental stimuli[J].European Journal of Biochemistry,1994,226(1):109-114.

    • [47] Pandey S,Fartyal D,Agarwal A,et al.Abiotic stress tolerance in plants:myriad roles of ascorbate peroxidase[J].Frontiers in Plant Science,2017,8:581.

    • [48] Khalid M,Hassani D,Bilal M,et al.Influence of bio-fertilizer containing beneficial fungi and rhizospheric bacteria on health promoting compounds and antioxidant activity of Spinacia oleracea L.[J].Botanical Studies,2017,58(1):35.

    • [49] 梁建根,张炳欣,喻景权,等.植物根围促生菌(PGPR)对黄瓜生长及生理生化特性的影响[J].浙江大学学报(农业与生命科学版),2007,33(2):202-206.

    • [50] Raj S N,Lavanya S N,Amruthesh K N,et al.Histo-chemical changes induced by PGPR during induction of resistance in pearl millet against downy mildew disease[J].Biological Control,2012,60(2):90-102.

    • [51] Khanna K,Jamwal V L,Sharma A,et al.Supplementation with plant growth promoting rhizobacteria(PGPR)alleviates cadmium toxicity in Solanum lycopersicum by modulating the expression of secondary metabolites[J].Chemosphere,2019,230:628-639.

    • [52] del Rosario Cappellari L,Chiappero J,Santoro M V,et al.Inducing phenolic production and volatile organic compounds emission by inoculating Mentha piperita with plant growth-promoting rhizobacteria[J].Scientia Horticulturae,2017,220:193-198.

    • [53] 刘艳玲.PGPR 抑制紫花苜蓿根腐病的作用研究[D].哈尔滨:哈尔滨师范大学,2017.

    • [54] Fahad S,Hussain S,Bano A,et al.Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses:consequences for changing environment[J]. Environmental Science and Pollution Research,2015,22(7):4907-4921.

    • [55] Turan M,Ekinci M,Yildirim E,et al.Plant growth-promoting rhizobacteria improved growth,nutrient,and hormone content of cabbage(Brassica oleracea)seedlings[J].Turkish Journal of Agriculture and Forestry,2014,38(3):327-333.

    • [56] Aslantaş R,Cakmakçi R,Şahin F.Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions[J].Scientia Horticulturae,2007,111(4):371-377.

    • [57] Huang X F,Zhou D,Guo J,et al.Bacillus spp.from rainforest soil promote plant growth under limited nitrogen conditions[J]. Journal of Applied Microbiology,2015,118(3):672-684.