en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

黄均明(1983-),男,广东罗定人,硕士研究生,主要从事肥料和土壤调理剂方法研究及评价工作。E-mail:hjmsfac@163.com。

通讯作者:

刘红芳,E-mail:liuhongfang@caas.cn。

参考文献 1
Szostek R,Ciećko Z.Content of fluorine in biomass of crops depending on soil contamination by this element[J].Fluoride,2014,47(4):294-306.
参考文献 2
吴卫红.土-水-气界面间氟的迁移机理及其生态效应[D]. 杭州:浙江大学,2002.
参考文献 3
桂建业,韩占涛,张向阳,等.土壤中氟的形态分析[J]. 岩矿测试,2008,27(4):284-286.
参考文献 4
Morés S,Monteiro G C,Silva Santos F,et al.Determination of fluorine in tea using high-resolution molecular absorption spectrometry with electrothermal vaporization of the calcium monofluoride CaF[J].Talanta,2011,85(5):2681-2685.
参考文献 5
Mclure F J,Mitchell H H,Hamilton T S,et al.Balance of fluoride invested from various sources of food and water by five young man[J].JHyg Toxicol,1997,50(5):159-170.
参考文献 6
王茜,石瑛,张猛,等.氟化物的危害及植物去氟作用研究进展[J].现代农业科技,2012,(7):271-273.
参考文献 7
陈静生,邓宝山,陶澍,等.环境地球化学[M].北京:海洋出版社,1990.331-332.
参考文献 8
谢正苗,吴卫红,徐建民.环境中氟化物的迁移和转化及其生态效应[J].环境科学进展,1999,7(2):40-53.
参考文献 9
潘宏,陈邦本,方明.江苏省滨海盐土向潮土演化过程中水溶性氟含量变化原因的探讨[J].土壤学报,1993,30(4):416-422.
参考文献 10
沈阿林,崔转玲,姚同山,等.几种土壤对氟的吸附和解吸 [J].植物营养与肥料学报,1997,3(1):9-15.
参考文献 11
Mclaughlin M J,Tiller K G,Naidu R,et al.Review:the behaviour and environmental impact of contaminants in fertilizers [J].Australian Journal of Soil Research,1996,34(1):1-54.
参考文献 12
刘征原,郝瑞彬.氟的环境地球化学特征及生物效应[J]. 唐山师范学院学报,2007,29(2):34-36.
参考文献 13
赵强.氟/铝在茶树叶片和根部的累积与分布规律研究 [D].合肥:安徽农业大学,2013.
参考文献 14
Stevens D P,Mc Laughlin M J,Alston A M.Phytotoxicity of hydrogen fluoride and fluoroborate and their uptake from solution culture by Lycopersicon esculentum and Avena sativa[J].Plant and Soil,1998,200(2):175-184.
参考文献 15
Thomson W W.Effects of pollutants on plant ultrastructure in mudd[M].New York:Aead Press,1975.
参考文献 16
焦有,杨占平.氟的危害及控制[J].生态学杂志,2000,19(5):67-70.
参考文献 17
Burk W E.Quantitative determination of fluorine in fluorides easily decomposable by sulphuric acid[J].Journal of the American Chemical Society,1901,23(11):825-829.
参考文献 18
Adolph W H.Observations upon the quantitative determination of fluorine[J].Journal of the American Chemical Society,1915,37(11):2500-2515.
参考文献 19
Miller W T,Bigelow L A.A study of the preparation and quantitative determination of elementary fluorine1[J].Journal of the American Chemical Society,1936,58(9):1585-1589.
参考文献 20
Venkateswarlu P,Winter L D,Prokop R A,et al.Automated molecular absorption spectrometry for determination of fluorine in biological samples[J].Analytical Chemistry,1983,55(14):2232-2236.
参考文献 21
Cadorim H R,de Gois J S,Borges A R,et al.Determination of fluorine in copper concentrate via high-resolution graphite furnace molecular absorption spectrometry and direct solid sample analysis-Comparison of three target molecules[J].Talanta,2018,176:178-186.
参考文献 22
Ozbek N,Akman S.Determination of fluorine in Turkish wines by molecular absorbance of CaF using a high resolution continuum source atomic absorption spectrometer[J].LWT-Food Science and Technology,2015,61(1):112-116.
参考文献 23
Boschetti W,Dessuy M B,Pizzato A H,et al.New analytical method for total fluorine determination in soil samples using highresolution continuum source graphite furnace molecular absorption spectrometry[J].MicrochemicalJournal,2017,130:276-280.
参考文献 24
Ozbek N,Akman S.Solid sampling determination of total fluorine in baby food samples by high-resolution continuum source graphite furnace molecular absorption spectrometry[J].Food Chemistry,2016,211:180-184.
参考文献 25
Lee J,An J,Yoon H O.Determination of fluorine contents in plant samples by means of facilitated extraction with enzyme[J]. Talanta,2015,132:648-652.
参考文献 26
Singer L,Ophaug R H.Determination of fluorine in blood plasma [J].Analytical Chemistry,1977,49(1):38-40.
参考文献 27
Wilson J N,Marczewski C Z.Determination of fluorine in petroleum and petroleum process catalysts with a fluoride electrode [J].Analytical Chemistry,1973,45(14):2409-2412.
参考文献 28
Čápka V,Bowers C P,Narvesen J N,et al.Determination of total fluorine in blood at trace concentration levels by the Wickbold decomposition method with direct potentiometric detection[J]. Talanta,2004,64(4):869-878.
参考文献 29
Štepec D,Tavčar G,Ponikvar-Svet M.Measurement uncertainty evaluation and traceability assurance for total fluorine determination in vegetation by fluoride ion selective electrode[J].Journal of Fluorine Chemistry,2019,217:22-28.
参考文献 30
Picoloto R S,Enders M S P,Doneda M,et al.An in situ pre-concentration method for fluorine determination based on successive digestions by microwave-induced combustion[J]. Talanta,2019,194:314-319.
参考文献 31
Wagner A,Raue B,Brauch H J,et al.Determination of adsorbable organic fluorine from aqueous environmental samples by adsorption to polystyrene-divinylbenzene based activated carbon and combustion ion chromatography[J].Journal of Chromatography A,2013,1295:82-89.
参考文献 32
Wang C Y,Bunday S D,Tarter J G.Ion chromatographic determination of fluorine,chlorine,bromine,and iodine with sequential electrochemical and conductometric detection[J]. Analytical Chemistry,1983,55(9):1617-1619.
参考文献 33
Evans K L,Tarter J G,Moore C B.Pyrohydrolytic-ion chromatographic determination of fluorine,chlorine,and sulfur in geological samples [J].Analytical Chemistry,1981,53(6):925-928.
参考文献 34
Noguchi Y,Zhang L,Maruta T,et al.Simultaneous determination of fluorine,chlorine and bromine in cement with ion chromatography after pyrolysis[J].Analytica Chimica Acta,2009,640(1-2):106-109.
参考文献 35
Pereira R M,Costa V C,Hartwig C A,et al.Feasibility of halogen determination in noncombustible inorganic matrices by ion chromatography after a novel volatilization method using microwaveinduced combustion[J].Talanta,2016,147:76-81.
参考文献 36
Geng W H,Nakajima T,Takanashi H,et al.Determination of total fluorine in coal by use of oxygen flask combustion method with catalyst[J].Fuel,2007,86(5-6):715-721.
参考文献 37
Vasiliev A A,Godovski D Y,Buturlin A I,et al.Semiconductor sensors for determination of fluorine-containing gas mixtures[J]. Sensors and Actuators B:Chemical,1993,14(1-3):705-707.
参考文献 38
Kaykhaii M,Ghalehno M H.Rapid and sensitive determination of fluoride in toothpaste and water samples using headspace single drop microextraction-gas chromatography[J].Analytical Methods,2013,5(20):5622-5626.
参考文献 39
Wang P,Li S F Y,Lee H K.Simultaneous determination of monofluorophosphate and fluoride in toothpaste by capillary electrophoresis[J].Journal of Chromatography A,1997,765(2):353-359.
参考文献 40
Okte Z,Bayrak S,Fidanci U R,et al.Fluoride and aluminum release from restorative materials using ion chromatography[J]. Journal of Applied Oral Science,2012,20(1):27-31.
参考文献 41
郑和辉,林少彬,井海宁,等.离子选择电极法和离子色谱法测定水中氟化物的比较[J].环境与健康杂志,2003,20(1):37-39.
目录contents

    摘要

    建立了离子色谱和离子选择电极两种不同方法测定肥料和土壤调理剂中水溶性氟含量。对样品前处理条件进行优化,结果表明,常温超声 30 min 为最佳的提取条件。实验发现,离子色谱法和离子选择电极法均具有良好的线性关系以及较高的精密度和准确度,加标回收率均在 91.0% ~ 108.0% 之间,而且对同一样品的测定结果一致性较好,说明这两种方法均能满足肥料和土壤调理剂中水溶性氟含量的分析要求。与离子选择电极法相比较, 离子色谱法具有分析速度快,干扰因素少等特点。

    Abstract

    Two different methods for the determination of water-soluble fluorine in fertilizer and soil conditioner by ion chromatography and ion selective electrode were established.The pre-treatment conditions of the samples were optimized,and the results showed that 30 min ultrasound at room temperature was the best extraction condition.Both ion chromatography and ion selective electrode method showed good linearity,high precision and accuracy,and the standard recovery was between 91.0% and 108.0%.In addition,there was no significant difference in the determination results of the same sample,indicating that both methods could meet the analysis requirements of water-soluble fluorine content in fertilizer and soil conditioner.Compared with ion selective electrode method,ion chromatography has the characteristics of faster analysis speed and less interference factors.

  • 氟(F)位于元素周期表中第二周期第Ⅶ A族,其丰度在地壳组成元素中排列第13位(WHO),占地壳组成的0.072%~0.078%,是自然界分布广泛的一种卤族元素[1-3]。氟是人和其它动物正常生长所必需的微量元素之一[4]。适量的氟对机体牙齿、骨骼的钙化、神经兴奋的传导和酶系统的代谢均有促进作用[5-6],但是摄入过量又会产生毒害作用[7]。土水系统中氟的形态一般可分为水溶态、可交换态、铁锰氧化物态、有机束缚态和残余固定态等。其中,水溶态氟对植物、动物、微生物及人类有较高的有效性,易被作物根系吸收并参与食物链中氟的转移[8-9]

  • 滥用氟含量较高的肥料和土壤调理剂等农业投入品是导致土壤氟超标的影响因素之一[10-11]。土壤氟污染对植物的危害是慢性累积的过程[12]。过量的氟化物进入植物体内,会影响种子发芽和生根,损伤植物细胞膜,破坏叶绿体结构,影响代谢过程中多种酶的活性,抑制作物的呼吸作用和光合作用,造成作物产量减少、品质下降、提早落叶、衰老、甚至死亡[13-16]

  • 氟与我们的生活和生产密切相关,科研人员早在20世纪初期就针对它的检测做了研究[17-19]。目前,氟的检测方法主要包括光谱法[20-24]、离子选择电极法[25-30]、离子色谱法[31-35],此外,传感器和毛细管电泳等其它分析方法也有报道[36-39]。这些方法各自有不同的优缺点[21],光谱法稳定性好,简单而快速,但其影响因素较多,从而导致结果的准确性不高;离子选择电极是目前应用最为广泛的氟离子检测方法,具有成本低,操作简单,快速高效等优点,但其影响因素也较多;与其它方法相比,离子色谱法更简单、更准确,结果重现性更好,也能检测更低浓度的氟离子[40-41]。目前,尚未见土壤调理剂中氟含量检测方法的报道。

  • 本研究对离子色谱法与离子选择电极法测定肥料和土壤调理剂的水溶性氟含量进行比较,以期为肥料和土壤调理剂中水溶性氟含量的检测提供技术依据,以便进一步评价产品质量和使用安全风险。

  • 1 材料与方法

  • 1.1 试剂

  • 所用试剂和溶液的配制,在未注明规格和配制方法时,均应按HG/T3696规定执行。离子色谱法用水为超纯水,离子选择电极法用水为三级去离子水。

  • 氢氧化钾:优级纯。

  • 氢氧化钾淋洗液:c(KOH)=35mmol/L。

  • 乙酸溶液:c(CH3COOH)=1mol/L。

  • 乙酸钠溶液:c(CH3COONa)=3mol/L。称取204g三水合乙酸钠(CH3COONa·3H2O),溶于300mL水中,加乙酸溶液调节pH至7.0,然后移入500mL容量瓶中,用水定容。

  • 柠檬酸钠溶液:c(Na3C6H5O7)=0.75mol/L。称取110g二水合柠檬酸钠(Na3C6H5O7·2H2O),溶于300mL水中,加14mL高氯酸,然后移入500mL容量瓶中,用水定容。

  • 总离子强度缓冲剂:c(CH3COONa)=1.5mol/L, c(Na3C6H5O7)=0.375mol/L。乙酸钠溶液与柠檬酸钠溶液等体积混合,现配现用。

  • 氟标准储备液:ρ(F-)=1000mg/L。准确称取基准氟化钠(NaF,105~110℃烘干2h)0.2210g,加水溶解后,移入100mL容量瓶中,用水定容,贮存于聚乙烯瓶中。保存在0~5℃的冰箱中,有效期为6个月;或购买经国家认证并授予标准物质证书的标准溶液物质。

  • 氟标准溶液:ρ(F-)=20mg/L。吸取氟标准储备液20.00mL于1000mL容量瓶中,用水定容,贮存于聚乙烯瓶中。保存在0~5℃的冰箱中,有效期为1个月。

  • 氟标准溶液:ρ(F-)=10mg/L。吸取氟标准储备液10.00mL于1000mL容量瓶中,用水定容,贮存于聚乙烯瓶中。保存在0~5℃的冰箱中,有效期为1个月。

  • 1.2 仪器

  • ICS-600离子色谱仪:配有电导检测器,Dionex Ion Pac AS-19色谱柱;PF-1型氟离子选择电极; AS系列超声波清洗器;WBK-6B型电热恒温水浴锅;TDZ4-WS型台式低速离心机(4000r/min); BSA224S型电子天平(精度0.0001g)。

  • 1.3 供试样品

  • 样品来源于自制以及收集的部分肥料和土壤调理剂,样品共36个。

  • 1.4 样品前处理

  • 1.4.1 试样的制备

  • 将固体样品采用四分法缩分至约100g,将其迅速研磨至全部通过0.50mm筛(如样品潮湿,可通过1.00mm筛),混合均匀,置于洁净、干燥容器中;液体样品经摇动均匀后,迅速取出约100mL,置于洁净、干燥的容器中。

  • 1.4.2 试样溶液的制备

  • 1.4.2.1离子色谱法

  • 称取0.2~0.3g试样(精确至0.0001g)置于250mL容量瓶中,加约150mL水。在室温下超声30min,取出,用水定容。取部分溶液于离心机中,以4000r/min的转速离心10min,上清液过0.22 μm水系微孔滤膜后,待测。

  • 1.4.2.2离子选择电极法

  • 称取0.2~0.3g试样(精确至0.0001g)置于250mL容量瓶中,加约150mL水,在室温下超声30min,取出,用水定容,用定性滤纸进行干过滤(弃去过滤最初的滤液),滤液待用。

  • 1.5 仪器条件(离子色谱法)

  • 本研究采用等度淋洗的方式。色谱柱:阴离子色谱柱,7.5 μm,(4×250)mm,离子交换功能基为烷醇季铵,或相当者。阴离子色谱保护柱, 7.5 μm,(4×50)mm,离子交换功能基为烷醇季铵,或相当者;柱温箱温度:30℃;抑制器:自动再生阴离子抑制器,或相当者;检测器:电导检测器,检测池温度为室温;淋洗液:氢氧化钾淋洗液;淋洗液流速:1.0mL/min;进样量:10 μL。

  • 1.6 标准曲线的绘制

  • 1.6.1 离子色谱法

  • 分别吸取氟标准溶液[ρ(F-)=20mg/L]0.00、 0.50、2.50、5.00、10.00、25.00和50.00mL于7个100mL容量瓶中,用水定容。该标准系列溶液氟的质量浓度分别为0.0、0.1、0.5、1.0、2.0、5.0和10.0mg/L。过微孔滤膜后,按浓度由低到高进样检测,以标准系列溶液质量浓度x(mg/L)为横坐标,以峰面积y为纵坐标,绘制标准曲线。

  • 1.6.2 离子选择电极法

  • 分别吸取氟标准溶液[ρ(F-)=10mg/L]0.00、 0.50、1.00、2.00、5.00、10.00、20.00mL于7个50mL容量瓶中,加入25mL总离子强度缓冲剂,用水定容。该标准系列溶液氟的质量浓度分别为0.00、0.10、0.20、0.40、1.00、2.00和4.00mg/L。将电极和搅拌转子置于盛有水的塑料杯中,电磁搅拌,根据不同样品情况,待电极空白电位值达到仪器测定要求后,按浓度由低至高进行测定,以电位响应值x为横坐标,以相应的氟离子浓度对数值y为纵坐标,绘制标准曲线。

  • 1.7 试样溶液的测定

  • 1.7.1 离子色谱法

  • 将试样溶液或经稀释一定倍数后在与测定标准系列溶液相同的条件下测定,在标准曲线上查出相应的质量浓度(mg/L)。

  • 1.7.2 离子选择电极法

  • 吸取适量的滤液,置于50mL容量瓶中,加入25mL总离子强度缓冲剂后,用水定容。在与测定标准系列溶液相同的条件下,测定试样溶液的电位,在标准曲线上查出相应试样溶液中氟的质量浓度(mg/L)。

  • 2 结果与分析

  • 2.1 实验条件的确立

  • 针对样品前处理条件的优化,分别考察了提取方式和提取时间两个因素对结果的影响,检测方法采用离子选择电极法。

  • 2.1.1 提取方式

  • 本研究以水作为提取剂提取样品中的氟,分别采用水浴加热(100℃)、常温振荡、常温超声3种提取方式对S01(磷酸一铵)、S02(磷酸二铵)、S03(掺混肥料)、S04(土壤调理剂)、S07(微量元素水溶肥料)5个样品进行实验,提取时间为30min,每个样品进行2次平行测定,结果见图1。

  • 图1 不同提取方式对氟检测的影响

  • 结果显示,在S01、S02、S03、S04、S07 5个样品中,采用常温振荡的方式提取,氟含量偏低,提取不完全;采用水浴加热(100℃)和常温超声这两种方式提取,氟含量较高,结果一致性较好,说明这两种提取方式均可采用,而采用常温超声提取更为简便,所以以下实验均采用常温超声作为提取方式。

  • 2.1.2 提取时间

  • 本研究分别考察了常温超声10、20、30、40、 50min 5个不同提取时间对提取效果的影响。每个样品进行2次平行测定,结果见图2。

  • 图2 不同提取时间对氟检测的影响

  • 结果显示,在30min内随着提取时间的增加,所检测的氟含量也在增加,并在30min时氟含量较稳定,继续延长提取时间,氟含量变化不大,所以提取时间设为30min。

  • 2.2 回归方程、线性范围和检出限

  • 配制一系列浓度的氟标准溶液,在所选择的最佳实验条件下进行测定,得到回归方程、线性范围和相关系数(R),并计算检出限。其中,离子色谱法以信噪比(S/N)为3计算检出限,而离子选择电极法以标准曲线外推法计算检出限。结果见表1。

  • 表1 氟测定的回归方程、线性范围和检出限

  • 2.3 精密度

  • 为考察离子色谱法和离子选择电极法这两个方法的精密度,分别对3个样品进行6次平行测定,测定值的相对标准偏差(RSD)分别为1.67%~9.30%和4.18%~8.86%,结果见表2。

  • 表2 精密度实验结果(%)

  • 2.4 准确度

  • 通过加标回收率测定结果来评价离子色谱法和离子选择电极法的准确性。在3个不同类型样品中,加入定量的氟标准溶液。经两次平行测定,统计本方法的回收率,这两个方法的氟回收率分别为92.0%~108.0%和91.0%~106.0%,结果见表3和表4。

  • 表3 离子色谱法回收率实验结果(%)

  • 表4 离子选择电极法回收率实验结果(%)

  • 2.5 样品测定

  • 分别采用离子色谱法和离子选择电极法对19个肥料和土壤调理剂样品中氟含量进行测定,结果见表5,说明这两种方法间检测结果的一致性较好。其中,S04的样品空白、样品及样品加标色谱图见图3。

  • 表5 离子色谱法和离子选择电极法比对实验结果(%)

  • 图3 样品S04的样品空白、样品及样品加标色谱图

  • 3 结论

  • 本研究建立了肥料和土壤调理剂中水溶性氟含量的离子色谱法和离子选择电极法两种分析方法,并对这两种方法的样品前处理条件、稳定性、准确性、可靠性等参数进行了考究,结果显示这两种方法的精密度、准确性等方法性能指标均能满足检验的要求,适合于大批量样品的检测。相比之下,离子色谱法具有干扰因素少、准确性高以及分析速度快等优点,而离子选择电极法所需仪器设备简单、价格低廉,操作简便,适用性广,检测人员可以根据自身的实验条件选择不同的方法。这两种方法的建立,将进一步为肥料和土壤调理剂产品的质量监督和市场监管提供技术支撑,从而有效地降低农产品与耕地污染风险,保护生态环境。

  • 参考文献

    • [1] Szostek R,Ciećko Z.Content of fluorine in biomass of crops depending on soil contamination by this element[J].Fluoride,2014,47(4):294-306.

    • [2] 吴卫红.土-水-气界面间氟的迁移机理及其生态效应[D]. 杭州:浙江大学,2002.

    • [3] 桂建业,韩占涛,张向阳,等.土壤中氟的形态分析[J]. 岩矿测试,2008,27(4):284-286.

    • [4] Morés S,Monteiro G C,Silva Santos F,et al.Determination of fluorine in tea using high-resolution molecular absorption spectrometry with electrothermal vaporization of the calcium monofluoride CaF[J].Talanta,2011,85(5):2681-2685.

    • [5] Mclure F J,Mitchell H H,Hamilton T S,et al.Balance of fluoride invested from various sources of food and water by five young man[J].JHyg Toxicol,1997,50(5):159-170.

    • [6] 王茜,石瑛,张猛,等.氟化物的危害及植物去氟作用研究进展[J].现代农业科技,2012,(7):271-273.

    • [7] 陈静生,邓宝山,陶澍,等.环境地球化学[M].北京:海洋出版社,1990.331-332.

    • [8] 谢正苗,吴卫红,徐建民.环境中氟化物的迁移和转化及其生态效应[J].环境科学进展,1999,7(2):40-53.

    • [9] 潘宏,陈邦本,方明.江苏省滨海盐土向潮土演化过程中水溶性氟含量变化原因的探讨[J].土壤学报,1993,30(4):416-422.

    • [10] 沈阿林,崔转玲,姚同山,等.几种土壤对氟的吸附和解吸 [J].植物营养与肥料学报,1997,3(1):9-15.

    • [11] Mclaughlin M J,Tiller K G,Naidu R,et al.Review:the behaviour and environmental impact of contaminants in fertilizers [J].Australian Journal of Soil Research,1996,34(1):1-54.

    • [12] 刘征原,郝瑞彬.氟的环境地球化学特征及生物效应[J]. 唐山师范学院学报,2007,29(2):34-36.

    • [13] 赵强.氟/铝在茶树叶片和根部的累积与分布规律研究 [D].合肥:安徽农业大学,2013.

    • [14] Stevens D P,Mc Laughlin M J,Alston A M.Phytotoxicity of hydrogen fluoride and fluoroborate and their uptake from solution culture by Lycopersicon esculentum and Avena sativa[J].Plant and Soil,1998,200(2):175-184.

    • [15] Thomson W W.Effects of pollutants on plant ultrastructure in mudd[M].New York:Aead Press,1975.

    • [16] 焦有,杨占平.氟的危害及控制[J].生态学杂志,2000,19(5):67-70.

    • [17] Burk W E.Quantitative determination of fluorine in fluorides easily decomposable by sulphuric acid[J].Journal of the American Chemical Society,1901,23(11):825-829.

    • [18] Adolph W H.Observations upon the quantitative determination of fluorine[J].Journal of the American Chemical Society,1915,37(11):2500-2515.

    • [19] Miller W T,Bigelow L A.A study of the preparation and quantitative determination of elementary fluorine1[J].Journal of the American Chemical Society,1936,58(9):1585-1589.

    • [20] Venkateswarlu P,Winter L D,Prokop R A,et al.Automated molecular absorption spectrometry for determination of fluorine in biological samples[J].Analytical Chemistry,1983,55(14):2232-2236.

    • [21] Cadorim H R,de Gois J S,Borges A R,et al.Determination of fluorine in copper concentrate via high-resolution graphite furnace molecular absorption spectrometry and direct solid sample analysis-Comparison of three target molecules[J].Talanta,2018,176:178-186.

    • [22] Ozbek N,Akman S.Determination of fluorine in Turkish wines by molecular absorbance of CaF using a high resolution continuum source atomic absorption spectrometer[J].LWT-Food Science and Technology,2015,61(1):112-116.

    • [23] Boschetti W,Dessuy M B,Pizzato A H,et al.New analytical method for total fluorine determination in soil samples using highresolution continuum source graphite furnace molecular absorption spectrometry[J].MicrochemicalJournal,2017,130:276-280.

    • [24] Ozbek N,Akman S.Solid sampling determination of total fluorine in baby food samples by high-resolution continuum source graphite furnace molecular absorption spectrometry[J].Food Chemistry,2016,211:180-184.

    • [25] Lee J,An J,Yoon H O.Determination of fluorine contents in plant samples by means of facilitated extraction with enzyme[J]. Talanta,2015,132:648-652.

    • [26] Singer L,Ophaug R H.Determination of fluorine in blood plasma [J].Analytical Chemistry,1977,49(1):38-40.

    • [27] Wilson J N,Marczewski C Z.Determination of fluorine in petroleum and petroleum process catalysts with a fluoride electrode [J].Analytical Chemistry,1973,45(14):2409-2412.

    • [28] Čápka V,Bowers C P,Narvesen J N,et al.Determination of total fluorine in blood at trace concentration levels by the Wickbold decomposition method with direct potentiometric detection[J]. Talanta,2004,64(4):869-878.

    • [29] Štepec D,Tavčar G,Ponikvar-Svet M.Measurement uncertainty evaluation and traceability assurance for total fluorine determination in vegetation by fluoride ion selective electrode[J].Journal of Fluorine Chemistry,2019,217:22-28.

    • [30] Picoloto R S,Enders M S P,Doneda M,et al.An in situ pre-concentration method for fluorine determination based on successive digestions by microwave-induced combustion[J]. Talanta,2019,194:314-319.

    • [31] Wagner A,Raue B,Brauch H J,et al.Determination of adsorbable organic fluorine from aqueous environmental samples by adsorption to polystyrene-divinylbenzene based activated carbon and combustion ion chromatography[J].Journal of Chromatography A,2013,1295:82-89.

    • [32] Wang C Y,Bunday S D,Tarter J G.Ion chromatographic determination of fluorine,chlorine,bromine,and iodine with sequential electrochemical and conductometric detection[J]. Analytical Chemistry,1983,55(9):1617-1619.

    • [33] Evans K L,Tarter J G,Moore C B.Pyrohydrolytic-ion chromatographic determination of fluorine,chlorine,and sulfur in geological samples [J].Analytical Chemistry,1981,53(6):925-928.

    • [34] Noguchi Y,Zhang L,Maruta T,et al.Simultaneous determination of fluorine,chlorine and bromine in cement with ion chromatography after pyrolysis[J].Analytica Chimica Acta,2009,640(1-2):106-109.

    • [35] Pereira R M,Costa V C,Hartwig C A,et al.Feasibility of halogen determination in noncombustible inorganic matrices by ion chromatography after a novel volatilization method using microwaveinduced combustion[J].Talanta,2016,147:76-81.

    • [36] Geng W H,Nakajima T,Takanashi H,et al.Determination of total fluorine in coal by use of oxygen flask combustion method with catalyst[J].Fuel,2007,86(5-6):715-721.

    • [37] Vasiliev A A,Godovski D Y,Buturlin A I,et al.Semiconductor sensors for determination of fluorine-containing gas mixtures[J]. Sensors and Actuators B:Chemical,1993,14(1-3):705-707.

    • [38] Kaykhaii M,Ghalehno M H.Rapid and sensitive determination of fluoride in toothpaste and water samples using headspace single drop microextraction-gas chromatography[J].Analytical Methods,2013,5(20):5622-5626.

    • [39] Wang P,Li S F Y,Lee H K.Simultaneous determination of monofluorophosphate and fluoride in toothpaste by capillary electrophoresis[J].Journal of Chromatography A,1997,765(2):353-359.

    • [40] Okte Z,Bayrak S,Fidanci U R,et al.Fluoride and aluminum release from restorative materials using ion chromatography[J]. Journal of Applied Oral Science,2012,20(1):27-31.

    • [41] 郑和辉,林少彬,井海宁,等.离子选择电极法和离子色谱法测定水中氟化物的比较[J].环境与健康杂志,2003,20(1):37-39.

  • 参考文献

    • [1] Szostek R,Ciećko Z.Content of fluorine in biomass of crops depending on soil contamination by this element[J].Fluoride,2014,47(4):294-306.

    • [2] 吴卫红.土-水-气界面间氟的迁移机理及其生态效应[D]. 杭州:浙江大学,2002.

    • [3] 桂建业,韩占涛,张向阳,等.土壤中氟的形态分析[J]. 岩矿测试,2008,27(4):284-286.

    • [4] Morés S,Monteiro G C,Silva Santos F,et al.Determination of fluorine in tea using high-resolution molecular absorption spectrometry with electrothermal vaporization of the calcium monofluoride CaF[J].Talanta,2011,85(5):2681-2685.

    • [5] Mclure F J,Mitchell H H,Hamilton T S,et al.Balance of fluoride invested from various sources of food and water by five young man[J].JHyg Toxicol,1997,50(5):159-170.

    • [6] 王茜,石瑛,张猛,等.氟化物的危害及植物去氟作用研究进展[J].现代农业科技,2012,(7):271-273.

    • [7] 陈静生,邓宝山,陶澍,等.环境地球化学[M].北京:海洋出版社,1990.331-332.

    • [8] 谢正苗,吴卫红,徐建民.环境中氟化物的迁移和转化及其生态效应[J].环境科学进展,1999,7(2):40-53.

    • [9] 潘宏,陈邦本,方明.江苏省滨海盐土向潮土演化过程中水溶性氟含量变化原因的探讨[J].土壤学报,1993,30(4):416-422.

    • [10] 沈阿林,崔转玲,姚同山,等.几种土壤对氟的吸附和解吸 [J].植物营养与肥料学报,1997,3(1):9-15.

    • [11] Mclaughlin M J,Tiller K G,Naidu R,et al.Review:the behaviour and environmental impact of contaminants in fertilizers [J].Australian Journal of Soil Research,1996,34(1):1-54.

    • [12] 刘征原,郝瑞彬.氟的环境地球化学特征及生物效应[J]. 唐山师范学院学报,2007,29(2):34-36.

    • [13] 赵强.氟/铝在茶树叶片和根部的累积与分布规律研究 [D].合肥:安徽农业大学,2013.

    • [14] Stevens D P,Mc Laughlin M J,Alston A M.Phytotoxicity of hydrogen fluoride and fluoroborate and their uptake from solution culture by Lycopersicon esculentum and Avena sativa[J].Plant and Soil,1998,200(2):175-184.

    • [15] Thomson W W.Effects of pollutants on plant ultrastructure in mudd[M].New York:Aead Press,1975.

    • [16] 焦有,杨占平.氟的危害及控制[J].生态学杂志,2000,19(5):67-70.

    • [17] Burk W E.Quantitative determination of fluorine in fluorides easily decomposable by sulphuric acid[J].Journal of the American Chemical Society,1901,23(11):825-829.

    • [18] Adolph W H.Observations upon the quantitative determination of fluorine[J].Journal of the American Chemical Society,1915,37(11):2500-2515.

    • [19] Miller W T,Bigelow L A.A study of the preparation and quantitative determination of elementary fluorine1[J].Journal of the American Chemical Society,1936,58(9):1585-1589.

    • [20] Venkateswarlu P,Winter L D,Prokop R A,et al.Automated molecular absorption spectrometry for determination of fluorine in biological samples[J].Analytical Chemistry,1983,55(14):2232-2236.

    • [21] Cadorim H R,de Gois J S,Borges A R,et al.Determination of fluorine in copper concentrate via high-resolution graphite furnace molecular absorption spectrometry and direct solid sample analysis-Comparison of three target molecules[J].Talanta,2018,176:178-186.

    • [22] Ozbek N,Akman S.Determination of fluorine in Turkish wines by molecular absorbance of CaF using a high resolution continuum source atomic absorption spectrometer[J].LWT-Food Science and Technology,2015,61(1):112-116.

    • [23] Boschetti W,Dessuy M B,Pizzato A H,et al.New analytical method for total fluorine determination in soil samples using highresolution continuum source graphite furnace molecular absorption spectrometry[J].MicrochemicalJournal,2017,130:276-280.

    • [24] Ozbek N,Akman S.Solid sampling determination of total fluorine in baby food samples by high-resolution continuum source graphite furnace molecular absorption spectrometry[J].Food Chemistry,2016,211:180-184.

    • [25] Lee J,An J,Yoon H O.Determination of fluorine contents in plant samples by means of facilitated extraction with enzyme[J]. Talanta,2015,132:648-652.

    • [26] Singer L,Ophaug R H.Determination of fluorine in blood plasma [J].Analytical Chemistry,1977,49(1):38-40.

    • [27] Wilson J N,Marczewski C Z.Determination of fluorine in petroleum and petroleum process catalysts with a fluoride electrode [J].Analytical Chemistry,1973,45(14):2409-2412.

    • [28] Čápka V,Bowers C P,Narvesen J N,et al.Determination of total fluorine in blood at trace concentration levels by the Wickbold decomposition method with direct potentiometric detection[J]. Talanta,2004,64(4):869-878.

    • [29] Štepec D,Tavčar G,Ponikvar-Svet M.Measurement uncertainty evaluation and traceability assurance for total fluorine determination in vegetation by fluoride ion selective electrode[J].Journal of Fluorine Chemistry,2019,217:22-28.

    • [30] Picoloto R S,Enders M S P,Doneda M,et al.An in situ pre-concentration method for fluorine determination based on successive digestions by microwave-induced combustion[J]. Talanta,2019,194:314-319.

    • [31] Wagner A,Raue B,Brauch H J,et al.Determination of adsorbable organic fluorine from aqueous environmental samples by adsorption to polystyrene-divinylbenzene based activated carbon and combustion ion chromatography[J].Journal of Chromatography A,2013,1295:82-89.

    • [32] Wang C Y,Bunday S D,Tarter J G.Ion chromatographic determination of fluorine,chlorine,bromine,and iodine with sequential electrochemical and conductometric detection[J]. Analytical Chemistry,1983,55(9):1617-1619.

    • [33] Evans K L,Tarter J G,Moore C B.Pyrohydrolytic-ion chromatographic determination of fluorine,chlorine,and sulfur in geological samples [J].Analytical Chemistry,1981,53(6):925-928.

    • [34] Noguchi Y,Zhang L,Maruta T,et al.Simultaneous determination of fluorine,chlorine and bromine in cement with ion chromatography after pyrolysis[J].Analytica Chimica Acta,2009,640(1-2):106-109.

    • [35] Pereira R M,Costa V C,Hartwig C A,et al.Feasibility of halogen determination in noncombustible inorganic matrices by ion chromatography after a novel volatilization method using microwaveinduced combustion[J].Talanta,2016,147:76-81.

    • [36] Geng W H,Nakajima T,Takanashi H,et al.Determination of total fluorine in coal by use of oxygen flask combustion method with catalyst[J].Fuel,2007,86(5-6):715-721.

    • [37] Vasiliev A A,Godovski D Y,Buturlin A I,et al.Semiconductor sensors for determination of fluorine-containing gas mixtures[J]. Sensors and Actuators B:Chemical,1993,14(1-3):705-707.

    • [38] Kaykhaii M,Ghalehno M H.Rapid and sensitive determination of fluoride in toothpaste and water samples using headspace single drop microextraction-gas chromatography[J].Analytical Methods,2013,5(20):5622-5626.

    • [39] Wang P,Li S F Y,Lee H K.Simultaneous determination of monofluorophosphate and fluoride in toothpaste by capillary electrophoresis[J].Journal of Chromatography A,1997,765(2):353-359.

    • [40] Okte Z,Bayrak S,Fidanci U R,et al.Fluoride and aluminum release from restorative materials using ion chromatography[J]. Journal of Applied Oral Science,2012,20(1):27-31.

    • [41] 郑和辉,林少彬,井海宁,等.离子选择电极法和离子色谱法测定水中氟化物的比较[J].环境与健康杂志,2003,20(1):37-39.

  • 《中国土壤与肥料》招聘启事
    关闭