en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

杨彦明(1980-),男,内蒙古呼伦贝尔人,讲师,博士,主要从事农业生态系统研究。E-mail:68282761@qq.com。

通讯作者:

杨彦明,E-mail:68282761@qq.com。

参考文献 1
Liu X B,Zhang X Y,Wang Y X,et al.Soil degradation:A problem threatening the sustainable development of agriculture in Northeast China[J].Plant Soil Environment,2010,56(2):87-97.
参考文献 2
Campbell C A,Zentner R P,Basnyat P,et al.Water use efficiency and water and nitrate distribution in soil in the semiarid prairie:Effect of crop type over 21 years[J].Canadian Journal of Plant Science,2007,87:815-827.
参考文献 3
Wen D Z,Liang W J.Soil fertility quality and agricultural sustainable development in the black soil region of northeast China [J].Environment,Development and Sustainability,2001,3:31-43.
参考文献 4
Guo J H,Liu X J,Zhang Y,et al.Significant acidification in major Chinese croplands[J].Science,2010,327:1008-1010.
参考文献 5
张博文,杨彦明,李金龙,等.连续深松对黑土水热酶特性及细菌群落的影响[J].生态学杂志,2018,37(11):3323-3332.
参考文献 6
Randlett D L,Zak D R,Pregitzer K S,et al.Elevated atmospheric carbon dioxide and leaf litter chemistry:influences on microbial respiration and net nitrogen mineralization[J].Soil Science Society of America Journal,1996,60(5):1571-1577.
参考文献 7
赵其国,钱海燕.低碳经济与农业发展思考[J].生态环境学报,2009,18(5):1609-1614.
参考文献 8
Liu X R,Re J Q,Zhang Q W,et al.Long-term effects of biochar addition and straw return on N2O fluxes and the related functional gene abundances under wheat-maize rotation system in the North China Plain[J].Applied Soil Ecology,2018,135:44-55.
参考文献 9
Sun L Y,Song F B,Liu S Q,et al.Integrated agricultural management practice improves soil quality in Northeast China [J].Archives of Agronomy and Soil Science,2018,64(14):1932-1943.
参考文献 10
萨如拉,高聚林,于晓芳,等.玉米秸秆深翻还田对土壤有益微生物和土壤酶活性的影响[J].干旱区资源与环境,2014,28(7):138-143.
参考文献 11
Brussaard L,Ruiter P C,Brown G G.Soil biodiversity for agricultural sustainability[J].Agriculture,Ecosystems & Environment,2007,121(3):233-244.
参考文献 12
Stenberg B.Monitoring soil quality of arable land:Microbiological indicators[J].Acta Agriculturae Scandinavica,Section B-Plant Soil Science,1999,49(1):1-24.
参考文献 13
Chen X F,Lin M,Kuzyakov Y,et al.Incorporation of rice straw carbon into dissolved organic matter and microbial biomass along a 100-year paddy soil chronosequence[J].Applied Soil Ecology,2018,130:84-90.
参考文献 14
王冲,王玉峰,谷学佳,等.连续施用生物炭对黑土基础理化性质的影响[J].土壤通报,2018,49(2):428-434.
参考文献 15
江恒,邹文秀,韩晓增,等.土地利用方式和施肥管理对黑土物理性质的影响[J].生态与农村环境学报,2013,29(5):599-604.
参考文献 16
Malhi S S,Nyborg M,Goddard T,et al.Long-term tillage,straw management,and nitrogen fertilization effects on organic matter and mineralizable carbon and nitrogen in a black chernozem soil[J].Communications in Soil Science and Plant Analysis,2012,43:2679-2690.
参考文献 17
高学振,张丛志,张佳宝,等.生物炭、秸秆和有机肥对砂姜黑土改性效果的对比研究[J].土壤,2016,48(3):468-474.
参考文献 18
刘晶鑫,迟凤琴,许修宏,等.长期施肥对农田黑土微生物群落功能多样性的影响[J].应用生态学报,2015,26(10):3066-3072.
参考文献 19
Sun R B,Zhang X X,Guo X S,et al.Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw[J].Soil Biology & Biochemistry,2015,88:9-18.
参考文献 20
Sun R B,Dsouza M,Gilbert J A,et al.Fungal community composition in soils subjected to long-term chemical fertilization is most influenced by the type of organic matter[J].Environmental Microbiology,2016,18:5137-5150.
参考文献 21
依艳丽.土壤物理研究法[M].北京:北京大学出版社,2009.
参考文献 22
曾路生,崔德杰,李俊良,等.寿光大棚菜地土壤呼吸强度、酶活性、pH 与EC的变化研究[J].植物营养与肥料学报,2009,15(4):865-870.
参考文献 23
Lynch M D J,Neufeld J D.Ecology and exploration of the rare biosphere[J].Nature Reviews Microbiology,2015,13(4):217-229.
参考文献 24
Zhang J B,Yang J S,Yao R J,et al.The effects of farmyard manure and mulch on soil physical properties in a reclaimed coastal tidal flat salt-affected soil[J].Journal of Integrative Agriculture,2014,13(8):1782-1790.
参考文献 25
郝小雨,马星竹,周宝库.长期单施有机肥黑土大豆产量和土壤理化性质演变特征[J].土壤与作物,2018,7(2):222-228.
参考文献 26
宁川川,王建武,蔡昆争.有机肥对土壤肥力和土壤环境质量的影响研究进展[J].生态环境学报,2016,25(1):175-181.
参考文献 27
杨艳华,苏瑶,何振超,等.还田秸秆碳在土壤中的转化分配及对土壤有机碳库影响的研究进展[J].应用生态学报,2019,30(2):668-676.
参考文献 28
Doan T T,Bouvier C,Bettarel Y,et al.Influence of buffalo manure,compost,vermicompost and biochar amendments on bacterial and viral communities in soil and adjacent aquatic systems[J].Applied Soil Ecology,2014,73:78-86.
参考文献 29
Sradnick A,Murugan R,Oltmanns M,et al.Changes in functional diversity of the soil microbial community in a heterogeneous sandy soil after long-term fertilization with cattle manure and mineral fertilizer[J].Applied Soil Ecology,2013,63:23-28.
参考文献 30
唐海明,肖小平,李超,等.冬季覆盖作物秸秆还田对双季稻田根际土壤微生物群落功能多样性的影响[J].生态学报,2018,38(18):6559-6569.
参考文献 31
李秀英,赵秉强,李絮花,等.不同施肥制度对土壤微生物的影响及其与土壤肥力的关系[J].中国农业科学,2005,38(8):1591-1599.
参考文献 32
Francioli D,Schulz E,Lentendu G,et al.Mineral vs.organic amendments:microbial community structure,activity and abundance of agriculturally relevant microbes are driven by longterm fertilization strategies[J].Frontiers in Microbiology,2016,7:289.
参考文献 33
Chen C,Zhang J,Lu M,et al.Microbial communities of an arable soil treated for 8 years with organic and inorganic fertilizers [J].Biology and Fertility of Soils,2016,52(4):1-13.
参考文献 34
Chapin F S,Matson P A,Vitousek P.Principles of terrestrial ecosystem ecology[M].New York:Springer Science & Business Media,2011.
参考文献 35
樊晓刚.耕作对土壤微生物多样性的影响[D].北京:中国农业科学院,2010.
参考文献 36
Yelle D J,Ralph J,Lu F C,et al.Evidence for cleavage of lignin by a brown rot basidiomycete[J].Environmental Microbiology,2008,10(7):1844-1849.
参考文献 37
Fret S D,Knorr M,Parrent J L,et al.Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests[J].Forest Ecology and Management,2004,196(1):159-171.
目录contents

    摘要

    为阐明秸秆、有机肥交替施用方式和施用量对黑土耕层理化特性及细菌、真菌群落结构的影响,于 2017 ~ 2018 年,设“有机肥→秸秆”(AB)、“秸秆→有机肥”(BA)两种施用模式,每种模式下设 3 个施用量 (有机肥 15000、30000、45000 kg/hm2 ;秸秆 9000、12000、15000 kg/hm2 ),不施秸秆、有机肥为对照(CK),共 7 个处理,研究了土壤含水量、温度、容重、紧实度、粒级、pH、电导率变化,应用高通量测序技术分析了玉米根际土壤细菌、真菌群落变化特征。结果表明:秸秆、有机肥交替施用可降低 0 ~ 20 cm 土层土壤容重、紧实度, 且 AB 模式优于 BA 模式。AB 模式可显著降低 0 ~ 20 cm 土层土壤温度,BA 呈相反规律。秸秆、有机肥交替施用后可改善土壤团聚体状况,降低≥ 0.25 mm 土壤大团聚体含量,优化土壤物理结构。秸秆、有机肥交替施用,中等施用量处理显著降低土壤真菌群落多样性,其中 AB 模式显著影响土壤微生物群落结构,且随施用量增加,处理间差异逐渐增大。有机肥、秸秆交替施用,土壤容重、紧实度、pH 是影响土壤细菌群落的主要因子,而真菌受土壤温度、pH、紧实度影响较大。两种模式下各处理较 CK 均可提高变形菌门、Saccharibacteria、拟杆菌门相对丰度,降低硝化螺旋菌门相对丰度,AB 模式表现最佳;真菌方面,AB 模式下各处理较 CK 提高担子菌门相对丰度,降低子囊菌门相对丰度。同时,研究表明提高有机肥、秸秆施用量可提高被孢霉门相对丰度。

    Abstract

    This paper is to clarify the effects of straw and organic fertilizer with alternate application method and amount on black soil physical and chemical characteristics and the community structure of bacteria and fungi.In 2017 ~ 2018,“Organic fertilizer → Straw”(AB),“Straw → Organic fertilizer”(BA)mode were designed,each mode consisted of three gradients (organic fertilizer 15000,30000,45000 kg/hm2 ;straw 9000,12000,15000 kg/hm2 ),no straw,organic fertilizer as the control(CK),to a total of 7 treatments,to research the changes of soil moisture content,temperature,density, compactness,graded,pH,EC.The maize rhizosphere bacteria and fungi flora characteristics was analyzed using high-throughput sequencing technology.The results showed that:alternation straw and organic fertilizer reduced the bulk density and soil compactness of 0 ~ 20 cm soil layer,and the AB model was better than the BA model.The AB model significantly reduces 0 ~ 20 cm soil layer temperature,while the BA model increased 0 ~ 20 cm soil layer temperature.Straw and organic fertilizer could be used alternately to improve the condition of soil aggregates,reduce the content of large aggregates in soil ≥ 0.25 mm,and optimize the physical structure of soil.The diversity of soil fungal community was significantly reduced by the alternate application of straw and organic fertilizer at the medium amount.The application patterns of organic fertilizer and straw significantly affected the structure of soil microbial community.Soil bulk density,compactness and pH were the main factors affecting the soil bacterial community under the alternate application of organic fertilizer and straw,while fungi were greatly affected by soil temperature,pH and compactness.Compared with CK,each treatment improved the relative abundance of Proteobacteria,Saccharinbacteria and Bacteroidetes,reduced the relative abundance of Nitrospirae,and the AB model had the best performance.In terms of fungi,the relative abundance of Basidiomycetes was increased and the relative abundance of Ascomycetes was decreased by AB treatments compared with CK treatments.At the same time,studies have shown that increasing the application amount of organic fertilizer and straw can increase the relative abundance of Mortierellomycota.

    关键词

    秸秆有机肥黑土细菌真菌群落结构

  • 东北黑土区是我国重要商品粮基地[1],由于过度开垦,加之缺乏保护,导致黑土耕层变薄、变硬等问题加剧,严重制约了黑土区农业的可持续发展[2-5]。秸秆、有机肥是优质生物质资源,参与土壤中碳、氮循环的关键过程[6]。施用秸秆、有机肥能够改善土壤结构、促进养分循环利用[7-9]。微生物是秸秆、有机肥的分解者,主导土壤中各种生化过程[10]。土壤各项物理指标和微生物在有机质分解和养分循环中起重要作用,是评价土壤质量的重要指标[11-13]。王冲等[14]研究表明,连续施用玉米秸秆较不施处理降低黑土0~10cm土层容重,提高0~10cm土层含水量、0~20cm土层电导率。江恒等[15]研究表明,单施有机肥、化肥和秸秆混施较不施处理降低黑土0~20cm土层土壤容重、增加孔隙度、提高饱和含水量和田间持水量。Malhi等[16]在黑钙土施用氮肥和秸秆还田可增加土壤微生物量碳和有机质含量。高学振等[17]通过秸秆和有机肥单施、混施与不施用处理对比发现,添加秸秆可显著提高黑土土壤微生物量碳、总磷脂脂肪酸含量及细菌、真菌数量,而有机肥对上述指标影响不显著。刘晶鑫等[18]研究发现,有机肥单施、有机肥与化肥混施较不施肥处理提高黑土0~40cm土层土壤微生物群落功能丰富度和多样性。Sun等[19-20]发现,施用秸秆、有机肥可提高细菌、真菌群落结构多样性和丰富度,有机肥处理效果优于秸秆,且pH对细菌群落结构影响较大。综合前人研究发现,目前研究均集中于有机肥、秸秆单施和混施对土壤理化性状和微生物群落影响方面,但秸秆、有机肥年际间交替施用对黑土物理性状和细菌、真菌群落结构的影响未见报道,环境因子与细菌、真菌群落结构相关关系仍不明确。本研究利用高通量测序技术,对秸秆→有机肥、有机肥→秸秆方式下不同秸秆、有机肥施用量对土壤物理特性,细菌、真菌群落结构影响进行分析,明确物理特性与细菌真菌群落结构的相关关系,为我国黑土区秸秆、有机肥科学利用、提高黑土可持续生产能力提供依据。

  • 1 材料与方法

  • 1.1 试验地概况

  • 试验于2017~2018年在内蒙古扎赉特旗农业科技示范园区(46°45′8.1″N,122°47′2.76″E)进行,该地区属温带大陆性季风气候,年平均气温4℃,年平均日照时数2855h,年平均降水量400mm,年有效积温2600℃左右,无霜期110~155d,年蒸发量1645mm,土壤类型为黑土。试验地土壤基础性状见表1,试验期间降水量和气温变化见图1。

  • 表1 试验地土壤基础性状

  • 图1 试验期间降雨量和气温变化

  • 1.2 试验设计

  • 供试作物:玉米(恒育498);施用材料:玉米压缩秸秆(秸秆颗粒机压缩成直径0.7cm、长度3~5cm、含水率10%、密度1.25g/cm3 的圆柱体)、腐熟有机肥、尿素(N 46%)、磷酸二铵(N 18%、P2O5 46%)。试验设“有机肥→秸秆”、“秸秆→有机肥”两种交替施用模式,每种模式下有机肥、秸秆设3个施用量,不施秸秆、有机肥为对照,共7个处理,具体方案见表2。小区面积4.55m×10m=45.5m2,随机区组设计,重复3次。播前30d将秸秆、有机肥施入小区,随即深翻、旋耕。 5月6日机播,播量22.5kg/hm2,行距65cm,株距25cm,保苗数60000株/hm2。基施尿素150kg/hm2、磷酸二铵225kg/hm2,不追肥。2017年5月26日、7月13日各灌水1次,灌水量900m3/hm2,2018年不灌水,10月10日收获。

  • 表2 各处理实施方案

  • 1.3 测定指标与方法

  • 1.3.1 土样采集与分析

  • 2018年8月20日,使用TZS-TCW土壤环境测定仪测定0~10、10~20cm土层土壤含水量、温度;使用SC900数显式土壤紧实度仪测定0~20cm土层土壤紧实度;使用环刀法测定0~10、 10~20cm土层土壤容重[21];采用对角线法钻取0~10、10~20cm土层土壤样品,装于无菌袋中置保温箱内运回实验室测定物理指标;选取5点,每点选5株长势一致的植株,将根系挖出,抖下附着土壤,用毛刷收集根际土,混匀过1mm筛,装入无菌袋冷藏,测定土壤微生物群落结构。使用Endecotts Limited筛分仪筛分测定土壤团粒结构; 使用OHAUS 3100pH仪测定土壤pH值,OHAUS 3100C电导率仪测定电导率[22]

  • 1.3.2 土壤微生物DNA提取

  • 使用PowerSoil® DNA Isolation Kit土壤DNA提取试剂盒(Mo Bio Laboratories)从样本中提取细菌总DNA,于-80℃下储存。

  • 1.3.3 DNA扩增及测序

  • 使用Barcode特异引物,New England Biolabs公司Phusion® High-Fidelity PCR Master Mix with GC Buffer进行PCR。正向引物(5’-ACTCCTACGGGA GGCAGCA-3’)、反向引物(5’-GGACTACHVGGG TWTCTAAT-3’),结合适配序列和条形码序列扩增细菌16S rRNA基因的V3-V4区;使用正向引物(5’-CTTGGTCATTTAGAGGAAGTAA-3’)、反向引物(5’-GCTGCGTTCTTCATCGATGC-3’),结合适配序列和条形码序列扩增真菌ITS1区。PCR产物经磁珠纯化,用Quant-iTTM dsDNA HS试剂对所有的PCR产物进行定量。使用Illumina Hiseq 2500平台(2×250对末端)对纯化的汇集样本进行基因的高通量测序分析。

  • 1.4 数据处理分析

  • 基于OTU分析结果,采用RDP classifier 2.12对97%相似度水平的OTU代表序列进行分类学分析; 使用Mothur软件计算各样品的Alpha多样性指数; 采用R的vegan软件包进行主坐标分析(P-CoA)、冗余分析(RDA);使用SAS 9.0进行方差分析。

  • 2 结果与分析

  • 2.1 不同处理对土壤理化特性的影响

  • 如图2所示,高施用量AB与低施用量BA处理,均可降低0~10cm土层土壤含水量及pH,使表土向干旱和酸化方向发展。BA处理能够显著提高0~10cm土层土壤温度(除JT4处理外)及10~20cm土层土壤电导率,且随施用量增加,温度升高,高施用量处理增温效果显著,电导率过高可能会形成反渗透压,将根系中的水分置换出来,导致根系生理性缺水。

  • 如图3所示,两种交替方式均能降低0~20cm土层土壤紧实度,低施用量AB与中等施用量BA处理显著低于其他处理,表明先施有机肥、后施秸秆时,施用量不宜过大;先施秸秆、后施有机肥时,施用量可适当提高,两者均有利于紧实度降低。<2mm土壤团聚体结合矿物和有机碳簇,是微生物活跃区域。由图3可见,BA模式下低施用量可显著增加<2mm土壤团聚体比例,尤其是0.25mm左右水稳性团聚体数量,从而改变微生物生存环境。两种交替方式均能降低0~20cm土层土壤容重,且均随施用量增加而降低;其中,AB模式下各处理对10~20cm土层土壤容重作用显著,BA模式下各处理对0~10cm土层土壤容重作用明显;两种交替方式对表层土壤结构影响不一致,前者更利于创造“上实下虚”的优良耕层结构。

  • 图2 不同处理对0~20cm土层土壤环境因子的影响

  • 注:各小图中不同小写字母表示不同处理同一土层差异显著(P<0.05)。下同。

  • 图3 不同处理对0~20cm土层土壤结构特性的影响

  • 2.2 微生物群落Alpha多样性分析

  • 由表3可知,两种模式下各处理土壤细菌群落Chao1和ACE指数均低于CK,丰富度降低,细菌总数减少;BA模式下,各处理土壤细菌群落香浓指数提高,但较CK差异不显著,群落多样性小幅增加。两种模式下,真菌群落Chao1(除JT3处理) 和ACE指数均高于CK,丰富度提高,真菌总数增加;各处理真菌群落香浓指数均低于CK,真菌群落多样性降低,其中JT2、JT5较CK降幅显著,分别为14.32%和14.55%。秸秆、有机肥可腐熟分解为根际微生物活动所需底物,促进土壤微生物繁殖,进而提高黑土玉米根际土壤细菌群落多样性和真菌群落丰富度。

  • 2.3 土壤微生物群落结构组成

  • 由图4可知,按照相对丰度>0.1%为标准划分优势群落[23],各处理土壤微生物群落中,优势细菌类群依次为变形菌门(Proteobacteria)(41.63%~48.34%)、酸杆菌门(Acidobacteria)(15.27%~21.19%)、放线菌门(Actinobacteria)(9.00%~14.09%)、绿弯菌门(Chloroflexi)(5.23%~8.07%)、芽单胞菌门(Gemmatimonadetes)(5.04%~7.51%)、拟杆菌门(Bacteroidetes)(5.52%~7.04%)、疣微菌门(Verrucomicrobia)(1.90%~2.33%)、硝化螺旋菌门(Nitrospirae)(1.34%~2.29%)、Saccharibacteria(0.41%~0.60%)、装甲菌门(Armatimonadetes)(0.28%~0.35%)、绿菌门(Chlorobi)(0.20%~0.28%)、浮霉菌门(Planctomycetes)(0.19%~0.27%)、厚壁菌门(Firmicutes)(0.06%~0.18%);优势真菌类群依次为子囊菌门(Ascomycota)(58.73%~76.85%)、担子菌门(Basidiomycota)(5.64%~29.00%)、被孢霉门(Mortierellomycota)(3.14%~14.89%)、壶菌门(Chytridiomycota)(0.31%~2.42%)、Aphelidiomycota(0.05%~0.20%)。

  • 表3 土壤样品测序数据统计及Alpha多样性

  • 注:表中同列小写字母表示不同处理间细菌(真菌)差异显著(P<0.05)。

  • 图4 各处理土壤微生物门水平群落结构

  • 2.4 土壤微生物群落差异性

  • 由图4可知,AB、BA模式下各处理细菌群落中变形菌门、拟杆菌门、Saccharibacteria、厚壁菌门相对丰度较CK提高,其中JT3增幅最大,分别较CK提高16.12%、27.57%、45.65%和196.53%。各处理硝化螺旋菌门相对丰度较CK降低,JT3处理降幅最大,达41.29%;除JT6、JT5外,各处理酸杆菌门、芽单胞菌门、浮霉菌门、装甲菌门相对丰度较CK降低;随有机肥、秸秆施用量增加,两种模式下厚壁菌门相对丰度均呈先降低后升高趋势。AB各处理,随施用量增加变形菌门、拟杆菌门相对丰度逐渐增加,硝化螺旋菌门降低;BA各处理,随施用量增加变形菌门相对丰度先增加后降低,Saccharibacteria升高。AB、BA模式下,低施用量处理被孢霉门、Aphelidiomycota相对丰度较CK降低,高施用量处理被孢霉门、Aphelidiomycota相对丰度较CK增加;JT2降幅最大(58.57%), JT6增幅最大(81.50%)。除JT5外,各处理真菌群落中担子菌门相对丰度较CK提高;除JT4外,各处理子囊菌门相对丰度较CK降低,JT3处理降幅最大,为21.01%。

  • 属水平TOP 20中( 图5), 优势细菌属为: 交替赤杆菌属(Altererythrobacter)、苔藓杆菌属(Bryobacter)、德沃斯氏菌(Devosia)、H16、溶杆菌属(Lysobacter)、 硝化螺旋菌属(Nitrospira)、Pseudarthrobacter、RB41、鞘氨醇单胞菌属(Sphingomonas)。各处理较CK提高交替赤杆和溶杆菌属相对丰度,BA模式增幅优于AB模式,且随施用量增加呈先升高后降低趋势。各处理硝化螺旋菌属相对丰度较CK降低,随施用量增加两模式下各处理降幅分别呈逐渐升高和先升高后降低趋势,JT3处理降幅最高,达41.18%。

  • 图5 各处理土壤微生物属水平TOP 20群落结构

  • 属水平TOP 20真菌群落,除JT5外,各处理链格孢菌属(Alternaria)相对丰度较CK提高,低施用量下平脐蠕孢菌属(Bipolaris)相对丰度较CK提高,高施用量则降低。AB模式各处理毛壳菌属(Chaetomium)较CK降低,BA模式各处理则提高。各处理枝孢菌属(Cladosporium)相对丰富较CK提高,除JT2、JT3外,各处理锥毛壳菌属(Coniochaeta)相对丰度较CK降低。

  • 2.5 各处理微生物群落PCoA分析

  • 由图6可知,两个主成分共解释细菌群落71.27%的方差变异,CK和JT6位于第Ⅰ、Ⅱ象限,JT2、JT3分布于Ⅲ、Ⅳ象限。高施用量处理(JT3、JT6)土壤细菌群落结构相似性较低,施用量降低后,秸秆与有机肥处理间相似性提高。JT3与CK相似性低于JT6,表明AB模式对根际土壤细菌群落结构影响大于BA模式。真菌方面两主成分共解释了22.58%的方差变异,CK位于Ⅲ、Ⅳ象限,JT1位于Ⅰ、Ⅱ象限,在第二坐标轴上CK与其他处理出现显著的分离。

  • 图6 基于weighted unifrac距离的土壤微生物群落PCoA分析

  • 2.6 微生物群落与土壤物理特性的关系

  • 由图7可知,通过RDA分析,两排序轴解释细菌31.08%的变异,土壤紧实度、容重、 pH对土壤细菌群落结构影响最大。变形菌门、 Saccharibacteria、拟杆菌门与土壤含水量、电导率、 pH呈正相关,与土壤紧实度、容重、温度、粒级呈负相关,酸杆菌门、硝化螺旋菌门、绿弯菌门、芽单胞菌门规律与上述菌门相反。放线菌门、疣微菌门与土壤温度、紧实度、容重、粒级、含水量呈正相关,与电导率、pH呈负相关。装甲菌门与土壤pH、电导率、温度、紧实度呈正相关,与容重、粒级、含水量呈负相关。通过RDA分析,两排序轴共解释真菌35.13%的变异,温度、pH、紧实度对土壤真菌群落结构影响最大。壶菌门、子囊菌门与pH、电导率、温度、紧实度、容重、粒级呈正相关,与含水量呈负相关,壶菌门还与容重、粒级、含水量呈负相关。被孢菌门和土壤温度、紧实度、 pH呈正相关,与电导率、粒级、含水量、容重呈负相关。担子菌门与土壤含水量、粒级、容重呈正相关,与电导率、紧实度、温度、pH呈负相关。

  • 图7 土壤微生物群落结构与理化性状的RDA分析

  • 注:Wat土壤含水量;EC土壤电导率;Tem土壤温度;Par土壤紧实度;Bul土壤容重;Com土壤粒级。

  • 3 讨论与结论

  • 3.1 秸秆有机肥交替施用对土壤理化指标的影响

  • Zhang等[24]研究表明,有机肥、秸秆覆盖处理能显著提高表层土壤含水量,降低土壤容重。郝小雨等[25]研究表明,长期单施有机肥较单施化肥处理可显著降低0~20cm土层容重,提高0~20cm土层总孔隙度。王冲等[14]研究发现,施用秸秆较不施用处理可显著提高黑土0~10cm土层含水量,降低其容重,提高0~20cm土层电导率。本试验研究表明,秸秆、有机肥交替施用可降低0~20cm土层容重、紧实度,与前人研究结果一致。同时,进一步表明,AB、BA模式下土壤各项指标均优于秸秆、有机肥连续单施处理。高施用量AB与低施用量BA各处理,均可降低0~10cm土层土壤含水量及pH,这是对前人研究结果的进一步完善和补充。大多数微生物生存于土壤团聚体群落中,与根系、有机质共同作用完成养分循环。研究发现,BA模式下各处理≥ 0.25mm大团聚体含量进一步增加,土壤物理结构得到进一步优化。由此可见,AB、BA模式下,耕层土壤含水量、pH、电导率、容重变异较大,各指标在0~10、10~20cm土层间表现不一致。宁川川等[26]研究表明有机肥施入土壤后首先矿质化,将有机物分解为CO2、H2O和矿物质养分,随着腐殖化过程产生大量腐殖质,改善土壤理化性状,从而增强土壤保水保肥的能力,提高土壤养分和水分的有效性。杨艳华等[27]研究认为秸秆含有纤维素、半纤维素、木质素等含碳化合物,在微生物的作用下进行分解,大部分被转化为CO2 释放至大气中,剩余的碳组分经微生物同化后进入土壤有机碳库,分解释放出的C、N能够改变土壤有机质含量以及理化性质。由此可见,AB、BA模式,即秸秆、有机肥施用顺序使土壤基础养分状况及土壤结构产生差异,导致交替过程中各项指标发生变化。

  • 3.2 秸秆有机肥交替施用对细菌群落Alpha多样性影响

  • 有机肥、秸秆还田为土壤微生物提供代谢所需养料,有利于提高土壤微生物多样性与丰富度[28-31]。 Francioli等[32]、Chen等[33] 研究发现,有机肥可显著提高土壤细菌群落多样性,但对真菌群落多样性影响不显著,这与本研究结果不同,本研究中AB、BA模式下各处理细菌群落中变形菌门、拟杆菌门、Saccharibacteria、厚壁菌门相对丰度提高,而硝化螺旋菌门相对丰度降低;AB模式下各处理酸杆菌门、芽单胞菌门、浮霉菌门、装甲菌门相对丰度较CK降低,处理间表现出施用量与交替方式两方面差异性。陆地生态系统中,植物残体的最初分解者主要为真菌[34],土壤中未腐解的作物残体数量增加,有利于提高真菌丰富度。研究表明土壤微生物直接参与还田秸秆的碳转化与分配过程,微生物的组成、多样性及活性是驱动秸秆碳转化的内在动力,秸秆碳同化增加有机质和土壤肥力,为土壤微生物和酶提供碳源、氮源、能量和结合位点,改善土壤微生态环境,促进微生物生长和繁殖[26-27]。由于外源生物质投入,打破原有微生物食物链平衡,影响部分菌群竞争优势,进而可能改变土壤细菌、真菌多样性。

  • 3.3 秸秆有机肥交替施用对细菌群落结构的影响

  • 有机肥、秸秆交替还田显著影响土壤真菌、细菌群落结构,不同交替方式显著影响细菌群落结构。结合RDA分析可知,各处理较CK提高变形菌门、Saccharibacteria、拟杆菌门相对丰度,降低硝化螺旋菌门相对丰度,AB处理增幅优于BA处理,这可能是有机肥、秸秆还田改变土壤养分平衡,进而影响土壤微生物群落。pH与变形菌门、 Saccharibacteria、拟杆菌门呈正相关,与酸杆菌门、硝化螺旋菌门呈负相关。AB各处理较CK提高担子菌门相对丰度,降低子囊菌门相对丰度。土壤中,子囊菌门和担子菌门是真菌分解者的重要组成部分,而担子菌门较子囊菌门具有更高的木质纤维素分解能力[35-37],可能是秸秆还田显著提高土壤中纤维素、木质素含量,从而提升了担子菌门的竞争优势、抑制了子囊菌门的生理活性。两模式低施用量处理与高施用量处理对被孢霉门相对丰度影响不同,低施用量各处理较CK降低土壤pH,提高土壤含水量,进而降低该菌门相对丰度,而高施用量处理高于CK,这可能是土壤有机碳、氮含量产生差异导致的。溶杆菌属具有生防细菌的作用,秸秆、有机肥施用各处理较CK提高该菌属相对丰度。硝化螺旋菌属作为硝化细菌,可将亚硝酸盐氧化成硝酸盐,各处理较CK降低该菌属相对丰度,随施用量增加,两模式各处理降幅分别呈逐渐升高和先升高后降低趋势,硝化作用较弱的土壤有机肥、秸秆施用量不宜过大。真菌方面,AB模式较CK提高链格孢菌属,降低毛壳菌属相对丰度。链格孢菌属含有多种植物病源菌,毛壳菌属是一类具有生防能力的真菌,与秸秆、有机肥不还田相比, AB模式不利于预防真菌病害。BA模式各处理较CK提高毛壳菌属相对丰度,在真菌病害防治方面优于AB模式。

  • 参考文献

    • [1] Liu X B,Zhang X Y,Wang Y X,et al.Soil degradation:A problem threatening the sustainable development of agriculture in Northeast China[J].Plant Soil Environment,2010,56(2):87-97.

    • [2] Campbell C A,Zentner R P,Basnyat P,et al.Water use efficiency and water and nitrate distribution in soil in the semiarid prairie:Effect of crop type over 21 years[J].Canadian Journal of Plant Science,2007,87:815-827.

    • [3] Wen D Z,Liang W J.Soil fertility quality and agricultural sustainable development in the black soil region of northeast China [J].Environment,Development and Sustainability,2001,3:31-43.

    • [4] Guo J H,Liu X J,Zhang Y,et al.Significant acidification in major Chinese croplands[J].Science,2010,327:1008-1010.

    • [5] 张博文,杨彦明,李金龙,等.连续深松对黑土水热酶特性及细菌群落的影响[J].生态学杂志,2018,37(11):3323-3332.

    • [6] Randlett D L,Zak D R,Pregitzer K S,et al.Elevated atmospheric carbon dioxide and leaf litter chemistry:influences on microbial respiration and net nitrogen mineralization[J].Soil Science Society of America Journal,1996,60(5):1571-1577.

    • [7] 赵其国,钱海燕.低碳经济与农业发展思考[J].生态环境学报,2009,18(5):1609-1614.

    • [8] Liu X R,Re J Q,Zhang Q W,et al.Long-term effects of biochar addition and straw return on N2O fluxes and the related functional gene abundances under wheat-maize rotation system in the North China Plain[J].Applied Soil Ecology,2018,135:44-55.

    • [9] Sun L Y,Song F B,Liu S Q,et al.Integrated agricultural management practice improves soil quality in Northeast China [J].Archives of Agronomy and Soil Science,2018,64(14):1932-1943.

    • [10] 萨如拉,高聚林,于晓芳,等.玉米秸秆深翻还田对土壤有益微生物和土壤酶活性的影响[J].干旱区资源与环境,2014,28(7):138-143.

    • [11] Brussaard L,Ruiter P C,Brown G G.Soil biodiversity for agricultural sustainability[J].Agriculture,Ecosystems & Environment,2007,121(3):233-244.

    • [12] Stenberg B.Monitoring soil quality of arable land:Microbiological indicators[J].Acta Agriculturae Scandinavica,Section B-Plant Soil Science,1999,49(1):1-24.

    • [13] Chen X F,Lin M,Kuzyakov Y,et al.Incorporation of rice straw carbon into dissolved organic matter and microbial biomass along a 100-year paddy soil chronosequence[J].Applied Soil Ecology,2018,130:84-90.

    • [14] 王冲,王玉峰,谷学佳,等.连续施用生物炭对黑土基础理化性质的影响[J].土壤通报,2018,49(2):428-434.

    • [15] 江恒,邹文秀,韩晓增,等.土地利用方式和施肥管理对黑土物理性质的影响[J].生态与农村环境学报,2013,29(5):599-604.

    • [16] Malhi S S,Nyborg M,Goddard T,et al.Long-term tillage,straw management,and nitrogen fertilization effects on organic matter and mineralizable carbon and nitrogen in a black chernozem soil[J].Communications in Soil Science and Plant Analysis,2012,43:2679-2690.

    • [17] 高学振,张丛志,张佳宝,等.生物炭、秸秆和有机肥对砂姜黑土改性效果的对比研究[J].土壤,2016,48(3):468-474.

    • [18] 刘晶鑫,迟凤琴,许修宏,等.长期施肥对农田黑土微生物群落功能多样性的影响[J].应用生态学报,2015,26(10):3066-3072.

    • [19] Sun R B,Zhang X X,Guo X S,et al.Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw[J].Soil Biology & Biochemistry,2015,88:9-18.

    • [20] Sun R B,Dsouza M,Gilbert J A,et al.Fungal community composition in soils subjected to long-term chemical fertilization is most influenced by the type of organic matter[J].Environmental Microbiology,2016,18:5137-5150.

    • [21] 依艳丽.土壤物理研究法[M].北京:北京大学出版社,2009.

    • [22] 曾路生,崔德杰,李俊良,等.寿光大棚菜地土壤呼吸强度、酶活性、pH 与EC的变化研究[J].植物营养与肥料学报,2009,15(4):865-870.

    • [23] Lynch M D J,Neufeld J D.Ecology and exploration of the rare biosphere[J].Nature Reviews Microbiology,2015,13(4):217-229.

    • [24] Zhang J B,Yang J S,Yao R J,et al.The effects of farmyard manure and mulch on soil physical properties in a reclaimed coastal tidal flat salt-affected soil[J].Journal of Integrative Agriculture,2014,13(8):1782-1790.

    • [25] 郝小雨,马星竹,周宝库.长期单施有机肥黑土大豆产量和土壤理化性质演变特征[J].土壤与作物,2018,7(2):222-228.

    • [26] 宁川川,王建武,蔡昆争.有机肥对土壤肥力和土壤环境质量的影响研究进展[J].生态环境学报,2016,25(1):175-181.

    • [27] 杨艳华,苏瑶,何振超,等.还田秸秆碳在土壤中的转化分配及对土壤有机碳库影响的研究进展[J].应用生态学报,2019,30(2):668-676.

    • [28] Doan T T,Bouvier C,Bettarel Y,et al.Influence of buffalo manure,compost,vermicompost and biochar amendments on bacterial and viral communities in soil and adjacent aquatic systems[J].Applied Soil Ecology,2014,73:78-86.

    • [29] Sradnick A,Murugan R,Oltmanns M,et al.Changes in functional diversity of the soil microbial community in a heterogeneous sandy soil after long-term fertilization with cattle manure and mineral fertilizer[J].Applied Soil Ecology,2013,63:23-28.

    • [30] 唐海明,肖小平,李超,等.冬季覆盖作物秸秆还田对双季稻田根际土壤微生物群落功能多样性的影响[J].生态学报,2018,38(18):6559-6569.

    • [31] 李秀英,赵秉强,李絮花,等.不同施肥制度对土壤微生物的影响及其与土壤肥力的关系[J].中国农业科学,2005,38(8):1591-1599.

    • [32] Francioli D,Schulz E,Lentendu G,et al.Mineral vs.organic amendments:microbial community structure,activity and abundance of agriculturally relevant microbes are driven by longterm fertilization strategies[J].Frontiers in Microbiology,2016,7:289.

    • [33] Chen C,Zhang J,Lu M,et al.Microbial communities of an arable soil treated for 8 years with organic and inorganic fertilizers [J].Biology and Fertility of Soils,2016,52(4):1-13.

    • [34] Chapin F S,Matson P A,Vitousek P.Principles of terrestrial ecosystem ecology[M].New York:Springer Science & Business Media,2011.

    • [35] 樊晓刚.耕作对土壤微生物多样性的影响[D].北京:中国农业科学院,2010.

    • [36] Yelle D J,Ralph J,Lu F C,et al.Evidence for cleavage of lignin by a brown rot basidiomycete[J].Environmental Microbiology,2008,10(7):1844-1849.

    • [37] Fret S D,Knorr M,Parrent J L,et al.Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests[J].Forest Ecology and Management,2004,196(1):159-171.

  • 参考文献

    • [1] Liu X B,Zhang X Y,Wang Y X,et al.Soil degradation:A problem threatening the sustainable development of agriculture in Northeast China[J].Plant Soil Environment,2010,56(2):87-97.

    • [2] Campbell C A,Zentner R P,Basnyat P,et al.Water use efficiency and water and nitrate distribution in soil in the semiarid prairie:Effect of crop type over 21 years[J].Canadian Journal of Plant Science,2007,87:815-827.

    • [3] Wen D Z,Liang W J.Soil fertility quality and agricultural sustainable development in the black soil region of northeast China [J].Environment,Development and Sustainability,2001,3:31-43.

    • [4] Guo J H,Liu X J,Zhang Y,et al.Significant acidification in major Chinese croplands[J].Science,2010,327:1008-1010.

    • [5] 张博文,杨彦明,李金龙,等.连续深松对黑土水热酶特性及细菌群落的影响[J].生态学杂志,2018,37(11):3323-3332.

    • [6] Randlett D L,Zak D R,Pregitzer K S,et al.Elevated atmospheric carbon dioxide and leaf litter chemistry:influences on microbial respiration and net nitrogen mineralization[J].Soil Science Society of America Journal,1996,60(5):1571-1577.

    • [7] 赵其国,钱海燕.低碳经济与农业发展思考[J].生态环境学报,2009,18(5):1609-1614.

    • [8] Liu X R,Re J Q,Zhang Q W,et al.Long-term effects of biochar addition and straw return on N2O fluxes and the related functional gene abundances under wheat-maize rotation system in the North China Plain[J].Applied Soil Ecology,2018,135:44-55.

    • [9] Sun L Y,Song F B,Liu S Q,et al.Integrated agricultural management practice improves soil quality in Northeast China [J].Archives of Agronomy and Soil Science,2018,64(14):1932-1943.

    • [10] 萨如拉,高聚林,于晓芳,等.玉米秸秆深翻还田对土壤有益微生物和土壤酶活性的影响[J].干旱区资源与环境,2014,28(7):138-143.

    • [11] Brussaard L,Ruiter P C,Brown G G.Soil biodiversity for agricultural sustainability[J].Agriculture,Ecosystems & Environment,2007,121(3):233-244.

    • [12] Stenberg B.Monitoring soil quality of arable land:Microbiological indicators[J].Acta Agriculturae Scandinavica,Section B-Plant Soil Science,1999,49(1):1-24.

    • [13] Chen X F,Lin M,Kuzyakov Y,et al.Incorporation of rice straw carbon into dissolved organic matter and microbial biomass along a 100-year paddy soil chronosequence[J].Applied Soil Ecology,2018,130:84-90.

    • [14] 王冲,王玉峰,谷学佳,等.连续施用生物炭对黑土基础理化性质的影响[J].土壤通报,2018,49(2):428-434.

    • [15] 江恒,邹文秀,韩晓增,等.土地利用方式和施肥管理对黑土物理性质的影响[J].生态与农村环境学报,2013,29(5):599-604.

    • [16] Malhi S S,Nyborg M,Goddard T,et al.Long-term tillage,straw management,and nitrogen fertilization effects on organic matter and mineralizable carbon and nitrogen in a black chernozem soil[J].Communications in Soil Science and Plant Analysis,2012,43:2679-2690.

    • [17] 高学振,张丛志,张佳宝,等.生物炭、秸秆和有机肥对砂姜黑土改性效果的对比研究[J].土壤,2016,48(3):468-474.

    • [18] 刘晶鑫,迟凤琴,许修宏,等.长期施肥对农田黑土微生物群落功能多样性的影响[J].应用生态学报,2015,26(10):3066-3072.

    • [19] Sun R B,Zhang X X,Guo X S,et al.Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw[J].Soil Biology & Biochemistry,2015,88:9-18.

    • [20] Sun R B,Dsouza M,Gilbert J A,et al.Fungal community composition in soils subjected to long-term chemical fertilization is most influenced by the type of organic matter[J].Environmental Microbiology,2016,18:5137-5150.

    • [21] 依艳丽.土壤物理研究法[M].北京:北京大学出版社,2009.

    • [22] 曾路生,崔德杰,李俊良,等.寿光大棚菜地土壤呼吸强度、酶活性、pH 与EC的变化研究[J].植物营养与肥料学报,2009,15(4):865-870.

    • [23] Lynch M D J,Neufeld J D.Ecology and exploration of the rare biosphere[J].Nature Reviews Microbiology,2015,13(4):217-229.

    • [24] Zhang J B,Yang J S,Yao R J,et al.The effects of farmyard manure and mulch on soil physical properties in a reclaimed coastal tidal flat salt-affected soil[J].Journal of Integrative Agriculture,2014,13(8):1782-1790.

    • [25] 郝小雨,马星竹,周宝库.长期单施有机肥黑土大豆产量和土壤理化性质演变特征[J].土壤与作物,2018,7(2):222-228.

    • [26] 宁川川,王建武,蔡昆争.有机肥对土壤肥力和土壤环境质量的影响研究进展[J].生态环境学报,2016,25(1):175-181.

    • [27] 杨艳华,苏瑶,何振超,等.还田秸秆碳在土壤中的转化分配及对土壤有机碳库影响的研究进展[J].应用生态学报,2019,30(2):668-676.

    • [28] Doan T T,Bouvier C,Bettarel Y,et al.Influence of buffalo manure,compost,vermicompost and biochar amendments on bacterial and viral communities in soil and adjacent aquatic systems[J].Applied Soil Ecology,2014,73:78-86.

    • [29] Sradnick A,Murugan R,Oltmanns M,et al.Changes in functional diversity of the soil microbial community in a heterogeneous sandy soil after long-term fertilization with cattle manure and mineral fertilizer[J].Applied Soil Ecology,2013,63:23-28.

    • [30] 唐海明,肖小平,李超,等.冬季覆盖作物秸秆还田对双季稻田根际土壤微生物群落功能多样性的影响[J].生态学报,2018,38(18):6559-6569.

    • [31] 李秀英,赵秉强,李絮花,等.不同施肥制度对土壤微生物的影响及其与土壤肥力的关系[J].中国农业科学,2005,38(8):1591-1599.

    • [32] Francioli D,Schulz E,Lentendu G,et al.Mineral vs.organic amendments:microbial community structure,activity and abundance of agriculturally relevant microbes are driven by longterm fertilization strategies[J].Frontiers in Microbiology,2016,7:289.

    • [33] Chen C,Zhang J,Lu M,et al.Microbial communities of an arable soil treated for 8 years with organic and inorganic fertilizers [J].Biology and Fertility of Soils,2016,52(4):1-13.

    • [34] Chapin F S,Matson P A,Vitousek P.Principles of terrestrial ecosystem ecology[M].New York:Springer Science & Business Media,2011.

    • [35] 樊晓刚.耕作对土壤微生物多样性的影响[D].北京:中国农业科学院,2010.

    • [36] Yelle D J,Ralph J,Lu F C,et al.Evidence for cleavage of lignin by a brown rot basidiomycete[J].Environmental Microbiology,2008,10(7):1844-1849.

    • [37] Fret S D,Knorr M,Parrent J L,et al.Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests[J].Forest Ecology and Management,2004,196(1):159-171.

  • 《中国土壤与肥料》招聘启事
    关闭