en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张霄羽(1995-),女,山西省太原市人,硕士研究生,研究方向为农业资源与环境遥感。E-mail:745499872@qq.com。

通讯作者:

姚艳敏,E-mail:yaoyanmin@caas.cn。

参考文献 1
窦森.土壤有机质[M].北京:科学出版社,2010.3-9.
参考文献 2
NY/T 1121.6—2006,土壤检测第6部分:土壤有机质的测定 [S].
参考文献 3
HJ 615—2011,土壤有机碳的测定重铬酸钾氧化-分光光度法[S].
参考文献 4
HJ 658—2013,土壤有机碳的测定燃烧氧化-滴定法[S].
参考文献 5
Rossel R A V,Walvoort D J J,Mcbratney A B,et al.Visible,near infrared,mid-infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties [J].Geoderma,2006,131(2):59-75.
参考文献 6
Nguyen T T,Janik L J,Raupach M.Diffuse reflectance infrared fourier transform(DRIFT)spectroscopy in soil studies[J]. Australian Journal of Soil Research,1991,29:49-67.
参考文献 7
Janik L J,Skjemstad J O.Characterization and analysis of soils using mid-infrared partial least squares.I.Correlations with XRF-determined major element composition[J].Australian Journal of Soil Research,1995,33(4):637-650.
参考文献 8
吴景贵,席时权,姜岩.红外光谱在土壤有机质研究中的应用[J].光谱学与光谱分析,1998,18(1):52-57.
参考文献 9
Mccarty G W,Reeves J B,Reeves V B,et al.Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement[J].Soil Science Society of America Journal,2002,66(2):640-646.
参考文献 10
Mccarty G W,Reeves J B.Comparison of near infrared and mid infrared diffuse reflectance spectroscopy for field-scale measurement of soil fertility parameters[J].Soil Science,2006,171(2):94-102.
参考文献 11
Reeves III J B.Near-versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis:Where are we and what needs to be done?[J].Geoderma,2010,158(1-2):3-14.
参考文献 12
Bellon-Maurel V,Mcbratney A.Near-infrared(NIR)and mid-infrared(MIR)spectroscopic techniques for assessing the amount of carbon stock in soils-Critical review and research perspectives[J].Soil Biology and Biochemistry,2011,43(7):1398-1410.
参考文献 13
曲楠,朱明超,窦森.近红外与中红外光谱技术在土壤分析中的应用[J].分析测试学报,2015,34(1):120-126.
参考文献 14
陈颂超,彭杰,纪文君,等.水稻土可见-近红外-中红外光谱特性与有机质预测研究[J].光谱学与光谱分析,2016,36(6):1712-1716.
参考文献 15
陈晨,李志伟,董大明.土壤养分的红外衰减全反射与漫反射光谱同步测量方法[J].光谱学与光谱分析,2017,37(11):3557-2561.
参考文献 16
Xia Y,Ugarte C M,Guan K,et al.Developing near-and mid-infrared spectroscopy analysis methods for rapid assessment of soil quality in Illinois[J].Soil Science Society of America Journal,2018,82(6):1415-1427.
参考文献 17
Hutengs C,Seidel M,Oertel F,et al.In situ and laboratory soil spectroscopy with portable visible-to-near infrared and mid-infrared instruments for the assessment of organic carbon in soils [J].Geoderma,2019,355:113900.
参考文献 18
Eisele A,Lau I,Hewson R,et al.Applicability of the thermal infrared spectral region for the prediction of soil properties across semi-arid agricultural landscapes[J].Remote Sensing,2012,4(11):3265-3286.
参考文献 19
Pascucci S,Casa R,Belviso C,et al.Estimation of soil organic carbon from airborne hyperspectral thermal infrared data:A case study[J].European Journal of Soil Science,2014,65(6):865-875.
参考文献 20
Condit H R.The spectral reflectance of American soils[J]. Photogrammetric Engineering,1970,36:955-966.
参考文献 21
徐彬彬,季耿善.土壤光谱反射特性研究及其应用[J].土壤学进展,1987(1):1-9.
参考文献 22
Stoner E R,Baumgardner M F.Characteristic variations in reflectance of surface soil[J].Soil Science Society of America Journal,1981,45:1161-1165.
参考文献 23
宋迪思,盛浩,周清,等.不同母质发育土壤的中红外吸收光谱特征[J].土壤通报,2016,47(1):1-7.
参考文献 24
Soriano-Disla J M,Janik L J,Viscarra Rossel R A,et al. The performance of visible,near-and mid-infrared reflectance spectroscopy for prediction of soil physical,chemical,and biological properties[J].Applied Spectroscopy Reviews,2014,49:139-186.
参考文献 25
Calderon F J,Reeves III J B,Collins H P,et al.Chemical differences in soil organic matter fractions determined by diffuse reflectance mid-infrared spectroscopy[J].Soil Science Society of America Journal,2011,75(2):568-579.
参考文献 26
Zimmermann M,Leifeld J,Fuhrer J.Quantifying soil organic carbon fractions by infrared-spectroscopy[J].Soil Biology and Biochemistry,2007,39:224-231.
参考文献 27
Ma F,Du C W,Zhou J M,et al.Investigation of soil properties using different techniques of mid-infrared spectroscopy[J]. European Journal of Soil Science,2019,70(1):96-106.
参考文献 28
Bornemann L,Welp G,Amelung W.Particulate organic matter at the field scale:rapid acquisition using mid-infrared spectroscopy[J].Soil Biology and Biochemistry,2010,74(4):1147-1156.
参考文献 29
Demya M S,Rasche F,Schulz E,et al.Use of specific peaks obtained by diffuse reflectance Fourier transform mid-infrared spectroscopy to study the composition of organic matter in a Haplic Chernozem[J].European Journal Soil Science,2012,63:189-199.
参考文献 30
Tivet F,de Moraes S,Lal J C,et al.Assessing humification and organic C compounds by laser-induced fluorescence and FTIR Spectroscopies under conventional and no-till management in Brazilian Oxisols[J].Geoderma,2013,207-208:71-81.
参考文献 31
Wijewardane N K,Ge Y F,Skye W,et al.Predicting physical and chemical properties of US soils with a mid-infrared reflectance spectral library[J].Soil Science Society of America Journal,2018,82(3):722-731.
参考文献 32
Minasny B,Mcbratney A B.Regression rules as a tool for predicting soil properties from infrared reflectance spectroscopy [J].Chemometrics & Intelligent Laboratory Systems,2008,94(1):72-79.
参考文献 33
Kamau-Rewe M,Rasche F,Cobo J G,et al.Generic prediction of soil organic carbon in alfisols using diffuse reflectance fourier-transform mid-infrared spectroscopy[J].Soil Science Society of America Journal,2011,75(6):2358-2360.
参考文献 34
Stumpe B,Weihermuller L,Marschner B.Sample preparation and selection for qualitative and quantitative analyses of soil organic carbon with mid-infrared reflectance spectroscopy[J]. European Journal of Soil Science,2011,62(6):849-862.
参考文献 35
Johnson J M,Vandamme E,Senthilkumar K,et al.Near-infrared,mid-infrared or combined diffuse reflectance spectroscopy for assessing soil fertility in rice fields in sub-Saharan Africa [J].Geoderma,2019,354:113840.
参考文献 36
Paul S S,Coops N C,Johnson M S,et al.Evaluating sampling efforts of standard laboratory analysis and mid-infrared spectroscopy for cost effective digital soil mapping at field scale [J].Geoderma,2019,354:113925.
参考文献 37
Deiss L,Margenot A J,Culman S W,et al.Tuning support vector machines regression models improves prediction accuracy of soil properties in MIR spectroscopy[J].Geoderma,2020,365:114227.
参考文献 38
Sanderman J,Savage K,Dangal S R S.Mid-infrared spectroscopy for prediction of soil health indicators in the United States[J]. Soil Science Society of America Journal,2020,84(5):252-261.
参考文献 39
Baldock J A,Hawke B,Sanderman J,et al.Predicting contents of carbon and its component fractions in Australian soils from diffuse reflectance mid-infrared spectra[J].Soil Research,2013,51(8):577-595.
参考文献 40
Baldock J A,Beare M H,Curtin D,et al.Stocks,composition and vulnerability to loss of soil organic carbon predicted using mid-infrared spectroscopy[J].Soil Research,2018,56(5):468-480.
参考文献 41
Albuquerque N,Meehan B,Hughes J,et al.Data for the determination of total carbon in biosolids using mid-infrared spectroscopy[J].Data in Brief,2020,30:105615.
参考文献 42
Grinand C,Barthes B G,Brunet D,et al.Prediction of soil organic and inorganic carbon contents at a national scale(France)using mid-infrared reflectance spectroscopy(MIRS)[J]. European Journal of Soil Science,2012,63:141-151.
参考文献 43
Ji W,Adamchuk V I,Biswas A,et al.Assessment of soil properties in situ using a prototype portable MIR spectrometer in two agricultural fields[J].Biosystems Engineering,2016,152:14-27.
参考文献 44
Ma rtínez-España R,Bueno-Crespo A,Soto J,et al. Developing an intelligent system for the prediction of soil properties with a portable mid-infrared instrument[J].Biosystems Engineering,2019,177:101-108.
参考文献 45
Hutengs C,Ludwig B,András J,et al.Comparison of portable and bench-top spectrometers for mid-infrared diffuse reflectance measurements of soils[J].Sensors,2018,18(4):993.
参考文献 46
Vohland M,Ludwig M,Thiele-Bruhn S,et al.Determination of soil properties with visible to near-and mid-infrared spectroscopy:Effects of spectral variable selection[J]. Geoderma,2014,223-225(1):88-96.
参考文献 47
Terra F S,Demattê J A M,Rossel R A V.Spectral libraries for quantitative analyses of tropical Brazilian soils:Comparing vis– NIR and mid-IR reflectance data[J].Geoderma,2015,255-256:81-93.
参考文献 48
Suzana R A,Söderström M,Eriksson J,et al.Determining soil properties in Amazonian Dark Earths by reflectance spectroscopy [J].Geoderma,2015,237:308-317.
参考文献 49
Allo M,Todoroff P,Jameux M,et al.Prediction of tropical volcanic soil organic carbon stocks by visible-near-and mid-infrared spectroscopy[J].Catena,2020,189:104452.
参考文献 50
Dong Y W,Yang S Q,Xu C Y,et al.Determination of soil parameters in apple-growing regions by near-and mid-infrared spectroscopy[J].Pedosphere,2011,21(5):591-602.
参考文献 51
Pirie A,Singh B,Islam K.Ultra-violet,visible,near-infrared,and mid-infrared diffuse reflectance spectroscopic techniques to predict several soil properties[J].Soil Research,2005,43(6):713-721.
参考文献 52
Knox N M,Grunwald S,McDowell M L,et al.Modelling soil carbon fractions with visible near-infrared(VNIR)and mid-infrared(MIR)spectroscopy[J].Geoderma,2015,239-240:229-239.
参考文献 53
Wartini N,Minasny B,Montazerdghaem M,et al.Convolutional neural network for simultaneous prediction of several soil properties using visible/near-infrared,mid-infrared,and their combined spectra[J].Geoderma,2019,352:251-267.
参考文献 54
Terra F S,Viscarra R R A,DemattêJ A M.Spectral fusion by outer product analysis(OPA)to improve predictions of soil organic C[J].Geoderma,2019,335:35-46.
参考文献 55
Wadoux J C,Padarian J,Minasny B.Multi-source data integration for soil mapping using deep learning[J].Soil,2019,5:107-119.
参考文献 56
Reeves III J,Smith D.The potential of mid-and near-infrared diffuse reflectance spectroscopy for determining major-and trace-element concentrations in soils from a geochemical survey of north America[J].Applied Geochemistry,2009,24:1472–1481.
参考文献 57
Le Guillou F,Wetterlind J,Viscarra Rossel R,et al.How does grinding affect the mid-infrared spectra of soil and their multivariate calibrations to texture and organic carbon?[J]. Soil Research,2015,53(8):913-921.
参考文献 58
Dhawale N M,Adamchuk V I,Prasher S O,et al.Proximal soil sensing of soil texture and organic matter with a prototype portable mid-infrared spectrometer[J].European Journal of Soil Science,2015,66(4):661-669.
参考文献 59
Seybold C A,Ferguson R,Wysocki D,et al.Application of mid-infrared spectroscopy in soil survey[J].Soil Science Society of America Journal,2019,83:1746-1759.
参考文献 60
KopakováV,Eyal B D,Nimrod C,et al.Modelling diverse soil attributes with visible to longwave infrared spectroscopy using PLSR employed by an automatic modelling engine[J].Remote Sensing,2017,9(2):1-21.
参考文献 61
Nocita M,Stevens A,Toth G,et al.Prediction of soil organic carbon content by diffuse reflectance spectroscopy using a local partial least square regression approach[J].Soil Biology & Biochemistry,2014,68:337-347.
参考文献 62
Yang H,Kuang B,Mouazen A M.Quantitative analysis of soil nitrogen and carbon at a farm scale using visible and near infrared spectroscopy coupled with wavelength reduction[J].European Journal of Soil Science,2012,63(3):410-420.
参考文献 63
Bartholomeus H M,Schaepman M E,Kooistra L,et al.Spectral reflectance based indices for soil organic carbon quantification [J].Geoderma,2008,145(1-2):28-36.
参考文献 64
Orr R,Mcbeath A V,Dieleman W I J,et al.Estimating organic carbon content of soil in Papua New Guinea using infrared spectroscopy[J].Soil Research,2017,55(8):735-742.
参考文献 65
Albuquerque N,Meehan B,Hughes J,et al.Determination of total carbon in biosolids using mid-infrared spectroscopy[J]. Science of the Total Environment,2019,698:134195.
目录contents

    摘要

    中红外光谱波段(2.5 ~ 25 µm)对土壤有机质内部分子振动高度敏感,基于中红外光谱技术的土壤有机质含量估测是土壤学科新兴的研究方向和热点。文章采用文献综述的方法,全面总结了土壤有机质含量中红外光谱估测方法的发展和应用,简述了中红外光谱响应与土壤有机质分子结构的相关性研究,对比分析了室内台式、 手持式和机载中红外光谱设备估测土壤有机质含量的优势和局限性,比较分析了中红外、近红外、可见光-近红外光谱及其光谱组合估测土壤有机质含量的模型精度和稳定性,总结分析了基于中红外光谱技术的土壤有机质含量建模方法研究进展,以及土样制备、光谱数学变换、敏感波段选择等前处理对土壤有机质含量估测精度的影响研究,最后提出了土壤有机质含量中红外光谱估测存在的问题及发展趋势,为土壤有机质含量的测定工作提供参考。

    Abstract

    The mid-infrared spectrum(2.5 ~ 25 µm)is highly sensitive to the internal molecular vibration of soil organic matter.The prediction of soil organic matter content based on mid-infrared spectroscopy technology is an emerging research direction and hotspot in soil science.The paper comprehensively summarizes the development and application of soil organic matter content prediction methods based on mid-infrared spectroscopy by means of literature review.Firstly,the paper briefly reviewed the research on the correlation between mid-infrared spectroscopy and soil organic matter molecular composition.The advantages and limitations of indoor desktop,handheld and airborne mid-infrared spectroscopy equipment for prediction of soil organic matter content,coupled with the accuracy and stability of mid-infrared,near-infrared,visible-near-infrared spectroscopy and their spectral combinations are compared and analyzed.Secondly,the paper summarizes and analyzes the research progress of soil organic matter content modeling methods based on mid-infrared spectroscopy,as well as the effects of pre-processing such as soil sample preparation,spectral mathematical transformation,and selection of sensitive bands on the accuracy of soil organic matter content prediction.Finally,the problems and development trends in the prediction of soil organic matter content based on mid-infrared spectroscopy are put forward in order to provide references for measurement of soil organic matter content.

  • 土壤有机质(SOM)是指土壤中的动物、植物及微生物残体不同分解与合成阶段的各种含碳有机化合物,具有提供作物养分、土壤保水保肥、土壤缓冲、促进土壤团粒结构形成等生物、化学和物理作用[1]。SOM含量是衡量土壤肥力高低的重要指标,也是进行耕地质量评价、土壤碳循环、土壤污染治理等研究的重要参数,快速准确地获得SOM含量对于保持和改善农田土壤质量、研究土壤气候碳库功能等方面具有重要意义。传统实验室SOM含量测定方法为重铬酸钾容量法(NY/T1121.6-2006)[2],土壤有机碳含量(SOC=SOM/1.724)测定方法为重铬酸钾氧化-分光光度法(HJ 615-2011)[3]、燃烧氧化-滴定法(HJ 658-2013)[4]等。这些方法测定的SOM或SOC含量精度较高,目前仍是土壤测土配方施肥的常规有效方法。但传统实验室测定法需要将土样从野外运到实验室,并需要使用化学试剂滴定,对于分析大量样本比较费时费力,也不能短时间内获取研究区域SOM含量空间分布信息。因此,发展准确、环保、快速、低成本的SOM含量定量分析方法已成为土壤科学的一个重要研究领域。

  • 中红外(MIR)光谱对SOM内部分子振动高度敏感,对土壤光谱反射或吸收有强烈的影响已为各国学者公认[5],基于MIR光谱技术快速获取SOM含量的研究,受到众多学者的青睐。20世纪80年代开始,MIR主要用于SOM结构分析,但由于SOM的复杂性以及当时使用的色散型仪器本身分辨率、信噪比和灵敏度等的限制,MIR应用并未使SOM含量估测的研究取得大的进展[6]。20世纪90年代起,随着漫反射傅里叶变换红外光谱仪(DRIFT)技术的完善,MIR漫反射技术在土壤方面的研究兴起,促进了SOM含量的MIR光谱估测,但很多研究的MIR漫反射光谱测量都需要通过溴化钾(KBr)固体压片或液膜法实现,使得该技术仅局限于室内MIR的SOM含量估测分析[7-8],无法在野外实现快速测量。21世纪以来,随着手持式傅里叶变换红外光谱仪(FITR)的研制,应用MIR漫反射技术估测土壤属性的研究日益增多。已有研究表明,MIR估测SOM含量的能力强于可见光-近红外(VNIR)光谱和近红外(NIR) 光谱[9-17]。随着MIR高光谱传感器技术的发展,如美国空间增强宽带阵列光谱仪系统(SEBASS, 120个通道,2.5~13.5 µm)、加拿大Hypercam(2.5~15 µm)、芬兰AisaOWL(96个波段, 7.6~12.4 µm,光谱分辨率100nm)、TASI~600机载高光谱热成像系统(64个通道,8~11.5 µm,光谱分辨率55nm)等,基于MIR光谱技术的SOM含量估测和制图日益被学者关注[18-19],进一步扩宽了MIR光谱技术的研究范围,使其成为未来发展趋势。

  • 本文综述了基于MIR光谱技术的SOM含量估测研究进展,介绍了MIR光谱响应与SOM分子结构的相关性研究,简述了室内台式、手持式和机载式等不同MIR光谱设备估测SOM含量的研究现状,对比分析了MIR与VNIR、NIR及其VNIR-MIR、 NIR-MIR组合估测SOM含量的模型精度和稳定性研究,总结了基于MIR光谱技术的SOM含量估测模型构建方法研究进展,以及土样制备、光谱数学变换、敏感波段选择等前处理对SOM含量估测精度的影响研究,最后提出了基于MIR光谱技术的SOM含量估测需要解决的问题和展望。

  • 1 土壤有机质MIR光谱特征分析研究

  • 探明SOM的MIR光谱特征规律是MIR光谱技术估测SOM含量的理论基础,电磁光谱的发射区域主要与分子的振动运动相关。研究表明,VNIR(0.35~2.5 µm)、NIR(0.75~2.5 µm) 和MIR(2.5~25 µm或4000~400cm-1)光谱波段都对SOM内部分子振动敏感,影响土壤光谱的反射和吸收[520-22]。VNIR光谱吸收特征主要来自土壤中含氢基团( 如C-H、N-H、O-H、S-H等)基本振动的倍频峰和合频峰,与电磁辐射相互作用的主要成分除了SOM外,还包括自由水以及粘土矿物中的OH、非粘土矿物(如氧化铁、碳酸盐)和盐,不同组分和官能团的谱带较易重叠且信息强度较弱,导致谱图解析相对困难[13]。NIR光谱只能检测到它们的泛音和弱得多且重叠的泛音组合[7],所建SOM含量估测模型易受外界因素的影响,稳定性差。而影响MIR光谱吸收特征变化的主要是土壤中的C-H、C-O、C=O、N-H等含碳基团的强烈基本分子振动和矿物质[1423],MIR光谱可检测具有强吸收性的有机物和矿物的基本振动,其信息强度较强,信息提取相对容易,因此,MIR区域比VNIR和NIR具有更好的SOM、矿物质分辨率以及更强的峰值,因为基本振动发生在MIR区域[24]

  • 由于强振动的基本原理,MIR土壤光谱具有与有机物或矿物质组成相关的清晰可识别的峰特征。研究表明,MIR的前两个峰值(3800~3600cm-1)与粘土矿物中的O-H和N-H伸缩振动有关[1425]; 其次是两个不太明显的峰(3000~2800cm-1),由脂肪族C-H和C-OH伸缩振动引起[1726-27]; 在2000~1790cm-1 波段,3个连续的峰值表明存在石英[25];1600~1500cm-1 和1450~1400cm-1 的峰值分别与芳香族化合物和脂肪族化合物C=C、C=O、 C-N伸缩振动以及N-H的弯曲振动有关[28-30];在1000cm-1 以下,对不同峰的解释比较困难,因为光谱是由矿物和有机化合物混合而成的[25]。对于土壤有机碳含量高的样品,Wijewardane等[31]认为2920和2850cm-1 处是有机物的甲基和亚甲基C-H伸缩带,1750cm-1 处是有机物的羰基C=O带。

  • 对比VNIR、NIR和MIR的SOM相关特征波段研究结果表明,在基团强烈基本振动的影响下, MIR光谱区域的SOM含量估测特征波段多于VNIR和NIR光谱区域,且吸收峰特征明显[14],并且MIR比VNIR和NIR的土壤光谱受含水量、质地的影响小,SOM的MIR光谱估测精度和实验重复性更高[11],因此采用MIR光谱技术估测SOM含量的机理性和解释性更强。

  • 2 不同MIR光谱测量设备的SOM含量估测研究现状

  • 不同MIR光谱测量设备在市场出现的时间不同,科学家们分别采用室内台式MIR光谱测量设备、手持式MIR光谱仪、机载MIR传感器获取土样或样点的MIR光谱,通过建立SOM光谱反演模型,开展SOM含量的估测和制图研究。

  • 2.1 室内台式MIR光谱设备

  • 室内台式MIR光谱测量设备在市场出现的时间最早。目前常用的室内台式MIR光谱设备包括:Digilab FTS-60快速扫描傅里叶变换光谱仪(4000~400cm-1/光谱分辨率4cm-1[711],带有漫反射光谱测量配件的德国Bruker Tensor 27FTIR光谱仪(4000~400cm-1/光谱分辨率4cm-1[2832-37]以及Vertex 70FTIR光谱仪(7498~600cm-1/光谱分辨率4cm-1[3138],带有漫反射系统的美国Nicolet 6700FTIR光谱仪(8000~400cm-1/光谱分辨率8cm-1[39-40],带有DRIFT附件的Perkin Elmer 100傅里叶变换红外仪器(4000~450cm-1[41]

  • 采用室内台式MIR光谱测量设备估测SOM含量的过程通常包括:在室内将经过烘干、磨细的土样放置在测量盒中;以KBr为参考背景,消除背景环境的影响,并用漫反射傅里叶变换红外光谱(DRIFT)测量设备快速扫描土样;将获取的土样MIR漫反射光谱数据转换成光谱吸收率[log10(1/R)];然后采用偏最小二乘回归(PLSR)等线性统计建模方法构建SOM的MIR模型估测SOM含量。Janik等[7]使用Digilab FTS-60傅里叶变换光谱仪开展澳大利亚表层土9个土壤参数反演研究,其中总有机碳(TOC)含量估测模型验证精度决定系数(R2)=0.975,均方根误差(RMSE)=0.61%。 Stumpe等[34]对从德国北部采集的180个过2mm筛并烘干的土样进行了再磨样0、2、4min的3个前处理,分别采用Bruker Tensor 27FTIR光谱仪采集MIR光谱,与化验分析的SOC含量相比,土样再磨样2min的PLSR SOC含量估测模型验证精度最高,R2=0.9675,RMSE=0.22%,相对分析误差(RPD)=5.56。Bornemann等[28]、Kamau-Rewe等[33]、Paul等[36]、Deiss等[37] 也都采用Bruker Tensor 27测量土样MIR光谱,构建的SOC含量估测模型验证精度R2>0.87。Sanderman等[38] 采用Bruker Vertex 70FTIR光谱仪采集建立了美国50个州0~20cm土层的土壤光谱库,基于PLSR和记忆学习模型(MBL)估测了42个土壤物理、化学、生物特性等土壤健康指标,其中这两个模型SOC含量的MIR光谱估测精度都较高,模型验证精度 R 2=0.99,RMSE<0.9%。Wijewardane等[31] 在实验室条件下采用Bruker Vertex 70FTIR光谱仪采集土样MIR光谱,构建基于PLSR和人工神经网络(ANN)的12种土壤物理和化学参数估测模型,其中SOC含量估测模型验证精度 R 2 分别为0.95和0.99。Baldock等[39] 采用Nicolet 6700FTIR光谱仪采集了澳大利亚农业区20495个土样的MIR光谱,分别建立了包括SOC在内的土壤参数的国家级和州级PLSR模型,结果显示,州级SOC含量估测模型精度高于国家级,模型验证精度 R 2=0.924, RMSE=0.42%,RPD=3.62。Grinand等[42] 也采用Nicolet 6700测量法国2086个0~30cm表层土样的MIR光谱,估测SOC含量的模型验证精度 R 2=0.90,RMSE=0.28%。

  • 台式MIR光谱设备多是在实验室进行光谱测量,不需要对土样进行化学试剂处理,测量效率比化验分析法高,估测SOC含量的精度也较高。但该方法需要KBr作为参考背景,去除背景环境噪声影响,无法在野外进行快速测量,使得该技术局限于室内MIR的SOM含量估测[43]

  • 2.2 手持式MIR光谱仪

  • 近年来,商用手持式MIR设备问世,呈现出价格低廉化和体积小型化的趋势,为将MIR土壤光谱测量从实验室带到野外现场提供了机会,手持式MIR光谱仪在室内和野外定点实时应用方面的潜力正在显现。Martinez-España等[44] 采集了澳大利亚农田80个土样,在实验室内使用手持式Agilent ExoScan 4100(6000~650cm-1/光谱分辨率8cm-1,美国),对烘干研磨预处理的土样测量了MIR光谱,基于6种机器学习方法构建总碳(TC) 含量等6种土壤参数模型,结果显示,基于高斯过程回归(GPR)构建的TC含量估测模型验证精度最高,R2=0.98,RMSE=0.22%,RPD=6.68。Ji等[43] 使用Wilks公司的手持式可变滤波器阵列(VFA)漫反射红外傅里叶变换光谱仪(1811~898cm-1/光谱分辨率7cm-1),野外测量了加拿大魁北克2个农田的有机土和矿质土的MIR光谱,估测包括SOM含量在内的11项土壤化学和3项土壤物理参数,结果表明,基于PLSR的SOM含量估测模型验证精度(R 2=0.86,RMSE=6.5%, RPD=2.60),略低于实验室估测精度(R 2=0.90, RMSE=5.3%,RPD=3.15),但也达到了野外MIR光谱快速估测SOM含量的精度要求。Hutengs等[45]在德国Saxon西部盆地采集了40个农田样点0~5cm土样,在实验室将土样40℃烘干,并细磨样<100 µm,再使用Agilent 4300手持式中红外FTIR光谱仪(4000~650cm-1/光谱分辨率4cm-1) 测量土样MIR光谱,估测SOC含量等4种土壤参数,结果表明,基于PLSR的SOC含量验证精度为 R 2=0.78,RMSE=0.19%,RPD=2.16,比Bruker Tensor 27台式FTIR设备估测的SOC含量模型验证精度(R 2=0.73,RMSE=0.22%,RPD=1.92) 略好。因此,手持式MIR光谱仪是室内和野外定点测量土壤参数的有用设备。

  • 手持式MIR光谱仪在室内条件下可作为台式MIR设备测量土壤SOM和SOC含量的替代方法。尽管野外测量的土壤MIR光谱受土壤质地、含水量等因素影响,估测SOM和SOC含量的精度略低于室内,但其具有野外快速、准确定位测量SOM和SOC含量的潜力,应用前景较大。但对于大区域范围的MIR光谱的SOC含量估测,仍有人力、物力、时间等局限性,还达不到快速SOM和SOC制图能力。

  • 2.3 机载MIR传感器

  • 随着MIR高光谱传感器技术的发展,基于MIR高光谱SOM含量估测和制图日益被学者关注,进一步扩宽了MIR技术的研究范围。Pascucci等[19] 利用机载高光谱热成像仪(TASI-600,8~11.5 µm),在意大利南部农田裸露土壤上获得了热红外的机载高光谱图像,并采用PLSR和Cubist回归模型估测SOC含量,结果为 R 2=0.53,RMSE=0.26%, RPD=1.46,低于实验室采用FTIR光谱的SOC含量估测结果,但该实验表明MIR遥感数据在定量估算表土SOC含量方面有应用潜力。Eisele等[18] 使用傅里叶辐射计(TIR)中的定向发射率光谱仪(µFTIR),在实验室中获得了土壤表面光谱,将光谱重采样为成像光谱传感器(HyMAP和TASI-600)模拟数据,进行基于PLSR的SOC含量估测,结果显示,中红外波段SOC含量模型验证精度(R 2=0.90,RMSE=0.08%)较高,并且如果将可见光、近红外和中红外光谱组合在一起,SOC含量估测精度(R 2=0.95,RMSE=0.04%)大大提高。

  • 成像高光谱遥感较高的光谱分辨率、连续的地物光谱信息,提高了SOM含量的探测能力,加强了区域尺度SOM含量空间分布差异精细化表达,日益受到人们的关注。但因受到大气、地形、植被、地表粗糙度、土壤水分等因素影响,成像高光谱影像SOM含量估算精度低于室内光谱,真正实现SOM含量遥感的制图应用还需要更多研究。

  • 3 MIR与VNIR、NIR及其组合的SOM或SOC含量估测比较研究

  • MIR、VNIR和NIR包含不同的光谱信息。科学家们做了许多不同光谱波段及其组合估测SOM或SOC含量的对比研究,以便明确哪些光谱区域估测SOM或SOC含量的模型精度最可靠和稳定。光谱范围对比可以划分为4类:MIR与VNIR,MIR与NIR,MIR、VNIR与VNIR-MIR,MIR、NIR与NIR-MIR。

  • 3.1 MIR与VNIR

  • 多数研究认为MIR的SOM或SOC含量估测能力和稳定性普遍高于VNIR。Vohland等[46] 在实验室内分别采用VNIR设备(FOSS XDS含量快速分析光谱仪)和MIR设备(Bruker Tensor 27红外光谱仪)获取土样光谱数据,基于PLSR模型估测土壤TOC含量,结果表明,MIR的TOC含量估测精度(R 2=0.91,RMSE=0.19%,RPD=3.37) 高于VNIR的估测精度(R 2=0.60,RMSE=0.41%, RPD=1.58),MIR估测TOC含量的模型性能比VNIR好。Terra等[47] 分别采用VNIR设备(ASD FieldSpec Pro光谱仪)和Nicolet 6700红外光谱仪,基于支持向量机模型(SVM)估测了巴西1256个土样的SOC含量,MIR的SOC含量估测精度(R 2=0.77,RMSE=0.13%,RPD=3.01) 高于VNIR(R 2=0.65,RMSE=0.16%,RPD=2.49)。 Suzana等[48] 采用ASD FieldSpec Pro光谱仪和Nicolet 6700红外光谱仪测量了巴西亚马逊黑土光谱,基于PLSR估测土壤SOC含量,结果表明, MIR的SOC含量估测精度(R 2=0.94,RMSE=3.7%) 高于VNIR(R 2=0.72,RMSE=7.9%)。Hutengs等[17] 比较了手持式MIR设备(Agilent 4300) 和ASD FieldSpec等光谱设备在野外和室内SOC含量估测能力,评价了野外原位/室内风干/室内磨样3种土样处理对SOC含量估测模型的影响,结果表明, MIR的SOC含量估测能力(R 2=0.63/0.77/0.86)高于VNIR(R 2=0.27/0.66/0.70)。Allo等[49]分别采用便携式可见光-近红外光谱仪(LabSpec 5000)和手持式Agilent 4300红外光谱仪测量法国火山灰土、始成土和铁铝土3种土样光谱,基于PLSR的SOC含量估测精度表明,MIR和VNIS的估测精度都较高,采用哪种光谱范围估测SOC含量都可行。

  • 3.2 MIR与NIR

  • 一些研究认为MIR的SOC含量估测能力和稳定性与NIR相比有高有低,需要进一步研究探索。 Mccarty等[9] 比较了美国NIR设备(NIR Systems model6500) 和MIR设备(DigiLab FTS-60)光谱估测土壤SOC含量的能力,结果显示MIR估测SOC含量的精度(R 2=0.98,RMSD=6.0%)高于NIR(R 2=0.98,RMSD=7.9%),但土壤碳酸盐的存在,会降低MIR估测SOC含量的能力,估测时需进行区域校正。Xia等[16] 采用NIR设备(Cary 5E NIR光谱仪)和MIR设备(Graseby Specac),基于PLSR模型估测了美国伊利诺伊州农田包括SOC含量在内的14种土壤参数,结果表明,MIR估测SOC含量精度(R 2=0.56,RMSE=3.27%,RPD=1.45) 与NIR(R 2=0.53,RMSE=3.30%,RPD=1.43) 相当。Dong等[50]采用NIR设备(Matrix-I,12500~4000cm-1/光谱分辨率8cm-1)和Tensor 27中红外设备采集了中国11个苹果产区土样光谱,基于PLSR分析估测SOC含量,结果表明,NIR的SOC含量估测精度 [R 2=0.89,预测标准误差(SEP)=0.33,RPD=1.46] 高于MIR(R 2=0.77,SEP=0.38,RPD=1.22)。

  • 3.3 MIR、VNIR与VNIR-MIR

  • 多数研究认为MIR和VNIR-MIR的SOC含量估测能力和稳定性普遍高于VNIR。Pirie等[51]采用Varian Cary 500漫反射光谱仪(0.25~2.5 µm/光谱分辨率2nm) 测量UV-VIS-NIR光谱,Perkin-Elmer红外光谱仪(4000~450cm-1/光谱分辨率2cm-1)测量MIR光谱,比较MIR、VNIR及其VNIR-MIR估测SOC含量的能力,认为SOC含量估测精度从大到小的光谱范围为MIR(R 2=0.80,RPD=2.6)>VNIR-MIR(R 2=0.79,RPD=2.2)>VNIR(R 2=0.76, RPD=2.60)。Rossel等[5] 进行了可见光(VIS)、 NIR、MIR和VIS-NIR-MIR光谱估测SOC含量的综合性对比分析,结果表明,SOC含量估测精度从大到小的光谱范围为MIR(R 2=0.73,RMSE=0.15%)>VNIR-MIR(R 2=0.72,RMSE=0.15%)>VNIR(R 2=0.60,RMSE=0.18%)。Knox等[52] 采用LabSpec 5000光谱仪(0.35~2.500 µm/光谱分辨率NVIR为3nm、SWIR为10nm)和Scimitar 2000FTIR光谱仪(6000~400cm-1/光谱分辨率4cm-1)测量了美国佛罗里达州土样光谱,基于PLSR和随机森林法(RF) 评价了VNIR、MIR、VNIR-MIR估测SOC含量的潜力,结果显示,MIR和VNIR-MIR的SOC含量模型估测精度(R 2=0.96,RMSE=0.23%,RPD=4.7; R 2=0.95,RMSE=0.23%,RPD=4.7)大于VNIR(R 2=0.80,RMSE=0.40%,RPD=2.7)。Wartini等[53] 利用VNIR、MIR和VNIR-MIR光谱数据,基于卷积神经网络(CNN)、PLSR、Cubist tree模型估测SOC含量,结果表明,MIR和VNIR-MIR估测SOC含量的精度(R 2>0.95)高于VNIR。Terra等[54] 研究分析了巴西中部农业区表层和亚表层1259个热带土壤样本,分别采用ASD SPECPro和Nicolet 6700测定了土样VNIR和MIR光谱,使用外积分析方法(OPA) 融合VNIR和MIR光谱,建立了SOC含量估测模型,并与VNIR和MIR的SOC含量模型比较,结果表明,VNIR光谱的SOC含量估测精度[R 2=0.69, RMSE=0.338%,性能与四分位间距之比(RPIQ)=2]<MIR光谱(R 2=0.77,RMSE=0.29%,RPIQ=2.43)<VNIR-MIR融合光谱(R 2=0.81,RMSE=0.242%, RPIQ=2.87),利用OPA融合的VNIR和MIR光谱提高了SOC含量的估测精度。

  • 3.4 MIR、NIR与NIR-MIR

  • Johnson等[35] 进行了非洲撒哈拉以南NIR(0.7~2.5 µm)、MIR(2.5~16.67 µm)以及NIR-MIR组合(0.70~16.67 µm)的SOC含量估测潜力比较研究,以确定最合适的光谱范围,结果表明,SOC光谱估测精度从大到小的顺序为: NIR-MIR(R 2=0.82,RMSE=0.49%,RPIQ=2.09)>MIR(R 2=0.80,RMSE=0.52%,RPIQ=1.94)>NIR(R 2=0.78,RMSE=0.55%,RPIQ=1.86),NIR、 MIR、NIR-MIR表现出14%、21%和76%的土壤肥力估测潜力,NIR-MIR可以为评估土壤特性提供一种替代传统的方法。

  • 综上所述,MIR及其VNIR-MIR组合对SOM或SOC含量的估测能力和稳定性普遍好于VNIR, NIR-MIR组合估测SOC含量能力好于MIR或NIR,但MIR的SOC含量估测能力和稳定性与NIR相比还不能肯定,需要进一步研究探索。

  • 4 基于MIR光谱的SOM或SOC含量估测建模方法

  • 4.1 线性建模方法

  • 线性模型方法一般假设SOM或SOC含量与光谱特征呈线性关系。目前偏最小二乘回归模型(PLSR)是MIR估测SOM或SOC含量研究中使用最多的建模方法,少量研究还采用了主成分分析法(PCA)、Cubist回归树法、决策树法(DT)、多元线性回归(MLR)等模型。Kamau-Rewe等[33] 使用红外光谱仪采集了波斯瓦纳、巴西、印度、肯尼亚、泰国等国家的淋溶土土样光谱,基于PLSR估测了SOC含量,获得了较高的估测精度(R 2=0.93,RMSE=0.2%,RPD=3.65)。Pirie等[51] 基于PCA建立了SOC含量等11种土壤参数的VNIR、MIR及其VNIR-MIR估测模型,其中MIR估测SOC含量精度最高(R 2=0.80,RPD=2.6)。 Minasny等[32] 比较了PLSR和Cubist模型估测中红外光谱的SOC含量精度,结果表明Cubist模型估测SOC含量精度(RMSE=0.182%)高于PLSR(RMSE=0.272%)。Sanderman等[38] 比较了PLSR与记忆学习模型(MBL)估测中红外光谱土壤健康指标,研究表明MBL估测SOC含量的精度(R 2=0.99,RMSE=0.9%) 与PLSR模型(R 2=0.99, RMSE=0.8%) 相当。综上所述,尽管PLSR是中红外光谱估测SOM或SOC含量的常用建模方法,但其他线性模型也可以改进SOM含量的估测精度。

  • 4.2 非线性建模方法

  • 数据挖掘的使用在土壤光谱学领域取得了显著进展,科学家们也探讨了采用支持向量机(SVM)、随机森林(RF)、人工神经网络(ANN)等非线性模型估测SOM或SOC含量。Terra等[47] 基于SVM模型对1259个土样进行MIR的SOC含量估测,模型验证精度可行(R 2=0.77,RMSE=0.13%, RPD=3.01)。Deiss等[37] 基于MIR光谱比较了PLSR和SVM估算SOC含量的精度,结果显示SVM估测SOC含量的准确性优于PLSR模型。Knox等[52]基于PLSR和RF构建了SOC含量估测模型,结果显示PLSR的SOC含量估测结果总体好于RF,但在2.0~6.0 µm光谱范围,RF的SOC含量估测精度高于PLSR。Wartini等[53]比较了卷积神经网络(CNN)、PLSR和Cubist决策树模型估测SOC含量的性能,认为CNN的SOC含量估测精度(R 2=0.98, RMSE=0.2%,RPIQ=2.37)高于PLSR、Cubist模型,估测结果与实际值更接近。Martinez-Espa a等[44] 采用手持式MIR光谱设备,比较袋回归模型(BAG)、回归规则法(RR)、RF、高斯回归(GPR)和决策树5种机器学习方法估测SOC含量,精度从大到小顺序是GPR(R 2=0.98,RMSE=0.22%,RPD=6.68)>PLSR和RF>DT、BAG和RR。 Wijewardane等[31] 从含有2000个土样的中红外光谱库中估测SOC含量,认为ANN估测精度(R 2=0.99,RMSE=0.75%,RPD=4.66)优于PLSR。

  • 综上所述,非线性建模方法在大型数据集建模时比线性方法表现得更好,精度更高。但非线性模型相比线性模型的应用更加复杂,参数较多,数据处理速度较慢,也会有模型参数难以解释的问题[55]。线性模型和非线性模型各有优缺点,究竟哪个模型适用性更广、稳定性更好,哪个模型处理速度更快,还需要进行实际比较分析研究。

  • 5 土样及MIR光谱前处理对SOM含量估测精度的影响

  • 5.1 土样颗粒大小

  • 野外采集的土样通常经过室内风干,过2mm筛处理。在进行室内土样MIR光谱测量之前,还需要进一步制备土样,将样品研磨成0.1~0.25mm的粒径,因为MIR光谱仪的光束孔直径一般为1~2mm[56]。研磨使土样颗粒大小均匀化,防止了样品中大颗粒(如大石英颗粒)的镜面反射,使得光谱测量结果能够充分代表样品,因为镜面反射产生的强峰值会完全掩盖土样的漫反射光谱。一些学者探讨了土样研磨的时长和颗粒大小对MIR的SOC或SOM含量估测精度的影响,以期提高SOC含量的MIR估测精度。Stumpe等[34]比较了不同时长(0、2、4min)土样研磨对MIR的SOC含量估测精度的影响,认为2min研磨的样品SOC含量估测效果最好,因为研磨过程改变了土样石英、粘粒矿物的颗粒大小和MIR光谱信息;未研磨的土样颗粒大小不均匀,而研磨4min对土壤性质估测并没有改善,研磨时间过短或过长都不好;建议根据使用的研磨设备,测试确定最适的磨样时长,建立内部标准化研磨方案,以确保估测结果的可比性和可靠性。Baldock等[39]试验证明,随着研磨时间(0~180s)的增加,样品之间的光谱方差减小,研磨时间>120s的土样MIR的SOC含量估测精度得到了提高,但研磨时间在2~4min的SOC含量估测精度并没有得到大的提高,因此确定土样研磨的时间为180s。Le Guillou等[57]比较了不同土样粒径(2、1、0.5、0.25和0.106mm)对MIR光谱及SOC含量估测精度的影响,结果表明0.106mm颗粒大小的土样会产生更细、更清晰的光谱吸收特征,其MIR的SOC含量估测精度最佳,而1、0.5和0.25mm的SOC含量估测没有显著差异。

  • MIR光谱测量的土样制备研磨时长和颗粒大小还没有统一的实施标准,需要根据使用的研磨设备,试验确定适宜的研磨时长,制定内部的标准化研磨方案,确保土壤性质估测结果的可比性和可靠性。

  • 5.2 VMIR光谱数学变换预处理

  • MIR光谱设备所采集的光谱包含荧光背景、检测器噪声、激光器功率波动等干扰信息,并且这些干扰信息不能完全依赖设备的改进而消除。因此,在利用MIR光谱数据进行定性或定量分析之前,需要进行MIR光谱数据预处理,消除背景噪声的影响。常用的光谱数据预处理方法很多,其中,光谱反射率倒数的对数[log(1/R)][354358-59]是放大噪声,Savitzky-Golay平滑算法[27353743] 是平滑噪声,标准正太变换(SNV)[1949-50]是消除颗粒大小的影响,小波变换[46]是平滑和压缩土壤光谱,是更简单和稳健的校准光谱。对光谱数据进行预处理可以直观地反映光谱吸收率特征,突出特征波段,提高估测精度。Kopacková等[60] 比较了8种不同的MIR光谱预处理对MIR的SOC含量估测精度的影响,认为光谱数据平滑预处理是有益的,特别是光谱导数变换(一阶或二阶导数)可以提高SOC含量估测精度。Nocita等[61]得出MIR光谱的Sawitzky-Golay平滑和一阶导数,可以提高SOC含量估测精度。

  • 5.3 MIR光谱全波段或敏感波段建模

  • 大多数研究都采用MIR光谱全波段建立土壤性质估测模型,然而并非所有的光谱数据都对特定土壤属性的建模有用,通过去除无用和不可靠的变量,获得敏感光谱特征或光谱区域可以获得更好的模型拟合[5262]。一些学者探讨了选择MIR敏感波段是否可以提高SOC含量估测精度的研究,选择方法包括:采用相关系数法选择与SOM紧密相关的光谱区域[63-64];运用PCA主成分分析方法,选择具有统计意义的MIR光谱特征[47-4865];采用蒙特卡罗特征方法(MCFS)选择SOM的MIR光谱敏感波段或光谱区域[1645]。Orr等[64] 去除掉已知与土壤碳酸盐和背景噪声相关的两个光谱区域(2949~2699和1762~1226cm-1),相比全波段(6000~1030cm-1)MIR光谱,SOC含量估测精度 R 2 从0.905提高到0.932,RMSE 从0.438%下降到0.371%。Xia等[16]采用MCFS方法选择了前200个MIR光谱特征,与MIR全波段的SOC含量估测精度(R 2=0.01,RMSE=4.83%,RPD=1.01)相比,发现采用MCFS光谱细化的SOC含量估测精度(R 2=0.60,RMSE=3.07%,RPD=1.54)得到了提高。采用MIR敏感波段建模的SOC含量估测能力优于全波段建模。当光谱变量较多时,优化去除不重要的光谱变量,可以改善模型的性能。

  • 6 结论与展望

  • 6.1 结论

  • 中红外光谱波段可检测具有强吸收性的土壤有机物基本振动,估测SOM含量的特征波段多于VNIR和NIR光谱区域,并具有较强的机理性和解释性,为估测SOM含量等土壤参数信息提供了理论依据。不同MIR光谱设备为室内和野外快速、低成本获取SOM含量和制图提供了新的技术手段。虽然中红外光谱波段信息复杂,光谱野外采集过程会受到土壤水分、矿物质、光谱仪设备等的影响,并且数据处理和建模过程也有待于进一步改进,但随着科技的进步以及数据挖掘技术的提高,中红外光谱波段在估测SOM或SOC含量方面的应用将有很大的发展空间。

  • 6.2 展望

  • 6.2.1 存在的问题

  • 总结以往的研究成果,基于MIR光谱技术的SOM或SOC含量估测还存在一些问题。国内对MIR光谱估测SOM或SOC含量的系统研究还很少,只有少量文章采用MIR光谱设备进行了江苏和浙江的水稻土、内蒙古灌淤土、陕西黄土的SOM含量估测研究。因此,需要加强该方面的研究工作,探究不同土壤类型和不同测量条件下MIR的SOM含量估测潜力;目前机载和星载MIR高光谱传感器较少,MIR的SOM或SOC含量估测仍局限在室内台式或手持式MIR设备;基于MIR的SOM或SOC光谱敏感波段选择、土样前处理、反演模型的选择是影响估测精度的关键,哪种方法更合适,还需要进一步探索研究。

  • 6.2.2 未来的发展

  • 随着MIR光谱遥感技术的发展,基于MIR光谱的SOM含量估测和制图需要在几个方面深入开展研究。针对不同的土壤类型研究手持式MIR设备估测SOM含量的实施方案,作为野外快速准确估测SOM含量的另一种替代方法;MIR光谱遥感数据具有估测和制图SOM的潜力,尽管目前MIR高光谱传感器技术发展还不太成熟,但未来该领域的发展值得期待;非线性统计模型比线性统计模型的SOM含量估测精度更高,需要进一步研究其应用潜力;深度学习擅长处理多源大量复杂数据,其不可比拟的优势为很多研究领域提供了新思路和新方法,基于深度学习的中红外SOM含量估测也值得研究和探索。

  • 参考文献

    • [1] 窦森.土壤有机质[M].北京:科学出版社,2010.3-9.

    • [2] NY/T 1121.6—2006,土壤检测第6部分:土壤有机质的测定 [S].

    • [3] HJ 615—2011,土壤有机碳的测定重铬酸钾氧化-分光光度法[S].

    • [4] HJ 658—2013,土壤有机碳的测定燃烧氧化-滴定法[S].

    • [5] Rossel R A V,Walvoort D J J,Mcbratney A B,et al.Visible,near infrared,mid-infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties [J].Geoderma,2006,131(2):59-75.

    • [6] Nguyen T T,Janik L J,Raupach M.Diffuse reflectance infrared fourier transform(DRIFT)spectroscopy in soil studies[J]. Australian Journal of Soil Research,1991,29:49-67.

    • [7] Janik L J,Skjemstad J O.Characterization and analysis of soils using mid-infrared partial least squares.I.Correlations with XRF-determined major element composition[J].Australian Journal of Soil Research,1995,33(4):637-650.

    • [8] 吴景贵,席时权,姜岩.红外光谱在土壤有机质研究中的应用[J].光谱学与光谱分析,1998,18(1):52-57.

    • [9] Mccarty G W,Reeves J B,Reeves V B,et al.Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement[J].Soil Science Society of America Journal,2002,66(2):640-646.

    • [10] Mccarty G W,Reeves J B.Comparison of near infrared and mid infrared diffuse reflectance spectroscopy for field-scale measurement of soil fertility parameters[J].Soil Science,2006,171(2):94-102.

    • [11] Reeves III J B.Near-versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis:Where are we and what needs to be done?[J].Geoderma,2010,158(1-2):3-14.

    • [12] Bellon-Maurel V,Mcbratney A.Near-infrared(NIR)and mid-infrared(MIR)spectroscopic techniques for assessing the amount of carbon stock in soils-Critical review and research perspectives[J].Soil Biology and Biochemistry,2011,43(7):1398-1410.

    • [13] 曲楠,朱明超,窦森.近红外与中红外光谱技术在土壤分析中的应用[J].分析测试学报,2015,34(1):120-126.

    • [14] 陈颂超,彭杰,纪文君,等.水稻土可见-近红外-中红外光谱特性与有机质预测研究[J].光谱学与光谱分析,2016,36(6):1712-1716.

    • [15] 陈晨,李志伟,董大明.土壤养分的红外衰减全反射与漫反射光谱同步测量方法[J].光谱学与光谱分析,2017,37(11):3557-2561.

    • [16] Xia Y,Ugarte C M,Guan K,et al.Developing near-and mid-infrared spectroscopy analysis methods for rapid assessment of soil quality in Illinois[J].Soil Science Society of America Journal,2018,82(6):1415-1427.

    • [17] Hutengs C,Seidel M,Oertel F,et al.In situ and laboratory soil spectroscopy with portable visible-to-near infrared and mid-infrared instruments for the assessment of organic carbon in soils [J].Geoderma,2019,355:113900.

    • [18] Eisele A,Lau I,Hewson R,et al.Applicability of the thermal infrared spectral region for the prediction of soil properties across semi-arid agricultural landscapes[J].Remote Sensing,2012,4(11):3265-3286.

    • [19] Pascucci S,Casa R,Belviso C,et al.Estimation of soil organic carbon from airborne hyperspectral thermal infrared data:A case study[J].European Journal of Soil Science,2014,65(6):865-875.

    • [20] Condit H R.The spectral reflectance of American soils[J]. Photogrammetric Engineering,1970,36:955-966.

    • [21] 徐彬彬,季耿善.土壤光谱反射特性研究及其应用[J].土壤学进展,1987(1):1-9.

    • [22] Stoner E R,Baumgardner M F.Characteristic variations in reflectance of surface soil[J].Soil Science Society of America Journal,1981,45:1161-1165.

    • [23] 宋迪思,盛浩,周清,等.不同母质发育土壤的中红外吸收光谱特征[J].土壤通报,2016,47(1):1-7.

    • [24] Soriano-Disla J M,Janik L J,Viscarra Rossel R A,et al. The performance of visible,near-and mid-infrared reflectance spectroscopy for prediction of soil physical,chemical,and biological properties[J].Applied Spectroscopy Reviews,2014,49:139-186.

    • [25] Calderon F J,Reeves III J B,Collins H P,et al.Chemical differences in soil organic matter fractions determined by diffuse reflectance mid-infrared spectroscopy[J].Soil Science Society of America Journal,2011,75(2):568-579.

    • [26] Zimmermann M,Leifeld J,Fuhrer J.Quantifying soil organic carbon fractions by infrared-spectroscopy[J].Soil Biology and Biochemistry,2007,39:224-231.

    • [27] Ma F,Du C W,Zhou J M,et al.Investigation of soil properties using different techniques of mid-infrared spectroscopy[J]. European Journal of Soil Science,2019,70(1):96-106.

    • [28] Bornemann L,Welp G,Amelung W.Particulate organic matter at the field scale:rapid acquisition using mid-infrared spectroscopy[J].Soil Biology and Biochemistry,2010,74(4):1147-1156.

    • [29] Demya M S,Rasche F,Schulz E,et al.Use of specific peaks obtained by diffuse reflectance Fourier transform mid-infrared spectroscopy to study the composition of organic matter in a Haplic Chernozem[J].European Journal Soil Science,2012,63:189-199.

    • [30] Tivet F,de Moraes S,Lal J C,et al.Assessing humification and organic C compounds by laser-induced fluorescence and FTIR Spectroscopies under conventional and no-till management in Brazilian Oxisols[J].Geoderma,2013,207-208:71-81.

    • [31] Wijewardane N K,Ge Y F,Skye W,et al.Predicting physical and chemical properties of US soils with a mid-infrared reflectance spectral library[J].Soil Science Society of America Journal,2018,82(3):722-731.

    • [32] Minasny B,Mcbratney A B.Regression rules as a tool for predicting soil properties from infrared reflectance spectroscopy [J].Chemometrics & Intelligent Laboratory Systems,2008,94(1):72-79.

    • [33] Kamau-Rewe M,Rasche F,Cobo J G,et al.Generic prediction of soil organic carbon in alfisols using diffuse reflectance fourier-transform mid-infrared spectroscopy[J].Soil Science Society of America Journal,2011,75(6):2358-2360.

    • [34] Stumpe B,Weihermuller L,Marschner B.Sample preparation and selection for qualitative and quantitative analyses of soil organic carbon with mid-infrared reflectance spectroscopy[J]. European Journal of Soil Science,2011,62(6):849-862.

    • [35] Johnson J M,Vandamme E,Senthilkumar K,et al.Near-infrared,mid-infrared or combined diffuse reflectance spectroscopy for assessing soil fertility in rice fields in sub-Saharan Africa [J].Geoderma,2019,354:113840.

    • [36] Paul S S,Coops N C,Johnson M S,et al.Evaluating sampling efforts of standard laboratory analysis and mid-infrared spectroscopy for cost effective digital soil mapping at field scale [J].Geoderma,2019,354:113925.

    • [37] Deiss L,Margenot A J,Culman S W,et al.Tuning support vector machines regression models improves prediction accuracy of soil properties in MIR spectroscopy[J].Geoderma,2020,365:114227.

    • [38] Sanderman J,Savage K,Dangal S R S.Mid-infrared spectroscopy for prediction of soil health indicators in the United States[J]. Soil Science Society of America Journal,2020,84(5):252-261.

    • [39] Baldock J A,Hawke B,Sanderman J,et al.Predicting contents of carbon and its component fractions in Australian soils from diffuse reflectance mid-infrared spectra[J].Soil Research,2013,51(8):577-595.

    • [40] Baldock J A,Beare M H,Curtin D,et al.Stocks,composition and vulnerability to loss of soil organic carbon predicted using mid-infrared spectroscopy[J].Soil Research,2018,56(5):468-480.

    • [41] Albuquerque N,Meehan B,Hughes J,et al.Data for the determination of total carbon in biosolids using mid-infrared spectroscopy[J].Data in Brief,2020,30:105615.

    • [42] Grinand C,Barthes B G,Brunet D,et al.Prediction of soil organic and inorganic carbon contents at a national scale(France)using mid-infrared reflectance spectroscopy(MIRS)[J]. European Journal of Soil Science,2012,63:141-151.

    • [43] Ji W,Adamchuk V I,Biswas A,et al.Assessment of soil properties in situ using a prototype portable MIR spectrometer in two agricultural fields[J].Biosystems Engineering,2016,152:14-27.

    • [44] Ma rtínez-España R,Bueno-Crespo A,Soto J,et al. Developing an intelligent system for the prediction of soil properties with a portable mid-infrared instrument[J].Biosystems Engineering,2019,177:101-108.

    • [45] Hutengs C,Ludwig B,András J,et al.Comparison of portable and bench-top spectrometers for mid-infrared diffuse reflectance measurements of soils[J].Sensors,2018,18(4):993.

    • [46] Vohland M,Ludwig M,Thiele-Bruhn S,et al.Determination of soil properties with visible to near-and mid-infrared spectroscopy:Effects of spectral variable selection[J]. Geoderma,2014,223-225(1):88-96.

    • [47] Terra F S,Demattê J A M,Rossel R A V.Spectral libraries for quantitative analyses of tropical Brazilian soils:Comparing vis– NIR and mid-IR reflectance data[J].Geoderma,2015,255-256:81-93.

    • [48] Suzana R A,Söderström M,Eriksson J,et al.Determining soil properties in Amazonian Dark Earths by reflectance spectroscopy [J].Geoderma,2015,237:308-317.

    • [49] Allo M,Todoroff P,Jameux M,et al.Prediction of tropical volcanic soil organic carbon stocks by visible-near-and mid-infrared spectroscopy[J].Catena,2020,189:104452.

    • [50] Dong Y W,Yang S Q,Xu C Y,et al.Determination of soil parameters in apple-growing regions by near-and mid-infrared spectroscopy[J].Pedosphere,2011,21(5):591-602.

    • [51] Pirie A,Singh B,Islam K.Ultra-violet,visible,near-infrared,and mid-infrared diffuse reflectance spectroscopic techniques to predict several soil properties[J].Soil Research,2005,43(6):713-721.

    • [52] Knox N M,Grunwald S,McDowell M L,et al.Modelling soil carbon fractions with visible near-infrared(VNIR)and mid-infrared(MIR)spectroscopy[J].Geoderma,2015,239-240:229-239.

    • [53] Wartini N,Minasny B,Montazerdghaem M,et al.Convolutional neural network for simultaneous prediction of several soil properties using visible/near-infrared,mid-infrared,and their combined spectra[J].Geoderma,2019,352:251-267.

    • [54] Terra F S,Viscarra R R A,DemattêJ A M.Spectral fusion by outer product analysis(OPA)to improve predictions of soil organic C[J].Geoderma,2019,335:35-46.

    • [55] Wadoux J C,Padarian J,Minasny B.Multi-source data integration for soil mapping using deep learning[J].Soil,2019,5:107-119.

    • [56] Reeves III J,Smith D.The potential of mid-and near-infrared diffuse reflectance spectroscopy for determining major-and trace-element concentrations in soils from a geochemical survey of north America[J].Applied Geochemistry,2009,24:1472–1481.

    • [57] Le Guillou F,Wetterlind J,Viscarra Rossel R,et al.How does grinding affect the mid-infrared spectra of soil and their multivariate calibrations to texture and organic carbon?[J]. Soil Research,2015,53(8):913-921.

    • [58] Dhawale N M,Adamchuk V I,Prasher S O,et al.Proximal soil sensing of soil texture and organic matter with a prototype portable mid-infrared spectrometer[J].European Journal of Soil Science,2015,66(4):661-669.

    • [59] Seybold C A,Ferguson R,Wysocki D,et al.Application of mid-infrared spectroscopy in soil survey[J].Soil Science Society of America Journal,2019,83:1746-1759.

    • [60] KopakováV,Eyal B D,Nimrod C,et al.Modelling diverse soil attributes with visible to longwave infrared spectroscopy using PLSR employed by an automatic modelling engine[J].Remote Sensing,2017,9(2):1-21.

    • [61] Nocita M,Stevens A,Toth G,et al.Prediction of soil organic carbon content by diffuse reflectance spectroscopy using a local partial least square regression approach[J].Soil Biology & Biochemistry,2014,68:337-347.

    • [62] Yang H,Kuang B,Mouazen A M.Quantitative analysis of soil nitrogen and carbon at a farm scale using visible and near infrared spectroscopy coupled with wavelength reduction[J].European Journal of Soil Science,2012,63(3):410-420.

    • [63] Bartholomeus H M,Schaepman M E,Kooistra L,et al.Spectral reflectance based indices for soil organic carbon quantification [J].Geoderma,2008,145(1-2):28-36.

    • [64] Orr R,Mcbeath A V,Dieleman W I J,et al.Estimating organic carbon content of soil in Papua New Guinea using infrared spectroscopy[J].Soil Research,2017,55(8):735-742.

    • [65] Albuquerque N,Meehan B,Hughes J,et al.Determination of total carbon in biosolids using mid-infrared spectroscopy[J]. Science of the Total Environment,2019,698:134195.

  • 参考文献

    • [1] 窦森.土壤有机质[M].北京:科学出版社,2010.3-9.

    • [2] NY/T 1121.6—2006,土壤检测第6部分:土壤有机质的测定 [S].

    • [3] HJ 615—2011,土壤有机碳的测定重铬酸钾氧化-分光光度法[S].

    • [4] HJ 658—2013,土壤有机碳的测定燃烧氧化-滴定法[S].

    • [5] Rossel R A V,Walvoort D J J,Mcbratney A B,et al.Visible,near infrared,mid-infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties [J].Geoderma,2006,131(2):59-75.

    • [6] Nguyen T T,Janik L J,Raupach M.Diffuse reflectance infrared fourier transform(DRIFT)spectroscopy in soil studies[J]. Australian Journal of Soil Research,1991,29:49-67.

    • [7] Janik L J,Skjemstad J O.Characterization and analysis of soils using mid-infrared partial least squares.I.Correlations with XRF-determined major element composition[J].Australian Journal of Soil Research,1995,33(4):637-650.

    • [8] 吴景贵,席时权,姜岩.红外光谱在土壤有机质研究中的应用[J].光谱学与光谱分析,1998,18(1):52-57.

    • [9] Mccarty G W,Reeves J B,Reeves V B,et al.Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement[J].Soil Science Society of America Journal,2002,66(2):640-646.

    • [10] Mccarty G W,Reeves J B.Comparison of near infrared and mid infrared diffuse reflectance spectroscopy for field-scale measurement of soil fertility parameters[J].Soil Science,2006,171(2):94-102.

    • [11] Reeves III J B.Near-versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis:Where are we and what needs to be done?[J].Geoderma,2010,158(1-2):3-14.

    • [12] Bellon-Maurel V,Mcbratney A.Near-infrared(NIR)and mid-infrared(MIR)spectroscopic techniques for assessing the amount of carbon stock in soils-Critical review and research perspectives[J].Soil Biology and Biochemistry,2011,43(7):1398-1410.

    • [13] 曲楠,朱明超,窦森.近红外与中红外光谱技术在土壤分析中的应用[J].分析测试学报,2015,34(1):120-126.

    • [14] 陈颂超,彭杰,纪文君,等.水稻土可见-近红外-中红外光谱特性与有机质预测研究[J].光谱学与光谱分析,2016,36(6):1712-1716.

    • [15] 陈晨,李志伟,董大明.土壤养分的红外衰减全反射与漫反射光谱同步测量方法[J].光谱学与光谱分析,2017,37(11):3557-2561.

    • [16] Xia Y,Ugarte C M,Guan K,et al.Developing near-and mid-infrared spectroscopy analysis methods for rapid assessment of soil quality in Illinois[J].Soil Science Society of America Journal,2018,82(6):1415-1427.

    • [17] Hutengs C,Seidel M,Oertel F,et al.In situ and laboratory soil spectroscopy with portable visible-to-near infrared and mid-infrared instruments for the assessment of organic carbon in soils [J].Geoderma,2019,355:113900.

    • [18] Eisele A,Lau I,Hewson R,et al.Applicability of the thermal infrared spectral region for the prediction of soil properties across semi-arid agricultural landscapes[J].Remote Sensing,2012,4(11):3265-3286.

    • [19] Pascucci S,Casa R,Belviso C,et al.Estimation of soil organic carbon from airborne hyperspectral thermal infrared data:A case study[J].European Journal of Soil Science,2014,65(6):865-875.

    • [20] Condit H R.The spectral reflectance of American soils[J]. Photogrammetric Engineering,1970,36:955-966.

    • [21] 徐彬彬,季耿善.土壤光谱反射特性研究及其应用[J].土壤学进展,1987(1):1-9.

    • [22] Stoner E R,Baumgardner M F.Characteristic variations in reflectance of surface soil[J].Soil Science Society of America Journal,1981,45:1161-1165.

    • [23] 宋迪思,盛浩,周清,等.不同母质发育土壤的中红外吸收光谱特征[J].土壤通报,2016,47(1):1-7.

    • [24] Soriano-Disla J M,Janik L J,Viscarra Rossel R A,et al. The performance of visible,near-and mid-infrared reflectance spectroscopy for prediction of soil physical,chemical,and biological properties[J].Applied Spectroscopy Reviews,2014,49:139-186.

    • [25] Calderon F J,Reeves III J B,Collins H P,et al.Chemical differences in soil organic matter fractions determined by diffuse reflectance mid-infrared spectroscopy[J].Soil Science Society of America Journal,2011,75(2):568-579.

    • [26] Zimmermann M,Leifeld J,Fuhrer J.Quantifying soil organic carbon fractions by infrared-spectroscopy[J].Soil Biology and Biochemistry,2007,39:224-231.

    • [27] Ma F,Du C W,Zhou J M,et al.Investigation of soil properties using different techniques of mid-infrared spectroscopy[J]. European Journal of Soil Science,2019,70(1):96-106.

    • [28] Bornemann L,Welp G,Amelung W.Particulate organic matter at the field scale:rapid acquisition using mid-infrared spectroscopy[J].Soil Biology and Biochemistry,2010,74(4):1147-1156.

    • [29] Demya M S,Rasche F,Schulz E,et al.Use of specific peaks obtained by diffuse reflectance Fourier transform mid-infrared spectroscopy to study the composition of organic matter in a Haplic Chernozem[J].European Journal Soil Science,2012,63:189-199.

    • [30] Tivet F,de Moraes S,Lal J C,et al.Assessing humification and organic C compounds by laser-induced fluorescence and FTIR Spectroscopies under conventional and no-till management in Brazilian Oxisols[J].Geoderma,2013,207-208:71-81.

    • [31] Wijewardane N K,Ge Y F,Skye W,et al.Predicting physical and chemical properties of US soils with a mid-infrared reflectance spectral library[J].Soil Science Society of America Journal,2018,82(3):722-731.

    • [32] Minasny B,Mcbratney A B.Regression rules as a tool for predicting soil properties from infrared reflectance spectroscopy [J].Chemometrics & Intelligent Laboratory Systems,2008,94(1):72-79.

    • [33] Kamau-Rewe M,Rasche F,Cobo J G,et al.Generic prediction of soil organic carbon in alfisols using diffuse reflectance fourier-transform mid-infrared spectroscopy[J].Soil Science Society of America Journal,2011,75(6):2358-2360.

    • [34] Stumpe B,Weihermuller L,Marschner B.Sample preparation and selection for qualitative and quantitative analyses of soil organic carbon with mid-infrared reflectance spectroscopy[J]. European Journal of Soil Science,2011,62(6):849-862.

    • [35] Johnson J M,Vandamme E,Senthilkumar K,et al.Near-infrared,mid-infrared or combined diffuse reflectance spectroscopy for assessing soil fertility in rice fields in sub-Saharan Africa [J].Geoderma,2019,354:113840.

    • [36] Paul S S,Coops N C,Johnson M S,et al.Evaluating sampling efforts of standard laboratory analysis and mid-infrared spectroscopy for cost effective digital soil mapping at field scale [J].Geoderma,2019,354:113925.

    • [37] Deiss L,Margenot A J,Culman S W,et al.Tuning support vector machines regression models improves prediction accuracy of soil properties in MIR spectroscopy[J].Geoderma,2020,365:114227.

    • [38] Sanderman J,Savage K,Dangal S R S.Mid-infrared spectroscopy for prediction of soil health indicators in the United States[J]. Soil Science Society of America Journal,2020,84(5):252-261.

    • [39] Baldock J A,Hawke B,Sanderman J,et al.Predicting contents of carbon and its component fractions in Australian soils from diffuse reflectance mid-infrared spectra[J].Soil Research,2013,51(8):577-595.

    • [40] Baldock J A,Beare M H,Curtin D,et al.Stocks,composition and vulnerability to loss of soil organic carbon predicted using mid-infrared spectroscopy[J].Soil Research,2018,56(5):468-480.

    • [41] Albuquerque N,Meehan B,Hughes J,et al.Data for the determination of total carbon in biosolids using mid-infrared spectroscopy[J].Data in Brief,2020,30:105615.

    • [42] Grinand C,Barthes B G,Brunet D,et al.Prediction of soil organic and inorganic carbon contents at a national scale(France)using mid-infrared reflectance spectroscopy(MIRS)[J]. European Journal of Soil Science,2012,63:141-151.

    • [43] Ji W,Adamchuk V I,Biswas A,et al.Assessment of soil properties in situ using a prototype portable MIR spectrometer in two agricultural fields[J].Biosystems Engineering,2016,152:14-27.

    • [44] Ma rtínez-España R,Bueno-Crespo A,Soto J,et al. Developing an intelligent system for the prediction of soil properties with a portable mid-infrared instrument[J].Biosystems Engineering,2019,177:101-108.

    • [45] Hutengs C,Ludwig B,András J,et al.Comparison of portable and bench-top spectrometers for mid-infrared diffuse reflectance measurements of soils[J].Sensors,2018,18(4):993.

    • [46] Vohland M,Ludwig M,Thiele-Bruhn S,et al.Determination of soil properties with visible to near-and mid-infrared spectroscopy:Effects of spectral variable selection[J]. Geoderma,2014,223-225(1):88-96.

    • [47] Terra F S,Demattê J A M,Rossel R A V.Spectral libraries for quantitative analyses of tropical Brazilian soils:Comparing vis– NIR and mid-IR reflectance data[J].Geoderma,2015,255-256:81-93.

    • [48] Suzana R A,Söderström M,Eriksson J,et al.Determining soil properties in Amazonian Dark Earths by reflectance spectroscopy [J].Geoderma,2015,237:308-317.

    • [49] Allo M,Todoroff P,Jameux M,et al.Prediction of tropical volcanic soil organic carbon stocks by visible-near-and mid-infrared spectroscopy[J].Catena,2020,189:104452.

    • [50] Dong Y W,Yang S Q,Xu C Y,et al.Determination of soil parameters in apple-growing regions by near-and mid-infrared spectroscopy[J].Pedosphere,2011,21(5):591-602.

    • [51] Pirie A,Singh B,Islam K.Ultra-violet,visible,near-infrared,and mid-infrared diffuse reflectance spectroscopic techniques to predict several soil properties[J].Soil Research,2005,43(6):713-721.

    • [52] Knox N M,Grunwald S,McDowell M L,et al.Modelling soil carbon fractions with visible near-infrared(VNIR)and mid-infrared(MIR)spectroscopy[J].Geoderma,2015,239-240:229-239.

    • [53] Wartini N,Minasny B,Montazerdghaem M,et al.Convolutional neural network for simultaneous prediction of several soil properties using visible/near-infrared,mid-infrared,and their combined spectra[J].Geoderma,2019,352:251-267.

    • [54] Terra F S,Viscarra R R A,DemattêJ A M.Spectral fusion by outer product analysis(OPA)to improve predictions of soil organic C[J].Geoderma,2019,335:35-46.

    • [55] Wadoux J C,Padarian J,Minasny B.Multi-source data integration for soil mapping using deep learning[J].Soil,2019,5:107-119.

    • [56] Reeves III J,Smith D.The potential of mid-and near-infrared diffuse reflectance spectroscopy for determining major-and trace-element concentrations in soils from a geochemical survey of north America[J].Applied Geochemistry,2009,24:1472–1481.

    • [57] Le Guillou F,Wetterlind J,Viscarra Rossel R,et al.How does grinding affect the mid-infrared spectra of soil and their multivariate calibrations to texture and organic carbon?[J]. Soil Research,2015,53(8):913-921.

    • [58] Dhawale N M,Adamchuk V I,Prasher S O,et al.Proximal soil sensing of soil texture and organic matter with a prototype portable mid-infrared spectrometer[J].European Journal of Soil Science,2015,66(4):661-669.

    • [59] Seybold C A,Ferguson R,Wysocki D,et al.Application of mid-infrared spectroscopy in soil survey[J].Soil Science Society of America Journal,2019,83:1746-1759.

    • [60] KopakováV,Eyal B D,Nimrod C,et al.Modelling diverse soil attributes with visible to longwave infrared spectroscopy using PLSR employed by an automatic modelling engine[J].Remote Sensing,2017,9(2):1-21.

    • [61] Nocita M,Stevens A,Toth G,et al.Prediction of soil organic carbon content by diffuse reflectance spectroscopy using a local partial least square regression approach[J].Soil Biology & Biochemistry,2014,68:337-347.

    • [62] Yang H,Kuang B,Mouazen A M.Quantitative analysis of soil nitrogen and carbon at a farm scale using visible and near infrared spectroscopy coupled with wavelength reduction[J].European Journal of Soil Science,2012,63(3):410-420.

    • [63] Bartholomeus H M,Schaepman M E,Kooistra L,et al.Spectral reflectance based indices for soil organic carbon quantification [J].Geoderma,2008,145(1-2):28-36.

    • [64] Orr R,Mcbeath A V,Dieleman W I J,et al.Estimating organic carbon content of soil in Papua New Guinea using infrared spectroscopy[J].Soil Research,2017,55(8):735-742.

    • [65] Albuquerque N,Meehan B,Hughes J,et al.Determination of total carbon in biosolids using mid-infrared spectroscopy[J]. Science of the Total Environment,2019,698:134195.

  • 《中国土壤与肥料》招聘启事
    关闭