en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

刘王锁(1983-),男,陕西人,讲师,博士研究生,主要从事草地生态及微生物生态、药用植物系统分类研究。E-mail:mozhulws@163.com。

通讯作者:

谢应忠,E-mail:xieyz@nxu.edu.cn;

邱开阳,E-mail:kaiyang588@sina.com。

参考文献 1
Vezzani F M,Anderson C,Meenken E,et al.The importance of plants to development and maintenance of soil structure,microbial communities and ecosystem functions[J].Soil and Tillage Research,2018,175:139-149.
参考文献 2
Fierer N.Embracing the unknown:disentangling the complexities of the soil microbiome[J].Nature Reviews Microbiology,2017,15(10):579-590.
参考文献 3
Bahram M,Hildebrand F,Forslund S K,et al.Structure and function of the global topsoil microbiome[J].Nature,2018,560:233-237.
参考文献 4
Bar-On Y M,Phillips R,Milo R.The biomass distribution on Earth[J].Proc Natl Acad Sci USA,2018,115(25):6506-6511.
参考文献 5
Sahu P K,Singh D P,Prabha R,et al.Connecting microbial capabilities with the soil and plant health:options for agricultural sustainability[J].Ecological Indicators,2019,105:601-612.
参考文献 6
Cui Y,Fang L,Guo X,et al.Responses of soil microbial communities to nutrient limitation in the desert-grassland ecological transition zone[J].Science of the Total Environment,2018,642:45-55.
参考文献 7
Singh B K,Bardgett R D,Smith P,et al.Microorganisms and climate change:terrestrial feedbacks and mitigation options[J]. Nature Reviews Microbiology,2010,8(11):779-790.
参考文献 8
Bardgett R D,van der Putten W H.Belowground biodiversity and ecosystem functioning[J].Nature,2014,515:505-511.
参考文献 9
Wagg C,Bender S F,Widmer F,et al.Soil biodiversity and soil community composition determine ecosystem multifunctionality [J].Proc Natl Acad Sci U S A,2014,111(14):5266-5270.
参考文献 10
Laforest-Lapointe I,Paquette A,Messier C,et al.Leaf bacterial diversity mediates plant diversity and ecosystem function relationships[J].Nature,2017,546:145-147.
参考文献 11
Ke P J,Miki T,Ding T S.The soil microbial community predicts the importance of plant traits in plant-soil feedback[J]. The New Phytologist,2015,206(1):329-341.
参考文献 12
Bever J D.Soil community feedback and the coexistence of competitors:conceptual frame works and empirical tests[J]. The New Phytologist,2003,157:465-473.
参考文献 13
Ehrenfeld J G,Ravit B,Elgersma K.Feedback in the plantsoil system[J].Annual Review of Environment and Resources,2005,30(1):75-115.
参考文献 14
Bever J D,Westover K M,Antonovics J.Incorporating the soil community into plant population dynamics:the utility of the feedback approach[J].Journal of Ecology,1997,85:561-573.
参考文献 15
Pernilla B E,Van der Putten W H,Bakker E J,et al.Plantsoil feedback:experimental approaches,statistical analyses and ecological interpretations[J].Journal of Ecology,2010,98(5):1063-1073.
参考文献 16
Bever J D.Preferential allocation,physio-evolutionary feedbacks,and the stability and environmental patterns of mutualism between plants and their root symbionts[J].The New Phytologist,2015,205(4):1503-1514.
参考文献 17
Hacquard S,Garrido-Oter R,Gonzalez A,et al.Microbiota and host nutrition across plant and animal kingdoms[J].Cell Host & Microbe,2015,17(5):603-616.
参考文献 18
Mishra P K,Bisht S C,Mishra S,et al.Coinoculation of rhizobium Leguminosarum-Pr1 with a cold tolerant pseudomonas sp.improves iron acquisition,nutrient uptake and growth of field pea(Pisum Sativum L.)[J].Journal of Plant Nutrition,2012,35(2):243-256.
参考文献 19
Bulgarelli D,Schlaeppi K,Spaepen S,et al.Structure and functions of the bacterial microbiota of plants[J].Annual Review of Plant Biology,2013,64:807-838.
参考文献 20
Mariotte P,Mehrabi Z,Bezemer T M,et al.Plant-soil feedback:Bridging natural and agricultural sciences[J].Trends in Ecology & Evolution,2018,33(2):129-142.
参考文献 21
Levy A,Conway J M,Dangl J L,et al.Elucidating bacterial gene functions in the plant microbiome[J].Cell Host & Microbe,2018,24(4):475-485.
参考文献 22
Wood S A,Karp D S,DeClerck F,et al.Functional traits in agriculture:agrobiodiversity and ecosystem services[J].Trends in Ecology & Evolution,2015,30(9):1-9.
参考文献 23
Lareen A,Burton F,Schafer P.Plant root-microbe communication in shaping root microbiomes[J].Plant Molecular Biology,2016,90(6):575-587.
参考文献 24
Faucon M P,Houben D,Lambers H.Plant functional traits:soil and ecosystem services[J].Trends in Plant Science,2017,22(5):385-394.
参考文献 25
Garcia J,Kao-Kniffin J.Microbial group dynamics in plant rhizospheres and their implications on nutrient cycling[J]. Frontiers Microbiology,2018,9:1516.
参考文献 26
Li X,Rui J,Xiong J,et al.Functional potential of soil microbial communities in the maize rhizosphere[J].PLoS ONE 2014,9(11):e112609.
参考文献 27
Bakker P A H M,Berendsen R L,Doornbos R F,et al.The rhizosphere revisited:root microbiomics[J].Frontiers in Plant Science,2013,4:165.
参考文献 28
Hiltner L.Über neuere erfahrungen und probleme auf dem gebiete der bodenbakteriologie unter besonderer berücksichtigung der gründüngung und brache[J].Arbeiten der Deutschen Landwirtschaftlichen Gesellschaft,1904,98:59-78.
参考文献 29
Rasmann S,Turlings T C.Root signals that mediate mutualistic interactions in the rhizosphere[J].Current Opinion in Plant Biology,2016,32:62-68.
参考文献 30
Bukhat S,Imran A,Javaid S,et al.Communication of plants with microbial world:Exploring the regulatory networks for PGPR mediated defense signaling[J].Microbiological Research,2020,238:126486.
参考文献 31
Venturi V,Keel C.Signaling in the rhizosphere[J].Trends in Plant Science,2016,21:187-198.
参考文献 32
Kuzyakov Y,Razavi B S.Rhizosphere size and shape:Temporal dynamics and spatial stationarity[J].Soil Biology & Biochemistry,2019,135:343-360.
参考文献 33
Jones D L,Nguyen C,Finlay R D.Carbon flow in the rhizosphere:carbon trading at the soil-root interface[J].Plant and Soil,2009,321:5-33.
参考文献 34
Vives-Peris V,de Ollas C,Gomez-Cadenas A,et al.Root exudates:from plant to rhizosphere and beyond[J].Plant Cell Reports,2020,39(1):3-17.
参考文献 35
Tian T,Reverdy A,She Q,et al.The role of rhizodeposits in shaping rhizomicrobiome[J].Environmental Microbiology Reports,2020,12(2):160-172.
参考文献 36
Sasse J,Martinoia E,Northen T.Feed your friends:Do plant exudates shape the root microbiome?[J].Trends in Plant Science,2018,23(1):25-41.
参考文献 37
Dakora F D,Phillips D A.Root exudates as mediators of mineral acquisition in low-nutrient environments[J].Plant and Soil,2002,245:35-47.
参考文献 38
Dennis P G,Miller A J,Hirsch P R.Are root exudatesmore important thanother sources of rhizodeposits in structuring rhizospherebacterial communities?[J].FEMS Microbiology Ecology,2010,72(3):313-327.
参考文献 39
Venturi V,Keel C.Signaling in the rhizosphere[J].Trends in Plant Science,2016,21:187-198.
参考文献 40
Yuan J,Zhao J,Wen T,et al.Root exudates drive the soil-borne legacy of aboveground pathogen infection[J]. Microbiome,2018,6(1):156.
参考文献 41
Das S,Chou M L,Jean J S,et al.Arsenic-enrichment enhanced root exudates and altered rhizosphere microbial communities and activities in hyperaccumulator pteris vittata[J]. Journal of Hazardous Materials,2017,325:279-287.
参考文献 42
Kandaswamy R,Baburaj B,Santhanam S,et al.Plant growth promoting rhizobacteria Bacillus subtilis RR4 isolated from rice rhizosphere induces malic acid biosynthesis in rice roots[J]. Canadian Journal of Microbiology,2017,64:20-27.
参考文献 43
Feng H,Zhang N,Du W,et al.Identification of chemotaxis compounds in root exudates and their sensing chemoreceptors in plant-growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9[J].Molecular Plant-Microbe Interactions,2018,31:995-1005.
参考文献 44
Zhang N,Yang D,Wang D,et al.Whole transcriptomic analysis of the plant-beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 during enhanced biofilm formation regulated by maize root exudates[J].BMC Genomics,2015,16:1-20.
参考文献 45
Chaparro J M,Badri D V,Bakker M G,et al.Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions[J].PLoS ONE,2013,8:e55731.
参考文献 46
Hu L F,Robert C A M,Cadot S,et al.Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota[J].Nature Communications,2018,9:171-184.
参考文献 47
Lugtenberg B,Kamilova F.Plant-growth-promoting rhizobacteria[J].Annual Review of Microbiology,2009,63:541-556.
参考文献 48
Compant S,Clement C,Sessitsch A.Plant growth-promoting bacteria in the rhizo-and endosphere of plants:their role,colonization,mechanisms involved and prospects for utilization[J]. Soil Biology & Biochemistry,2010,42(5):669-678.
参考文献 49
Dupuy L X,Silk W K.Mechanisms of early microbial establishment on growing root surfaces[J].Vadose Zone Journal,2016,15:1-13.
参考文献 50
Watt M,Hugenholtz P,White R,et al.Numbers and locations of native bacteria on field-grown wheat roots quantified by fluorescence in situ hybridization(FISH)[J].Environmental Microbiology,2006,8(5):871-884.
参考文献 51
Massalha H,Korenblum E,Malitsky S,et al.Live imaging of root-bacteria interactions in a microfluidics setup[J]. Proceedings of the National Academy of Sciences of the United States of America,2017,114:4549-4554.
参考文献 52
DeAngelis K M,Brodie E L,DeSantis T Z,et al.Selective progressive response of soil microbial community to wild oat roots [J].The ISME,2009,3(2):168-178.
参考文献 53
Zhalnina K,Louie K B,Hao Z,et al.Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly[J].Nature Microbiology,2018,3:470-480.
参考文献 54
Edwards J A,Santos-Medellín C M,Liechty Z,et al. Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice[J]. PLoS Biology,2018,16:1-28.
参考文献 55
de la Fuente Canto C,Simonin M,King E,et al.An extended root phenotype:the rhizosphere,its formation and impacts on plant fitness[J].The Plant Journal,2020,103(3):951-964.
参考文献 56
Edwards J,Cameron J,Santos-MedellÃn C,et al.Structure,variation,and assembly of the root-associated microbiomes of rice[J].Proceedings of the National Academy of Sciences of the United States of America,2015,112(8):911-920.
参考文献 57
Finkel O M,Castrillo G,Herrera P S,et al.Understanding and exploiting plant beneficial microbes[J].Curr Opin Plant Biol,2017,38:155-163.
参考文献 58
Lu T,Ke M J,Lavoie M,et al.Rhizosphere microorganisms can influence the timing of plant flowering[J].Microbiome,2018,6:231.
参考文献 59
Pieterse C M J,de Jonge R,Berendsen R L.The soil-borne supremacy[J].Trendsin Plant Science,2016,21(3):171-173.
参考文献 60
Korenblum E,Dong Y,Szymanski J,et al.Rhizosphere microbiome mediates systemic root metabolite exudation by rootto-root signaling[J].Proceedings of the National Academy of Sciences of the United States of America,2020,117(7):3874-3883.
参考文献 61
Santi C,Bogusz D,Franche C.Biological nitrogen fixation in non-legume plants[J].Annals of Botany London Oup Then Academic Press Then Oxford University Press,2013,111:743-767.
参考文献 62
Oldroyd G E D,Dixon R.Biotechnological solutions to the nitrogen problem[J].Current Opinion in Biotechnology,2014,26:19-24.
参考文献 63
Mus F,Crook M B,Garcia K,et al.Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes[J].Applied and Environmental Microbiology,2016,82(13):3698-3710.
参考文献 64
Smith S E,Read D J.Mycorrhizal symbiosis(3rd edition)[M].Cambridge:Academic Press,2008.
参考文献 65
Ferrol N,Azcon-Aguilar C,Perez-Tienda J.Review:arbuscular mycorrhizas as key players in sustainable plant phosphorus acquisition:an overview on the mechanisms involved [J].Plant Science,2019,280:441-447.
参考文献 66
Yang G,Yang X,Zhang W,et al.Arbuscular mycorrhizal fungi affect plant community structure under various nutrient conditions and stabilize the community productivity[J].Oikos,2016,125(4):576-585.
参考文献 67
Parihar M,Meena V S,Mishra P K,et al.Arbuscular mycorrhiza:a viable strategy for soil nutrient loss reduction[J].Archives of Microbiology,2019,201(6):723-735.
参考文献 68
Cui Y,Fang L,Guo X,et al.Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau,China[J].Soil Biology & Biochemistry,2018,116:11-21.
参考文献 69
Vessey J K.Plant growth promoting rhizobacteria as biofertilizers [J].Plant and Soil,2003,255:571-586.
参考文献 70
Adnan M,Shah Z,Fahad S,et al.Phosphate-solubilizing bacteria nullify the antagonistic effect of soil calcification on bioavailability of phosphorus in alkaline soils[J].Scientific Reports,2017,7:16131.
参考文献 71
Alori E T,Glick B R,Babalola O O.Microbial phosphorus solubilization and its potential for use in sustainable agriculture[J]. Frontier Microbiology,2017,8:971.
参考文献 72
Radzki W,Gutierrez M F J,Algar E,et al.Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture[J].Antonie Van Leeuwenhoek,2013,104:321-330.
参考文献 73
Sokol N W,Kuebbing S E,Karlsen-Ayala E,et al.Evidence for the primacy of living root inputs,not root or shoot litter,in forming soil organic carbon[J].The New Phytologist,2019,221(1):233-246.
参考文献 74
Zhang F G,Zhang Q G.Microbial diversity limits soil heterotrophic respiration and mitigates the respiration response to moisture increase[J].Soil Biology & Biochemistry,2016,98:180-185.
参考文献 75
Kummerli R,Schiessl K T,Waldvogel T,et al.Habitat structure and the evolution of diffusible siderophores in bacteria[J]. Ecology Letters,2014,17(12):1536-1544.
参考文献 76
Gu S,Wei Z,Shao Z,et al.Competition for iron drives phytopathogen control by natural rhizosphere microbiomes[J]. Nature Microbiology,2020,5(8):1002-1010.
参考文献 77
Bulgarelli D,Garrido-Oter R,Muench P C,et al.Structure and function of the bacterial root microbiota in wild and domesticated barley[J].Cell Host & Microbe,2015,17(3):392-403.
参考文献 78
Lemanceau P,Blouin M,Muller D,et al.Let the core microbiota be functional[J].Trends in Plant Science,2017,22(7):583-595.
参考文献 79
Zhang P,Li B,Wu J,et al.Invasive plants differentially affect soil biota through litter and rhizosphere pathways:a meta-analysis [J].Ecology Letter,2019,22(1):200-210.
参考文献 80
Jin T,Wang Y,Huang Y,et al.Taxonomic structure and functional association of foxtail millet root microbiome[J]. GigaScience,2017,6(10):1-12.
参考文献 81
Starr E P,Shi S J,Blazewicz S J,et al.Stable isotope informed genome-resolved metagenomics reveals that Saccharibacteria utilize microbially-processed plant-derived carbon[J]. Microbiome,2018,6:122.
参考文献 82
Vorholt J A,Vogel C,Carlstrom C I,et al.Establishing causality:Opportunities of synthetic communities for plant microbiome research[J].Cell Host & Microbe,2017,22(2):142-155.
参考文献 83
Zhang H,Chen W,Zhao B,et al.Sandy soils amended with bentonite induced changes in soil microbiota and fungistasis in maize fields[J].Applied Soil Ecology,2020,146:103378.
参考文献 84
York L M,Carminati A,Mooney S J,et al.The holistic rhizosphere:integrating zones,processes,and semantics in the soil influenced by roots[J].Journal of Experimental Botany,2016,67(12):3629-3643.
参考文献 85
Cordovez V,Dini-Andreote F,Carrion V J,et al.Ecology and evolution of plant microbiomes[J].Annual Review of Microbiology,2019,73:69-88.
参考文献 86
Liu W,Zhao Q,Zhang Z,et al.Enantioselective effects of imazethapyr on Arabidopsis thaliana root exudates and rhizosphere microbes[J].Science of the Total Environment 2020,716:137121.
参考文献 87
Bulgarelli D,Rott M,Schlaeppi K,et al.Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota[J].Nature,2012,488(7409):91-95.
参考文献 88
Thakur M P,Geisen S.Trophic regulations of the soil microbiome [J].Trends in Plant Science,2019,27(9):771-780.
参考文献 89
Richter A,Schöning I,Kahl T,et al.Regional environmental conditions shape microbial community structure stronger than local forest management intensity[J].Forest Ecology and Management,2018,409:250-259.
参考文献 90
Chai Y,Cao Y,Yue M,et al.Soil abiotic properties and plant functional traits mediate associations between soil microbial and plant communities during a secondary forest succession on the Loess Plateau[J].Frontier Microbiology,2019,10:895.
参考文献 91
Leff J W,Jones S E,Prober S M,et al.Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe[J].Proceedings of the National Academy of Sciences of the United States of America,2015,112(35):10967-10972.
参考文献 92
Jansson J K,Hofmockel K S.Soil microbiomes and climate change[J].Nature Reviews Microbiology,2020,18(1):35-46.
参考文献 93
Zheng Q,Hu Y,Zhang S,et al.Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity[J].Soil Biology & Biochemistry,2019,136:107521.
参考文献 94
Lucas J M,McBride S G,Strickland M S.Trophic level mediates soil microbial community composition and function[J]. Soil Biology & Biochemistry,2020,143:107756.
参考文献 95
Fierer N,Bradford M,Jackson R.Toward an ecological classification of soil bacteria[J].Ecology,2007,88:1354-1364.
参考文献 96
Prober S M,Leff J W,Bates S T,et al.Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide[J].Ecology Letters,2014,18(1):85-95.
参考文献 97
Wang H,Liu S,Kuzyakov Y,et al.Differentiating microbial taxonomic and functional responses to physical disturbance in bulk and rhizosphere soils[J].Land Degradation and Development,2020,31:2858-2871.
参考文献 98
Lauber C L,Ramirez K S,Aanderud Z,et al.Temporal variability in soil microbial communities across land-use types[J]. Isme Journal,2013,7(8):1641-1650.
参考文献 99
Mendes L,de Lima B M,Kuramae E,et al.Land-use system shapes soil bacterial communities in Southeastern Amazon region [J].Applied Soil Ecology,2015,95:151-160.
参考文献 100
Rodrigues J L M,Pellizari V H,Mueller R,et al.Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110:988-993.
参考文献 101
Lal R.Restoring soil quality to mitigate soil degradation[J]. Sustainability,2015,7(5):5875-5895.
参考文献 102
Eisenhauer N,Dobies T,Cesarz S,et al.Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110:6889-6894.
参考文献 103
Essarioui A,Kistler H C,Kinkel L L.Nutrient use preferences among soil Streptomyces suggest greater resource competition in monoculture than polyculture plant communities[J].Plant and Soil,2016,409:1-15.
参考文献 104
Essarioui A,LeBlanc N,Kistler H C,et al.Plant community richness mediates inhibitory interactions and resource competition between Streptomyces and Fusarium populations in the rhizosphere [J].Microbial Ecology,2017,74:156-157.
参考文献 105
van der Heijden M G A,de Bruin S,Luckerhoff L,et al.A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity,plant nutrition and seedling recruitment[J].Isme Journal,2016,10:389-399.
参考文献 106
Vacheron J,Desbrosses G,Bouffaud M L,et al.Plant growthpromoting rhizobacteria and root system functioning[J]. Frontiers in Plant Science,2013,4:356.
参考文献 107
Richardson A E,Barea J M,McNeill A M,et al.Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms[J].Plant and Soil,2009,321:305-339.
参考文献 108
Spohn M,Treichel N S,Cormann M,et al.Distribution of phosphatase activity and various bacterial phyla in the rhizosphere of Hordeum vulgare L.depending on P availability[J].Soil Biology & Biochemistry,2015,89:44-51.
参考文献 109
Menezes-Blackburn D,Giles C,Darch T,et al.Opportunities for mobilizing recalcitrant phosphorus from agricultural soils:a review[J].Plant and Soil,2018,427:5-16.
参考文献 110
Saha R,Saha N,Donofrio R S,et al.Microbial siderophores:a mini review[J].Journal of Basic Microbiology,2013,53:303-317.
参考文献 111
Willmann M,Gerlach N,Buer B,et al.Mycorrhizal phosphate uptake pathway in maize:vital for growth and cob development on nutrient poor agricultural and greenhouse soils[J].Frontiers in Plant Science,2013,4:1-15.
参考文献 112
Quiroga G,Erice G,Ding L,et al.The arbuscular mycorrhizal symbiosis regulates aquaporins activity and improves root cell water permeability in maize plants subjected to water stress[J].Plant Cell and Environment,2019,42:2274-2290.
参考文献 113
Meena R S,Vijayakumar V,Yadav G S,et al.Response and interaction of Bradyrhizobium japonicum and arbuscular mycorrhizal fungi in the soybean rhizosphere[J].Plant Growth Regulation,2018,84:207-223.
参考文献 114
Poole P,Ramachandran V,Terpolilli J.Rhizobia:from saprophytes to endosymbionts[J].Nature Reviews Microbiology,2018,16:291-303.
参考文献 115
Santi C,Bogusz D,Franche C.Biological nitrogen fixation in non-legume plants[J].Annals of Botany London Oup Then Academic Press Then Oxford University Press,2013,111:743-767.
参考文献 116
Oldroyd G E D,Dixon R.Biotechnological solutions to the nitrogen problem[J].Current Opinion in Biotechnology,2014,26:19-24.
参考文献 117
Mus F,Crook M B,Garcia K,et al.Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes[J].Applied and Environmental Microbiology,2016,82(13):3698-3710.
参考文献 118
Friesen M L.Widespread fitness alignment in the legumerhizobium symbiosis[J].The New Phytologist,2012,194:1096-1111.
参考文献 119
Jansson J K,Hofmockel K S.The soil microbiome-from metagenomics to metaphenomics[J].Current Opinion in Microbiology,2018,43:162-168.
参考文献 120
Thompson L R,Sanders J G,McDonald D,et al.A communal catalogue reveals Earth’s multiscale microbial diversity[J]. Nature,2017,551(7681):457-463.
参考文献 121
Zhang C,Zhang Y,Ding Z,et al.Contribution of microbial inter-kingdom balance to plant health[J].Molecular Plant,2019,12(2):148-149.
参考文献 122
Trivedi C,Delgado-Baquerizo M,Hamonts K,et al.Losses in microbial functional diversity reduce the rate of key soil processes [J].Soil Biology & Biochemistry,2019,135:267-274.
参考文献 123
Zhang X,Johnston E R,Wang Y,et al.Distinct drivers of core and accessory components of soil microbial community functional diversity under environmental changes[J].mSystems,2019,4(5):1-17.
目录contents

    摘要

    土壤中拥有非常丰富的微生物群落,这些微生物对植物与土壤之间的交互作用起到了非常重要的调节作用,尤其是根际微生物,其中一些重要的功能微生物作为主要的共生功能体参与到植物根系养分转化中。对根际与根际土壤微生物的形成及其与土壤环境、植物根系之间互作关系的最新研究进展进行了综述,这些研究成果均肯定了根际微生物群落和多样性是积极促进植物个体和维持生态系统功能的活跃因子,并展望了今后土壤微生物在多组学、植物功能性状和全球变化方面的研究前景。

    Abstract

    There is a remarkable diversity of microorganisms in soil which play a pivotal role in regulating the interaction between plant and soil.In particular,microbes in the rhizosphere,some of the important functional microorganisms participate in the plant root nutrient cycling and transformation as the main holobiont.The recent research progress in the research on the formation of rhizosphere and rhizosphere soil microbes,and the interaction between rhizosphere soil microbes and soil environment as well as plant roots are reviewed.All of these findings have firmly confirmed that the rhizosphere microbial community and diversity are active factors in promoting individual plants and maintaining ecosystem functions.The research prospects of soil microbe in multi-component,plant functional traits and global change are highlighted which will be crucial to research in the future.

  • 土壤生态系统的功能得益于土壤生物的发展、活动和维持,而土壤生物又依赖于植物,因为植物通过凋落物、根系分泌物、黏液和根系残余物以及根系活动为团聚体的形成增加了重要的碳源[1]。地球上生物体都有各种各样的微生物组[2-3],且占据较大的生物量[4]。在土壤中也含有丰富的微生物生命体,统称为土壤微生物群落[2],并且是所有土壤和植物系统的自然居民,在这些系统中,它们以其巨大的多样性和多功能性而占主导地位,许多微生物功能与土壤中养分的有效性、可获得性、循环利用和修复有关[5],也是指示陆地生态系统功能的关键[6]。土壤微生物主要由土壤细菌、古生菌和真菌组成,广泛分布在根际和非根际土壤中,其多样性和丰富度对调节有机质分解、生产力、土壤碳动态和养分循环等生态系统功能起着关键作用[7-10]。植物与土壤之间的交互作用塑造了植物群落结构[11],Bever[12]最早提出了植物-土壤反馈理论(PSF),即植物通过叶片凋落物和根系分泌的物质来影响根际土壤微生物群落和理化性质,反过来,微生物的这些理化性状和生物学性状又影响宿主植物及其共存植物[13]。当一种植物改变了土壤环境,使同种栽培土壤中个体的生长大于(或小于)异种栽培土壤中个体的生长时,这种反馈被定义为正(或负) 的PSF[14-15],即土壤微生物群落可以是促进、抑制或不影响植物的生长[16],如同动物的肠道一样,植物吸收养分和水分的根系,也被与根相关的复杂微生物群落所包围[17],并与植物体存在直接或间接关系,达到互惠共生,在营养循环与养分获取中起关键作用[18-19]。例如,通过增加有机投入来完成养分循环,并以提高土壤养分有效性为目标来引导生态群落,这是一种积极的PSF效应[20]

  • 植物不同器官及其内部都定居着不同的细菌群落,其中根与叶表面相关的细菌群落特征最为明显[19],这些微生物群落组装与植物多样性及生态系统功能之间的相互作用关系非常密切[8]。某些微生物组被营养丰富的微环境吸引到不同的植物表面,反过来,这些微生物群体中的一些功能菌群为它们的宿主提供互惠[21]。因此,关于研究植物-土壤反馈机理,了解植物与微生物群落之间的相互作用与关系及开发有益微生物制剂来调控微生物群落组成,以协同促进植物的生长等方法,显得越来越重要[22-24]。植物与土壤环境之间的交互作用关键在于植物根际,根际微生物对植物养分吸收和土壤环境的调控[25-27],逐渐成为微生物生态领域的研究热点。本文以“土壤微生物”“根系分泌物”“根际微生物与土壤环境”“根际微生物与植物宿主” 等关键词,在Web of Science的核心合集进行了检索,通过归纳和分析,综述了植物根际与根际微生物的形成及其对植物和根际土壤的调控方面的最新研究进展,并展望了研究前景,以便增强人们对根际微生物在根-土界面的功能关系的认识,为今后开展相关研究提供参考。

  • 1 根际与根际微生物

  • 根际最早是Hiltner[28]提出来的,即为根周围受根功能强烈影响的土壤体积,植物根际存在普遍的交互作用,主要由根系分泌的光合同化产物所介导[29]。更重要的是,根际也是微生物与植物进行交互的界面,是由细菌、古生菌、真菌、线虫、节肢动物及草食动物等多种生物组成的复杂生态系统,其中,根际微生物的组装系统包括根瘤菌、菌根真菌、促进植物生长的细菌和真菌以及线虫,它们都与植物发生了相互作用,这些通常是对植物有益的。研究发现,在一株健康的植物体上,其地上和地下各器官天然地分布着不同分类结构的微生物组装系统,它们与宿主植物紧密相连,发挥着保护植物和促进生长的多种功能,且大多是非致病微生物,对植物有直接的益处,这种益处表现在:根际细菌通过改善植物的生物、非生物胁迫或诱导植物的防御系统来间接帮助植物生长[30-31],这种受根际影响的土壤体积也是决定陆地生态系统中碳、养分及水的过程、动态和循环的最重要的微生物研究热点之一[32]。因此,根际成了最活跃的微生物栖息地之一,也成了微生物生态学领域的研究热点。

  • 2 植物根际与微生物间的交互关系

  • 2.1 根系分泌物塑造了根际微生物

  • 在自然界中,植物永远在向环境分泌和释放各种化合物,通常发生在植物的不同器官,如子叶、芽、根系等,这个分泌过程也称为渗出,常为固体、液体或气体的形式。其中,根系分泌物成了重要的方式之一,根系分泌物与根际互作密切相关,如碳、氮循环[33-34]。植物根系分泌物是形成根际微生物的重要因素[35-36],根系分泌物的组成常见的有糖类、氨基酸、有机酸、脂肪酸、甾醇类、维生素及酶等(表1)[37-38]。根系分泌的各种初级代谢产物(如有机酸、碳水化合物和氨基酸等)和次级代谢产物(如生物碱、萜类和酚类物质等),能够发挥塑造、传递信号或干扰等作用来影响根际微生物区系,根际释放或渗出的这些物质一般以牺牲植物的碳和氮为代价,最终促进和招募有益微生物,抵御了有害微生物。与非根际土壤相比,根际具有较高的微生物活性、丰度和多样性[39],由此,形成了复杂的根际圈,而根际微生物的渗出物同样也改变了植物根系的分泌物质[34]。如在拟南芥中接种了一种假单胞菌的研究中发现,植物可以构建自身的有益根际微生物群落,其主要的途经是通过改变根际分泌模式来形成有益根际群落,以应对外界病原体,从而有利于生长和繁衍后代[40]。在采用蜈蚣草(Pteris vittata)来修复砷污染土壤的研究中发现,砷的刺激能够显著提高蜈蚣草根系分泌物和根际氮、磷、硫循环过程中的土壤酶活性[41]。另一个重要原因是,根尖沉积物含有丰富的碳、氮元素,能够选择并促进根际微生物组的形成和代谢活力,并在时空上具有动态变化特征,其组成主要受寄主植物和环境因素的影响[35]

  • 表1 植物根系分泌物组成

  • 根际虽然形成了微生物组,但是这种微生物根际组合是动态变化的,主要受根际沉积物的影响,根际沉积物可以作为微生物的主要碳源、信号分子或抗菌剂[42]。研究证实,根系分泌物具有重要的作用,如有机酸[42]、氨基酸[43]、糖类[44]等可作为有益菌在不同植物模式下的化学引诱剂,从而有利于根际微生物的塑造和定殖[45],进而驱动植物-土壤对生长和防御的反馈[46]。不同的根系分泌物改变了根系上微生物的分布,并通过土壤剖面改变了根尖生长的运动学[47-49]。通过对根分泌信号分子的趋化运动吸引微生物靠近根表面,同时根伸长率影响根表面黏附和纵向运输的动态,通常在根尖周围会聚集大量不同数量的活性细菌,而与根伸长区相关的微生物类群则较少[50-51]。从根的伸长区到成熟区,细菌的密度越来越小,这可能是因为根表皮细胞的快速膨胀稀释了驻留在根表面的微生物细胞,直到表皮细胞分裂并在成熟区形成连续的生物膜。根际细菌的分散和趋化运动也可能决定了根际微生物群落的变化[4951-52]。在植物生命周期的特定时期产生的根际分泌物也塑造了不同的微生物群落,如拟南芥[45]发育早期和晚期相关的根际微生物群落,燕麦[53]苗期丰富的蔗糖有助于根际微生物群落的形成,而在营养期则转化成更多的芳香化合物和氨基酸来提高防御,还有水稻[54] 等,均在不同的发育时段和根际相关微生物的变化形成相互协调的模式,以提高免疫和营养需求。

  • 2.2 根际微生物促进植物的健康生长

  • 植物已经进化出相互作用的机制,支持并形成了大量有益微生物群,分布在根表周围及根组织内部,形成了内共生体系,并且是植物营养的关键[55]。大量研究表明,健康的植物是根与根际微生物有益交互作用的结果,其潜在机制多种多样,包括提高养分利用率、促进植物生长、抑制病害、影响开花时期等[56-58],而根际微生物群落在植物生长、营养和健康方面起着重要作用[59],可诱导根系分泌物的系统性调整,引起芽和系统根代谢及转录组的变化[60]。在营养循环中更多的是由微生物介导的,潜在的群体动态影响着植物的生长,如根瘤菌和某些自由生活的重氮营养体可以形成群体,通过代谢过程固定大气中的氮,并使植物易于吸收养分[61-63]。陆地74%的植物都与丛枝菌根真菌(AMF)建立关系[64],AMF共生在植物磷营养中发挥着关键作用,通过扩展的真菌网络更有效地溶解和摄取正磷酸盐,对植物磷的吸收贡献高达90%[65]。植物与AMF的共生相互作用在土壤养分有效性较低的生态系统中非常重要,虽然在农业生态系统中会受到施肥的干扰,但大多数植物都会和AMF形成共生关系[66-67]。已有研究表明,在干旱寡氧生态系统中,群落水平上的土壤物理性质和植被特征是影响根际生态酶化学计量学和微生物养分获取的最重要因素之一。更重要的是,根际微生物营养代谢受氮和磷的共同耦合限制[68]。一些微生物类群可以通过产生细胞外化合物和酶来调动土壤中的磷,从而增加植物利用磷的有效性;而微量元素铁可通过不相关的微生物类群,产生铁载体等化合物,转化成植物可利用的形式[69-72]。有研究表明,在对土壤中活根和凋落物的输入进行差异跟踪发现,活根输入在形成慢循环、矿物相关的有机碳以及快速循环、颗粒有机碳方面的效率是凋落物输入的2~13倍,而土壤微生物群落更有效地合成活根输入(被称为“体内微生物转化途径”)[73]。研究指出,微生物多样性的丧失在很大程度上增强了土壤呼吸,也加剧了土壤呼吸对水分的响应,进一步说明了土壤微生物群落的完整性是维持土壤碳储量功能的关键[74]。在干旱和养分贫瘠的荒漠草原生态系统中,土壤微生物群落与地上植被对氮、磷有很强的养分竞争,这种竞争表现出微球菌目、微球菌科和毛霉科的微生物类群与微生物氮限制显著相关,嗜热菌类群与微生物磷限制显著相关,这些与微生物营养限制相关类群被认为是形成微生物群落和功能的关键,除此之外,氮的形态,如铵根离子和硝酸根离子均对微生物群落组成产生影响[6]。三价铁离子是根际微生物相互争夺的稀缺资源,为了获取这一资源,微生物会产生铁载体[75]。最新的研究表明,病原抑制菌群成员产生病原体不能使用的铁载体,改变了微生物组-病原体的相互作用,具有生长抑制铁载体的根际微生物组成员在体外以及在自然和温室土壤中均能抑制病原菌,保护番茄植株免受侵染,而具有促生长铁载体的根际微生物群落成员往往在竞争中处于劣势,并促进了病原体对植物的侵染[76]

  • 宿主植物根际优势群落的形成,对植物的健康生长更有意义。研究表明,宿主基因型也会影响这些群落的整体组成[1977]。与特定的宿主植物系统相关的微生物群落称为核心微生物群,核心菌群是基于其分类组成和功能,而这个功能核心微生物群包括了携带复制基因的微生物载体,其具有完整生物的基本功能[78],如入侵植物可能支持更多的分解者,进而通过凋落物效应刺激养分释放,并通过减少根被采食而增强养分吸收,在根际形成更多的共生体[79]。有研究显示,宿主植物丰富了根面上的特定细菌和功能,潜在的有益细菌可作为农业生物肥料开发的宝贵知识基础[80],如芽孢杆菌,有研究报道,根状芽孢杆菌是首个被描述为与根际相关的糖化细菌门成员[81]。也有学者认为,植物根际相关的本地微生物群落对宿主表型(如生长和健康)具有极其重要的作用[82]。因此,根据宿主根际微生物组的特点,开发植物益生菌类的微生物制剂以提高产量并提供植物抵抗生物和非生物胁迫的能力,同时尽量减少化学输入,这将有助于加深对植物-微生物相互作用机制的理解[21]。如通过施入膨润土提高了玉米的产量,重塑了沙质土壤中的微生物功能团,这是土壤结构改善以及水分和养分保持的结果[83]。除此之外,植物还在根系(根际) 的影响下,进化出改变土壤理化性质和微生物群落的机制,以改善其觅食活动[84]。定居在植物根系及其内部的微生物以及由根系引起的土壤性质的变化,触发了植物重要功能的调整,如根系发育和生理上的改变[55],并为它们的宿主提供了许多生命维持功能[85],如通过使用对映体除草剂咪唑乙烟酸(R-S-IM)接触拟南芥7d后,结果发现,拟南芥通过增加有益根际菌株相对丰度来抵抗除草剂的胁迫,如芽孢杆菌和Ramlibacter,原因在于R-IM处理使拟南芥根系产生大量的氨基酸、有机酸、糖和其他代谢产物[86],进而形成了较多有益菌株的根际环境。

  • 3 土壤环境与根际微生物之间的交互作用

  • 3.1 土壤环境对根际微生物的影响

  • 土壤环境不仅决定了微生物的接种,而且也决定了植物的营养有效性,反过来又影响了植物的生长、根系结构和分泌以及微生物群落组成[87]。土壤微生物群落的结构和功能取决于捕食、植物输入和土壤中存在的非生物变量之间的相互作用[88]。非生物变量即是土壤非生物因子,是土壤环境必不可少的一部分。土壤环境作为微生物的栖息地,对微生物群落结构和多样性有着重要的影响[89],如在次生林演替的研究中发现,土壤的真菌和细菌类群与土壤非生物因素密切相关[90]。相反,土壤微生物群落,对生态系统功能和土壤肥力的维持也至关重要[91],它们调节着生物地球化学循环中至关重要的大量、微量营养元素[92]。微生物在调节土壤碳、氮、磷循环过程中起着非常关键的作用,但其组成与多样性却受土壤环境的影响。研究发现,土壤碳循环过程主要受土壤环境因素的直接影响,而土壤氮循环过程却通过构建微生物群落来实现,进一步强调微生物群落对氮循环的重要性[93]。根际是土壤微生物最活跃的区域,根际土壤是研究土壤微生物活动、多样性和功能的重要突破点。在改变土壤营养环境的研究中,营养水平是影响土壤微生物群落组成和功能的关键[94]。根际土壤主要受根系分泌物的影响,这些分泌物富含有机碳化合物,导致微生物组在根际组装,有机碳的数量决定了典型的共生微生物在丰富的有机环境中生长良好,如变形菌门、拟杆菌门或放线菌门[95-96]。在青藏高原藏猪物理拔根干扰下,根际土壤持续降低了根际细菌的多样性,增加了变形门菌、放线菌和拟杆菌的相对丰度,却降低了酸杆菌、绿弯菌和硝化螺旋菌的相对丰度,对碳的利用潜力下降了30.4%[97],土壤环境的变化导致根际微生物组成发生了变化,进而影响了土壤碳、氮循环过程。土地利用转换的研究很好地说明了这一点,土壤管理措施的变化不仅影响植物多样性和生长,而且影响土壤水分、质地、pH值和养分有效性等属性[98-99]。如亚马逊雨林向农业生态系统的转变导致了土壤碳和pH值增加,改变了微生物多样性,酸性细菌物种相对丰度降低[100]

  • 3.2 根际微生物促进了土壤养分的循环

  • 微生物群落被视为真核宿主的功能驱动者,对植物而言,微生物群可以扩展其宿主的基因组和代谢能力,提供或促进一系列基本的生命维持功能,包括营养获取、免疫调节和生物(非生物)胁迫[85]。而根际微生物介导的营养循环的互惠效应在调节土壤健康和土地开发方面比周围的非根际土壤发挥了更重要的作用[101]。根际为微生物群落的建立起富含碳生态位的作用,而与之相反的是,大量土壤中的碳和其他营养物质会被异养微生物迅速耗尽[36]。研究发现,在局部范围内,较高的植物多样性与较高的微生物多样性相关,但环境因素对微生物多样性的影响大于植物多样性[96102]。有趣的是,与来自低植物多样性环境的分离株相比,高植物多样性的土壤分离株始终表现出非狭窄的生态位和较少的资源竞争[103-104]。植物可以与多种微生物形成多种共生关系,提供植物一半以上的营养需求[105]。而生活在根际圈的无数微生物中,只有一小部分能与植物建立共生的相互作用。而非共生微生物也可以与植物形成不严格的互惠或共栖关系,仍然为植物营养提供明显的好处。如腐生微生物通过矿化土壤有机质和溶解土壤非生物有效性养分,从而促进植物养分的吸收[55106]。许多细菌(如假单胞菌、芽孢杆菌)和真菌(如青霉菌、曲霉)能够通过分泌有机酸(如草酸、柠檬酸)使土壤矿质磷酸盐溶解,从而导致局部酸化或与磷酸盐结合的阳离子螯合[107]。而变形门菌、AMF、Ectomycoral真菌等微生物,可通过提高细胞外磷酸酶活性,矿化土壤有机磷,供植物吸收[108-109]。根际微生物还通过产生铁载体,以螯合铁的形式来促进植物对铁的吸收[76110]

  • 能够促进土壤养分循环和协助植物吸收氮、磷的重要真菌是AMF。在有效磷含量低的农业生态系统中,地上生物量和粮食产量变化可反映AMF在植物根际转运磷元素的重要性[111]。最近的研究发现,AMF会影响玉米植株的水通道蛋白活性,在缺水情况下增加水分输送,从而提高幼苗的光合能力[112]。有研究报道,大豆接种AMF后,建立了共生关系,便可以提高结瘤和固氮特性[113]。豆科植物通过根际定殖固氮菌来转化氮素营养,形成特殊的根瘤形态,具有共生关系。在这种共生关系中,植物向固氮细菌提供二羧酸盐 (如l-苹果酸、琥珀酸、富马酸盐等),作为微生物的能源和碳源,而这类细菌反过来向植物提供氨[114],根瘤菌也可以和某些自由生活的固氮细菌形成共生群体,通过代谢过程固定大气中的氮,并使植物易于吸收[115-117]。在许多植物宿主和根瘤菌共生体中,2种共生关系成员之间存在明显的适应度校准,且植物地上生物量和根瘤菌或根瘤菌生物量之间存在显著的正相关关系[118]

  • 4 研究前景与展望

  • 4.1 多组学综合应用研究前景

  • 相关研究表明,宏基因组学可以预测微生物群落功能潜力,未来研究的前沿是微观领域的探索,侧重于基因组预测、基因组与表型组关系、通量组学和建模技术的应用,结合代谢组学、成像技术,在识别和跟踪土壤生物间信号分子和代谢物的交换方面有很大的前景[119]。特别是使用精确的序列而不是聚类的操作分类单元,使细菌和古生物核糖体RNA基因序列能够在多个研究中被跟踪[120]。研究细菌基因和分子对其保护作用的特性,并确定调控根微生物群组装的宿主分子成分仍然很重要,这将有助于理解植物如何协调环境微生物的选择以在自然界生存[121]。因此,未来可基于宏基因组研究的基础上,开展基因组、代谢组及多组学技术、通量组学和建模技术,研究植物根系分泌物[60]、根系黏液与根际微生物组、根表及根内微生物组的互作关系,进而揭示矿物元素迁移规律。

  • 4.2 植物功能性状相关联的微生物组与生态系统功能之间的关系

  • 微生物功能多样性与特定生态系统功能之间的关系没有冗余,与生物和非生物环境因素变化相关的土壤微生物功能多样性的丧失可能对陆地生态系统中的特殊土壤功能产生重要影响[122]。植物功能性状多样性与微生物功能多样性对生态系统功能多样性的维持和促进是近年来研究的热点,如植物根际土壤[23]与植物叶片[10]功能性状相关的微生物群落如何介导生产力,进而影响生态系统功能等。根际微生物群落组成和多样性不仅与土壤的非生物因子密切相关,而且与植物资源获取和利用相关的功能性状密切相关,植物性状可能是植物群落和土壤微生物群落之间的桥梁纽带,这需要更多的研究来量化这些由植物性状介导的根际微生物特性和植物群落动态之间的关系[90],尤其是根际微生物对寄主的表型可塑性起着重要作用,有助于宿主植物对环境的适应能力[55]。因此,控制扩展根表型的遗传学与可持续生产以及表型相关的微生物组与生态系统功能之间的关系是未来研究的重点。

  • 4.3 全球气候变化与微生物组成及其多样性的关系

  • 在全球气候变化的背景下,不同时空尺度的非生物因子和人类活动影响了土壤微生物的组成和多样性,由此导致功能成分发生变化,而微生物的功能成分对植物个体和群落水平的整体影响又非常重要。如水氮耦合效应将可能改变土壤微生物群落,已有研究证实了氮的添加主要通过氮循环过程影响核心群落基因,而水的添加主要通过碳循环过程调节辅助群落基因[123]。今后在土壤-微生物-植物相互作用的研究中,采取实验与观察相结合的方法,将土壤环境作为一个整体,通过模拟气候变化,或改进和增加微生物群落结构,预测土壤系统的多功能特性[93],进一步揭示植物与土壤的互作对气候变化的响应。

  • 参考文献

    • [1] Vezzani F M,Anderson C,Meenken E,et al.The importance of plants to development and maintenance of soil structure,microbial communities and ecosystem functions[J].Soil and Tillage Research,2018,175:139-149.

    • [2] Fierer N.Embracing the unknown:disentangling the complexities of the soil microbiome[J].Nature Reviews Microbiology,2017,15(10):579-590.

    • [3] Bahram M,Hildebrand F,Forslund S K,et al.Structure and function of the global topsoil microbiome[J].Nature,2018,560:233-237.

    • [4] Bar-On Y M,Phillips R,Milo R.The biomass distribution on Earth[J].Proc Natl Acad Sci USA,2018,115(25):6506-6511.

    • [5] Sahu P K,Singh D P,Prabha R,et al.Connecting microbial capabilities with the soil and plant health:options for agricultural sustainability[J].Ecological Indicators,2019,105:601-612.

    • [6] Cui Y,Fang L,Guo X,et al.Responses of soil microbial communities to nutrient limitation in the desert-grassland ecological transition zone[J].Science of the Total Environment,2018,642:45-55.

    • [7] Singh B K,Bardgett R D,Smith P,et al.Microorganisms and climate change:terrestrial feedbacks and mitigation options[J]. Nature Reviews Microbiology,2010,8(11):779-790.

    • [8] Bardgett R D,van der Putten W H.Belowground biodiversity and ecosystem functioning[J].Nature,2014,515:505-511.

    • [9] Wagg C,Bender S F,Widmer F,et al.Soil biodiversity and soil community composition determine ecosystem multifunctionality [J].Proc Natl Acad Sci U S A,2014,111(14):5266-5270.

    • [10] Laforest-Lapointe I,Paquette A,Messier C,et al.Leaf bacterial diversity mediates plant diversity and ecosystem function relationships[J].Nature,2017,546:145-147.

    • [11] Ke P J,Miki T,Ding T S.The soil microbial community predicts the importance of plant traits in plant-soil feedback[J]. The New Phytologist,2015,206(1):329-341.

    • [12] Bever J D.Soil community feedback and the coexistence of competitors:conceptual frame works and empirical tests[J]. The New Phytologist,2003,157:465-473.

    • [13] Ehrenfeld J G,Ravit B,Elgersma K.Feedback in the plantsoil system[J].Annual Review of Environment and Resources,2005,30(1):75-115.

    • [14] Bever J D,Westover K M,Antonovics J.Incorporating the soil community into plant population dynamics:the utility of the feedback approach[J].Journal of Ecology,1997,85:561-573.

    • [15] Pernilla B E,Van der Putten W H,Bakker E J,et al.Plantsoil feedback:experimental approaches,statistical analyses and ecological interpretations[J].Journal of Ecology,2010,98(5):1063-1073.

    • [16] Bever J D.Preferential allocation,physio-evolutionary feedbacks,and the stability and environmental patterns of mutualism between plants and their root symbionts[J].The New Phytologist,2015,205(4):1503-1514.

    • [17] Hacquard S,Garrido-Oter R,Gonzalez A,et al.Microbiota and host nutrition across plant and animal kingdoms[J].Cell Host & Microbe,2015,17(5):603-616.

    • [18] Mishra P K,Bisht S C,Mishra S,et al.Coinoculation of rhizobium Leguminosarum-Pr1 with a cold tolerant pseudomonas sp.improves iron acquisition,nutrient uptake and growth of field pea(Pisum Sativum L.)[J].Journal of Plant Nutrition,2012,35(2):243-256.

    • [19] Bulgarelli D,Schlaeppi K,Spaepen S,et al.Structure and functions of the bacterial microbiota of plants[J].Annual Review of Plant Biology,2013,64:807-838.

    • [20] Mariotte P,Mehrabi Z,Bezemer T M,et al.Plant-soil feedback:Bridging natural and agricultural sciences[J].Trends in Ecology & Evolution,2018,33(2):129-142.

    • [21] Levy A,Conway J M,Dangl J L,et al.Elucidating bacterial gene functions in the plant microbiome[J].Cell Host & Microbe,2018,24(4):475-485.

    • [22] Wood S A,Karp D S,DeClerck F,et al.Functional traits in agriculture:agrobiodiversity and ecosystem services[J].Trends in Ecology & Evolution,2015,30(9):1-9.

    • [23] Lareen A,Burton F,Schafer P.Plant root-microbe communication in shaping root microbiomes[J].Plant Molecular Biology,2016,90(6):575-587.

    • [24] Faucon M P,Houben D,Lambers H.Plant functional traits:soil and ecosystem services[J].Trends in Plant Science,2017,22(5):385-394.

    • [25] Garcia J,Kao-Kniffin J.Microbial group dynamics in plant rhizospheres and their implications on nutrient cycling[J]. Frontiers Microbiology,2018,9:1516.

    • [26] Li X,Rui J,Xiong J,et al.Functional potential of soil microbial communities in the maize rhizosphere[J].PLoS ONE 2014,9(11):e112609.

    • [27] Bakker P A H M,Berendsen R L,Doornbos R F,et al.The rhizosphere revisited:root microbiomics[J].Frontiers in Plant Science,2013,4:165.

    • [28] Hiltner L.Über neuere erfahrungen und probleme auf dem gebiete der bodenbakteriologie unter besonderer berücksichtigung der gründüngung und brache[J].Arbeiten der Deutschen Landwirtschaftlichen Gesellschaft,1904,98:59-78.

    • [29] Rasmann S,Turlings T C.Root signals that mediate mutualistic interactions in the rhizosphere[J].Current Opinion in Plant Biology,2016,32:62-68.

    • [30] Bukhat S,Imran A,Javaid S,et al.Communication of plants with microbial world:Exploring the regulatory networks for PGPR mediated defense signaling[J].Microbiological Research,2020,238:126486.

    • [31] Venturi V,Keel C.Signaling in the rhizosphere[J].Trends in Plant Science,2016,21:187-198.

    • [32] Kuzyakov Y,Razavi B S.Rhizosphere size and shape:Temporal dynamics and spatial stationarity[J].Soil Biology & Biochemistry,2019,135:343-360.

    • [33] Jones D L,Nguyen C,Finlay R D.Carbon flow in the rhizosphere:carbon trading at the soil-root interface[J].Plant and Soil,2009,321:5-33.

    • [34] Vives-Peris V,de Ollas C,Gomez-Cadenas A,et al.Root exudates:from plant to rhizosphere and beyond[J].Plant Cell Reports,2020,39(1):3-17.

    • [35] Tian T,Reverdy A,She Q,et al.The role of rhizodeposits in shaping rhizomicrobiome[J].Environmental Microbiology Reports,2020,12(2):160-172.

    • [36] Sasse J,Martinoia E,Northen T.Feed your friends:Do plant exudates shape the root microbiome?[J].Trends in Plant Science,2018,23(1):25-41.

    • [37] Dakora F D,Phillips D A.Root exudates as mediators of mineral acquisition in low-nutrient environments[J].Plant and Soil,2002,245:35-47.

    • [38] Dennis P G,Miller A J,Hirsch P R.Are root exudatesmore important thanother sources of rhizodeposits in structuring rhizospherebacterial communities?[J].FEMS Microbiology Ecology,2010,72(3):313-327.

    • [39] Venturi V,Keel C.Signaling in the rhizosphere[J].Trends in Plant Science,2016,21:187-198.

    • [40] Yuan J,Zhao J,Wen T,et al.Root exudates drive the soil-borne legacy of aboveground pathogen infection[J]. Microbiome,2018,6(1):156.

    • [41] Das S,Chou M L,Jean J S,et al.Arsenic-enrichment enhanced root exudates and altered rhizosphere microbial communities and activities in hyperaccumulator pteris vittata[J]. Journal of Hazardous Materials,2017,325:279-287.

    • [42] Kandaswamy R,Baburaj B,Santhanam S,et al.Plant growth promoting rhizobacteria Bacillus subtilis RR4 isolated from rice rhizosphere induces malic acid biosynthesis in rice roots[J]. Canadian Journal of Microbiology,2017,64:20-27.

    • [43] Feng H,Zhang N,Du W,et al.Identification of chemotaxis compounds in root exudates and their sensing chemoreceptors in plant-growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9[J].Molecular Plant-Microbe Interactions,2018,31:995-1005.

    • [44] Zhang N,Yang D,Wang D,et al.Whole transcriptomic analysis of the plant-beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 during enhanced biofilm formation regulated by maize root exudates[J].BMC Genomics,2015,16:1-20.

    • [45] Chaparro J M,Badri D V,Bakker M G,et al.Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions[J].PLoS ONE,2013,8:e55731.

    • [46] Hu L F,Robert C A M,Cadot S,et al.Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota[J].Nature Communications,2018,9:171-184.

    • [47] Lugtenberg B,Kamilova F.Plant-growth-promoting rhizobacteria[J].Annual Review of Microbiology,2009,63:541-556.

    • [48] Compant S,Clement C,Sessitsch A.Plant growth-promoting bacteria in the rhizo-and endosphere of plants:their role,colonization,mechanisms involved and prospects for utilization[J]. Soil Biology & Biochemistry,2010,42(5):669-678.

    • [49] Dupuy L X,Silk W K.Mechanisms of early microbial establishment on growing root surfaces[J].Vadose Zone Journal,2016,15:1-13.

    • [50] Watt M,Hugenholtz P,White R,et al.Numbers and locations of native bacteria on field-grown wheat roots quantified by fluorescence in situ hybridization(FISH)[J].Environmental Microbiology,2006,8(5):871-884.

    • [51] Massalha H,Korenblum E,Malitsky S,et al.Live imaging of root-bacteria interactions in a microfluidics setup[J]. Proceedings of the National Academy of Sciences of the United States of America,2017,114:4549-4554.

    • [52] DeAngelis K M,Brodie E L,DeSantis T Z,et al.Selective progressive response of soil microbial community to wild oat roots [J].The ISME,2009,3(2):168-178.

    • [53] Zhalnina K,Louie K B,Hao Z,et al.Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly[J].Nature Microbiology,2018,3:470-480.

    • [54] Edwards J A,Santos-Medellín C M,Liechty Z,et al. Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice[J]. PLoS Biology,2018,16:1-28.

    • [55] de la Fuente Canto C,Simonin M,King E,et al.An extended root phenotype:the rhizosphere,its formation and impacts on plant fitness[J].The Plant Journal,2020,103(3):951-964.

    • [56] Edwards J,Cameron J,Santos-MedellÃn C,et al.Structure,variation,and assembly of the root-associated microbiomes of rice[J].Proceedings of the National Academy of Sciences of the United States of America,2015,112(8):911-920.

    • [57] Finkel O M,Castrillo G,Herrera P S,et al.Understanding and exploiting plant beneficial microbes[J].Curr Opin Plant Biol,2017,38:155-163.

    • [58] Lu T,Ke M J,Lavoie M,et al.Rhizosphere microorganisms can influence the timing of plant flowering[J].Microbiome,2018,6:231.

    • [59] Pieterse C M J,de Jonge R,Berendsen R L.The soil-borne supremacy[J].Trendsin Plant Science,2016,21(3):171-173.

    • [60] Korenblum E,Dong Y,Szymanski J,et al.Rhizosphere microbiome mediates systemic root metabolite exudation by rootto-root signaling[J].Proceedings of the National Academy of Sciences of the United States of America,2020,117(7):3874-3883.

    • [61] Santi C,Bogusz D,Franche C.Biological nitrogen fixation in non-legume plants[J].Annals of Botany London Oup Then Academic Press Then Oxford University Press,2013,111:743-767.

    • [62] Oldroyd G E D,Dixon R.Biotechnological solutions to the nitrogen problem[J].Current Opinion in Biotechnology,2014,26:19-24.

    • [63] Mus F,Crook M B,Garcia K,et al.Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes[J].Applied and Environmental Microbiology,2016,82(13):3698-3710.

    • [64] Smith S E,Read D J.Mycorrhizal symbiosis(3rd edition)[M].Cambridge:Academic Press,2008.

    • [65] Ferrol N,Azcon-Aguilar C,Perez-Tienda J.Review:arbuscular mycorrhizas as key players in sustainable plant phosphorus acquisition:an overview on the mechanisms involved [J].Plant Science,2019,280:441-447.

    • [66] Yang G,Yang X,Zhang W,et al.Arbuscular mycorrhizal fungi affect plant community structure under various nutrient conditions and stabilize the community productivity[J].Oikos,2016,125(4):576-585.

    • [67] Parihar M,Meena V S,Mishra P K,et al.Arbuscular mycorrhiza:a viable strategy for soil nutrient loss reduction[J].Archives of Microbiology,2019,201(6):723-735.

    • [68] Cui Y,Fang L,Guo X,et al.Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau,China[J].Soil Biology & Biochemistry,2018,116:11-21.

    • [69] Vessey J K.Plant growth promoting rhizobacteria as biofertilizers [J].Plant and Soil,2003,255:571-586.

    • [70] Adnan M,Shah Z,Fahad S,et al.Phosphate-solubilizing bacteria nullify the antagonistic effect of soil calcification on bioavailability of phosphorus in alkaline soils[J].Scientific Reports,2017,7:16131.

    • [71] Alori E T,Glick B R,Babalola O O.Microbial phosphorus solubilization and its potential for use in sustainable agriculture[J]. Frontier Microbiology,2017,8:971.

    • [72] Radzki W,Gutierrez M F J,Algar E,et al.Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture[J].Antonie Van Leeuwenhoek,2013,104:321-330.

    • [73] Sokol N W,Kuebbing S E,Karlsen-Ayala E,et al.Evidence for the primacy of living root inputs,not root or shoot litter,in forming soil organic carbon[J].The New Phytologist,2019,221(1):233-246.

    • [74] Zhang F G,Zhang Q G.Microbial diversity limits soil heterotrophic respiration and mitigates the respiration response to moisture increase[J].Soil Biology & Biochemistry,2016,98:180-185.

    • [75] Kummerli R,Schiessl K T,Waldvogel T,et al.Habitat structure and the evolution of diffusible siderophores in bacteria[J]. Ecology Letters,2014,17(12):1536-1544.

    • [76] Gu S,Wei Z,Shao Z,et al.Competition for iron drives phytopathogen control by natural rhizosphere microbiomes[J]. Nature Microbiology,2020,5(8):1002-1010.

    • [77] Bulgarelli D,Garrido-Oter R,Muench P C,et al.Structure and function of the bacterial root microbiota in wild and domesticated barley[J].Cell Host & Microbe,2015,17(3):392-403.

    • [78] Lemanceau P,Blouin M,Muller D,et al.Let the core microbiota be functional[J].Trends in Plant Science,2017,22(7):583-595.

    • [79] Zhang P,Li B,Wu J,et al.Invasive plants differentially affect soil biota through litter and rhizosphere pathways:a meta-analysis [J].Ecology Letter,2019,22(1):200-210.

    • [80] Jin T,Wang Y,Huang Y,et al.Taxonomic structure and functional association of foxtail millet root microbiome[J]. GigaScience,2017,6(10):1-12.

    • [81] Starr E P,Shi S J,Blazewicz S J,et al.Stable isotope informed genome-resolved metagenomics reveals that Saccharibacteria utilize microbially-processed plant-derived carbon[J]. Microbiome,2018,6:122.

    • [82] Vorholt J A,Vogel C,Carlstrom C I,et al.Establishing causality:Opportunities of synthetic communities for plant microbiome research[J].Cell Host & Microbe,2017,22(2):142-155.

    • [83] Zhang H,Chen W,Zhao B,et al.Sandy soils amended with bentonite induced changes in soil microbiota and fungistasis in maize fields[J].Applied Soil Ecology,2020,146:103378.

    • [84] York L M,Carminati A,Mooney S J,et al.The holistic rhizosphere:integrating zones,processes,and semantics in the soil influenced by roots[J].Journal of Experimental Botany,2016,67(12):3629-3643.

    • [85] Cordovez V,Dini-Andreote F,Carrion V J,et al.Ecology and evolution of plant microbiomes[J].Annual Review of Microbiology,2019,73:69-88.

    • [86] Liu W,Zhao Q,Zhang Z,et al.Enantioselective effects of imazethapyr on Arabidopsis thaliana root exudates and rhizosphere microbes[J].Science of the Total Environment 2020,716:137121.

    • [87] Bulgarelli D,Rott M,Schlaeppi K,et al.Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota[J].Nature,2012,488(7409):91-95.

    • [88] Thakur M P,Geisen S.Trophic regulations of the soil microbiome [J].Trends in Plant Science,2019,27(9):771-780.

    • [89] Richter A,Schöning I,Kahl T,et al.Regional environmental conditions shape microbial community structure stronger than local forest management intensity[J].Forest Ecology and Management,2018,409:250-259.

    • [90] Chai Y,Cao Y,Yue M,et al.Soil abiotic properties and plant functional traits mediate associations between soil microbial and plant communities during a secondary forest succession on the Loess Plateau[J].Frontier Microbiology,2019,10:895.

    • [91] Leff J W,Jones S E,Prober S M,et al.Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe[J].Proceedings of the National Academy of Sciences of the United States of America,2015,112(35):10967-10972.

    • [92] Jansson J K,Hofmockel K S.Soil microbiomes and climate change[J].Nature Reviews Microbiology,2020,18(1):35-46.

    • [93] Zheng Q,Hu Y,Zhang S,et al.Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity[J].Soil Biology & Biochemistry,2019,136:107521.

    • [94] Lucas J M,McBride S G,Strickland M S.Trophic level mediates soil microbial community composition and function[J]. Soil Biology & Biochemistry,2020,143:107756.

    • [95] Fierer N,Bradford M,Jackson R.Toward an ecological classification of soil bacteria[J].Ecology,2007,88:1354-1364.

    • [96] Prober S M,Leff J W,Bates S T,et al.Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide[J].Ecology Letters,2014,18(1):85-95.

    • [97] Wang H,Liu S,Kuzyakov Y,et al.Differentiating microbial taxonomic and functional responses to physical disturbance in bulk and rhizosphere soils[J].Land Degradation and Development,2020,31:2858-2871.

    • [98] Lauber C L,Ramirez K S,Aanderud Z,et al.Temporal variability in soil microbial communities across land-use types[J]. Isme Journal,2013,7(8):1641-1650.

    • [99] Mendes L,de Lima B M,Kuramae E,et al.Land-use system shapes soil bacterial communities in Southeastern Amazon region [J].Applied Soil Ecology,2015,95:151-160.

    • [100] Rodrigues J L M,Pellizari V H,Mueller R,et al.Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110:988-993.

    • [101] Lal R.Restoring soil quality to mitigate soil degradation[J]. Sustainability,2015,7(5):5875-5895.

    • [102] Eisenhauer N,Dobies T,Cesarz S,et al.Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110:6889-6894.

    • [103] Essarioui A,Kistler H C,Kinkel L L.Nutrient use preferences among soil Streptomyces suggest greater resource competition in monoculture than polyculture plant communities[J].Plant and Soil,2016,409:1-15.

    • [104] Essarioui A,LeBlanc N,Kistler H C,et al.Plant community richness mediates inhibitory interactions and resource competition between Streptomyces and Fusarium populations in the rhizosphere [J].Microbial Ecology,2017,74:156-157.

    • [105] van der Heijden M G A,de Bruin S,Luckerhoff L,et al.A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity,plant nutrition and seedling recruitment[J].Isme Journal,2016,10:389-399.

    • [106] Vacheron J,Desbrosses G,Bouffaud M L,et al.Plant growthpromoting rhizobacteria and root system functioning[J]. Frontiers in Plant Science,2013,4:356.

    • [107] Richardson A E,Barea J M,McNeill A M,et al.Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms[J].Plant and Soil,2009,321:305-339.

    • [108] Spohn M,Treichel N S,Cormann M,et al.Distribution of phosphatase activity and various bacterial phyla in the rhizosphere of Hordeum vulgare L.depending on P availability[J].Soil Biology & Biochemistry,2015,89:44-51.

    • [109] Menezes-Blackburn D,Giles C,Darch T,et al.Opportunities for mobilizing recalcitrant phosphorus from agricultural soils:a review[J].Plant and Soil,2018,427:5-16.

    • [110] Saha R,Saha N,Donofrio R S,et al.Microbial siderophores:a mini review[J].Journal of Basic Microbiology,2013,53:303-317.

    • [111] Willmann M,Gerlach N,Buer B,et al.Mycorrhizal phosphate uptake pathway in maize:vital for growth and cob development on nutrient poor agricultural and greenhouse soils[J].Frontiers in Plant Science,2013,4:1-15.

    • [112] Quiroga G,Erice G,Ding L,et al.The arbuscular mycorrhizal symbiosis regulates aquaporins activity and improves root cell water permeability in maize plants subjected to water stress[J].Plant Cell and Environment,2019,42:2274-2290.

    • [113] Meena R S,Vijayakumar V,Yadav G S,et al.Response and interaction of Bradyrhizobium japonicum and arbuscular mycorrhizal fungi in the soybean rhizosphere[J].Plant Growth Regulation,2018,84:207-223.

    • [114] Poole P,Ramachandran V,Terpolilli J.Rhizobia:from saprophytes to endosymbionts[J].Nature Reviews Microbiology,2018,16:291-303.

    • [115] Santi C,Bogusz D,Franche C.Biological nitrogen fixation in non-legume plants[J].Annals of Botany London Oup Then Academic Press Then Oxford University Press,2013,111:743-767.

    • [116] Oldroyd G E D,Dixon R.Biotechnological solutions to the nitrogen problem[J].Current Opinion in Biotechnology,2014,26:19-24.

    • [117] Mus F,Crook M B,Garcia K,et al.Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes[J].Applied and Environmental Microbiology,2016,82(13):3698-3710.

    • [118] Friesen M L.Widespread fitness alignment in the legumerhizobium symbiosis[J].The New Phytologist,2012,194:1096-1111.

    • [119] Jansson J K,Hofmockel K S.The soil microbiome-from metagenomics to metaphenomics[J].Current Opinion in Microbiology,2018,43:162-168.

    • [120] Thompson L R,Sanders J G,McDonald D,et al.A communal catalogue reveals Earth’s multiscale microbial diversity[J]. Nature,2017,551(7681):457-463.

    • [121] Zhang C,Zhang Y,Ding Z,et al.Contribution of microbial inter-kingdom balance to plant health[J].Molecular Plant,2019,12(2):148-149.

    • [122] Trivedi C,Delgado-Baquerizo M,Hamonts K,et al.Losses in microbial functional diversity reduce the rate of key soil processes [J].Soil Biology & Biochemistry,2019,135:267-274.

    • [123] Zhang X,Johnston E R,Wang Y,et al.Distinct drivers of core and accessory components of soil microbial community functional diversity under environmental changes[J].mSystems,2019,4(5):1-17.

  • 参考文献

    • [1] Vezzani F M,Anderson C,Meenken E,et al.The importance of plants to development and maintenance of soil structure,microbial communities and ecosystem functions[J].Soil and Tillage Research,2018,175:139-149.

    • [2] Fierer N.Embracing the unknown:disentangling the complexities of the soil microbiome[J].Nature Reviews Microbiology,2017,15(10):579-590.

    • [3] Bahram M,Hildebrand F,Forslund S K,et al.Structure and function of the global topsoil microbiome[J].Nature,2018,560:233-237.

    • [4] Bar-On Y M,Phillips R,Milo R.The biomass distribution on Earth[J].Proc Natl Acad Sci USA,2018,115(25):6506-6511.

    • [5] Sahu P K,Singh D P,Prabha R,et al.Connecting microbial capabilities with the soil and plant health:options for agricultural sustainability[J].Ecological Indicators,2019,105:601-612.

    • [6] Cui Y,Fang L,Guo X,et al.Responses of soil microbial communities to nutrient limitation in the desert-grassland ecological transition zone[J].Science of the Total Environment,2018,642:45-55.

    • [7] Singh B K,Bardgett R D,Smith P,et al.Microorganisms and climate change:terrestrial feedbacks and mitigation options[J]. Nature Reviews Microbiology,2010,8(11):779-790.

    • [8] Bardgett R D,van der Putten W H.Belowground biodiversity and ecosystem functioning[J].Nature,2014,515:505-511.

    • [9] Wagg C,Bender S F,Widmer F,et al.Soil biodiversity and soil community composition determine ecosystem multifunctionality [J].Proc Natl Acad Sci U S A,2014,111(14):5266-5270.

    • [10] Laforest-Lapointe I,Paquette A,Messier C,et al.Leaf bacterial diversity mediates plant diversity and ecosystem function relationships[J].Nature,2017,546:145-147.

    • [11] Ke P J,Miki T,Ding T S.The soil microbial community predicts the importance of plant traits in plant-soil feedback[J]. The New Phytologist,2015,206(1):329-341.

    • [12] Bever J D.Soil community feedback and the coexistence of competitors:conceptual frame works and empirical tests[J]. The New Phytologist,2003,157:465-473.

    • [13] Ehrenfeld J G,Ravit B,Elgersma K.Feedback in the plantsoil system[J].Annual Review of Environment and Resources,2005,30(1):75-115.

    • [14] Bever J D,Westover K M,Antonovics J.Incorporating the soil community into plant population dynamics:the utility of the feedback approach[J].Journal of Ecology,1997,85:561-573.

    • [15] Pernilla B E,Van der Putten W H,Bakker E J,et al.Plantsoil feedback:experimental approaches,statistical analyses and ecological interpretations[J].Journal of Ecology,2010,98(5):1063-1073.

    • [16] Bever J D.Preferential allocation,physio-evolutionary feedbacks,and the stability and environmental patterns of mutualism between plants and their root symbionts[J].The New Phytologist,2015,205(4):1503-1514.

    • [17] Hacquard S,Garrido-Oter R,Gonzalez A,et al.Microbiota and host nutrition across plant and animal kingdoms[J].Cell Host & Microbe,2015,17(5):603-616.

    • [18] Mishra P K,Bisht S C,Mishra S,et al.Coinoculation of rhizobium Leguminosarum-Pr1 with a cold tolerant pseudomonas sp.improves iron acquisition,nutrient uptake and growth of field pea(Pisum Sativum L.)[J].Journal of Plant Nutrition,2012,35(2):243-256.

    • [19] Bulgarelli D,Schlaeppi K,Spaepen S,et al.Structure and functions of the bacterial microbiota of plants[J].Annual Review of Plant Biology,2013,64:807-838.

    • [20] Mariotte P,Mehrabi Z,Bezemer T M,et al.Plant-soil feedback:Bridging natural and agricultural sciences[J].Trends in Ecology & Evolution,2018,33(2):129-142.

    • [21] Levy A,Conway J M,Dangl J L,et al.Elucidating bacterial gene functions in the plant microbiome[J].Cell Host & Microbe,2018,24(4):475-485.

    • [22] Wood S A,Karp D S,DeClerck F,et al.Functional traits in agriculture:agrobiodiversity and ecosystem services[J].Trends in Ecology & Evolution,2015,30(9):1-9.

    • [23] Lareen A,Burton F,Schafer P.Plant root-microbe communication in shaping root microbiomes[J].Plant Molecular Biology,2016,90(6):575-587.

    • [24] Faucon M P,Houben D,Lambers H.Plant functional traits:soil and ecosystem services[J].Trends in Plant Science,2017,22(5):385-394.

    • [25] Garcia J,Kao-Kniffin J.Microbial group dynamics in plant rhizospheres and their implications on nutrient cycling[J]. Frontiers Microbiology,2018,9:1516.

    • [26] Li X,Rui J,Xiong J,et al.Functional potential of soil microbial communities in the maize rhizosphere[J].PLoS ONE 2014,9(11):e112609.

    • [27] Bakker P A H M,Berendsen R L,Doornbos R F,et al.The rhizosphere revisited:root microbiomics[J].Frontiers in Plant Science,2013,4:165.

    • [28] Hiltner L.Über neuere erfahrungen und probleme auf dem gebiete der bodenbakteriologie unter besonderer berücksichtigung der gründüngung und brache[J].Arbeiten der Deutschen Landwirtschaftlichen Gesellschaft,1904,98:59-78.

    • [29] Rasmann S,Turlings T C.Root signals that mediate mutualistic interactions in the rhizosphere[J].Current Opinion in Plant Biology,2016,32:62-68.

    • [30] Bukhat S,Imran A,Javaid S,et al.Communication of plants with microbial world:Exploring the regulatory networks for PGPR mediated defense signaling[J].Microbiological Research,2020,238:126486.

    • [31] Venturi V,Keel C.Signaling in the rhizosphere[J].Trends in Plant Science,2016,21:187-198.

    • [32] Kuzyakov Y,Razavi B S.Rhizosphere size and shape:Temporal dynamics and spatial stationarity[J].Soil Biology & Biochemistry,2019,135:343-360.

    • [33] Jones D L,Nguyen C,Finlay R D.Carbon flow in the rhizosphere:carbon trading at the soil-root interface[J].Plant and Soil,2009,321:5-33.

    • [34] Vives-Peris V,de Ollas C,Gomez-Cadenas A,et al.Root exudates:from plant to rhizosphere and beyond[J].Plant Cell Reports,2020,39(1):3-17.

    • [35] Tian T,Reverdy A,She Q,et al.The role of rhizodeposits in shaping rhizomicrobiome[J].Environmental Microbiology Reports,2020,12(2):160-172.

    • [36] Sasse J,Martinoia E,Northen T.Feed your friends:Do plant exudates shape the root microbiome?[J].Trends in Plant Science,2018,23(1):25-41.

    • [37] Dakora F D,Phillips D A.Root exudates as mediators of mineral acquisition in low-nutrient environments[J].Plant and Soil,2002,245:35-47.

    • [38] Dennis P G,Miller A J,Hirsch P R.Are root exudatesmore important thanother sources of rhizodeposits in structuring rhizospherebacterial communities?[J].FEMS Microbiology Ecology,2010,72(3):313-327.

    • [39] Venturi V,Keel C.Signaling in the rhizosphere[J].Trends in Plant Science,2016,21:187-198.

    • [40] Yuan J,Zhao J,Wen T,et al.Root exudates drive the soil-borne legacy of aboveground pathogen infection[J]. Microbiome,2018,6(1):156.

    • [41] Das S,Chou M L,Jean J S,et al.Arsenic-enrichment enhanced root exudates and altered rhizosphere microbial communities and activities in hyperaccumulator pteris vittata[J]. Journal of Hazardous Materials,2017,325:279-287.

    • [42] Kandaswamy R,Baburaj B,Santhanam S,et al.Plant growth promoting rhizobacteria Bacillus subtilis RR4 isolated from rice rhizosphere induces malic acid biosynthesis in rice roots[J]. Canadian Journal of Microbiology,2017,64:20-27.

    • [43] Feng H,Zhang N,Du W,et al.Identification of chemotaxis compounds in root exudates and their sensing chemoreceptors in plant-growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9[J].Molecular Plant-Microbe Interactions,2018,31:995-1005.

    • [44] Zhang N,Yang D,Wang D,et al.Whole transcriptomic analysis of the plant-beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 during enhanced biofilm formation regulated by maize root exudates[J].BMC Genomics,2015,16:1-20.

    • [45] Chaparro J M,Badri D V,Bakker M G,et al.Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions[J].PLoS ONE,2013,8:e55731.

    • [46] Hu L F,Robert C A M,Cadot S,et al.Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota[J].Nature Communications,2018,9:171-184.

    • [47] Lugtenberg B,Kamilova F.Plant-growth-promoting rhizobacteria[J].Annual Review of Microbiology,2009,63:541-556.

    • [48] Compant S,Clement C,Sessitsch A.Plant growth-promoting bacteria in the rhizo-and endosphere of plants:their role,colonization,mechanisms involved and prospects for utilization[J]. Soil Biology & Biochemistry,2010,42(5):669-678.

    • [49] Dupuy L X,Silk W K.Mechanisms of early microbial establishment on growing root surfaces[J].Vadose Zone Journal,2016,15:1-13.

    • [50] Watt M,Hugenholtz P,White R,et al.Numbers and locations of native bacteria on field-grown wheat roots quantified by fluorescence in situ hybridization(FISH)[J].Environmental Microbiology,2006,8(5):871-884.

    • [51] Massalha H,Korenblum E,Malitsky S,et al.Live imaging of root-bacteria interactions in a microfluidics setup[J]. Proceedings of the National Academy of Sciences of the United States of America,2017,114:4549-4554.

    • [52] DeAngelis K M,Brodie E L,DeSantis T Z,et al.Selective progressive response of soil microbial community to wild oat roots [J].The ISME,2009,3(2):168-178.

    • [53] Zhalnina K,Louie K B,Hao Z,et al.Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly[J].Nature Microbiology,2018,3:470-480.

    • [54] Edwards J A,Santos-Medellín C M,Liechty Z,et al. Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice[J]. PLoS Biology,2018,16:1-28.

    • [55] de la Fuente Canto C,Simonin M,King E,et al.An extended root phenotype:the rhizosphere,its formation and impacts on plant fitness[J].The Plant Journal,2020,103(3):951-964.

    • [56] Edwards J,Cameron J,Santos-MedellÃn C,et al.Structure,variation,and assembly of the root-associated microbiomes of rice[J].Proceedings of the National Academy of Sciences of the United States of America,2015,112(8):911-920.

    • [57] Finkel O M,Castrillo G,Herrera P S,et al.Understanding and exploiting plant beneficial microbes[J].Curr Opin Plant Biol,2017,38:155-163.

    • [58] Lu T,Ke M J,Lavoie M,et al.Rhizosphere microorganisms can influence the timing of plant flowering[J].Microbiome,2018,6:231.

    • [59] Pieterse C M J,de Jonge R,Berendsen R L.The soil-borne supremacy[J].Trendsin Plant Science,2016,21(3):171-173.

    • [60] Korenblum E,Dong Y,Szymanski J,et al.Rhizosphere microbiome mediates systemic root metabolite exudation by rootto-root signaling[J].Proceedings of the National Academy of Sciences of the United States of America,2020,117(7):3874-3883.

    • [61] Santi C,Bogusz D,Franche C.Biological nitrogen fixation in non-legume plants[J].Annals of Botany London Oup Then Academic Press Then Oxford University Press,2013,111:743-767.

    • [62] Oldroyd G E D,Dixon R.Biotechnological solutions to the nitrogen problem[J].Current Opinion in Biotechnology,2014,26:19-24.

    • [63] Mus F,Crook M B,Garcia K,et al.Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes[J].Applied and Environmental Microbiology,2016,82(13):3698-3710.

    • [64] Smith S E,Read D J.Mycorrhizal symbiosis(3rd edition)[M].Cambridge:Academic Press,2008.

    • [65] Ferrol N,Azcon-Aguilar C,Perez-Tienda J.Review:arbuscular mycorrhizas as key players in sustainable plant phosphorus acquisition:an overview on the mechanisms involved [J].Plant Science,2019,280:441-447.

    • [66] Yang G,Yang X,Zhang W,et al.Arbuscular mycorrhizal fungi affect plant community structure under various nutrient conditions and stabilize the community productivity[J].Oikos,2016,125(4):576-585.

    • [67] Parihar M,Meena V S,Mishra P K,et al.Arbuscular mycorrhiza:a viable strategy for soil nutrient loss reduction[J].Archives of Microbiology,2019,201(6):723-735.

    • [68] Cui Y,Fang L,Guo X,et al.Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau,China[J].Soil Biology & Biochemistry,2018,116:11-21.

    • [69] Vessey J K.Plant growth promoting rhizobacteria as biofertilizers [J].Plant and Soil,2003,255:571-586.

    • [70] Adnan M,Shah Z,Fahad S,et al.Phosphate-solubilizing bacteria nullify the antagonistic effect of soil calcification on bioavailability of phosphorus in alkaline soils[J].Scientific Reports,2017,7:16131.

    • [71] Alori E T,Glick B R,Babalola O O.Microbial phosphorus solubilization and its potential for use in sustainable agriculture[J]. Frontier Microbiology,2017,8:971.

    • [72] Radzki W,Gutierrez M F J,Algar E,et al.Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture[J].Antonie Van Leeuwenhoek,2013,104:321-330.

    • [73] Sokol N W,Kuebbing S E,Karlsen-Ayala E,et al.Evidence for the primacy of living root inputs,not root or shoot litter,in forming soil organic carbon[J].The New Phytologist,2019,221(1):233-246.

    • [74] Zhang F G,Zhang Q G.Microbial diversity limits soil heterotrophic respiration and mitigates the respiration response to moisture increase[J].Soil Biology & Biochemistry,2016,98:180-185.

    • [75] Kummerli R,Schiessl K T,Waldvogel T,et al.Habitat structure and the evolution of diffusible siderophores in bacteria[J]. Ecology Letters,2014,17(12):1536-1544.

    • [76] Gu S,Wei Z,Shao Z,et al.Competition for iron drives phytopathogen control by natural rhizosphere microbiomes[J]. Nature Microbiology,2020,5(8):1002-1010.

    • [77] Bulgarelli D,Garrido-Oter R,Muench P C,et al.Structure and function of the bacterial root microbiota in wild and domesticated barley[J].Cell Host & Microbe,2015,17(3):392-403.

    • [78] Lemanceau P,Blouin M,Muller D,et al.Let the core microbiota be functional[J].Trends in Plant Science,2017,22(7):583-595.

    • [79] Zhang P,Li B,Wu J,et al.Invasive plants differentially affect soil biota through litter and rhizosphere pathways:a meta-analysis [J].Ecology Letter,2019,22(1):200-210.

    • [80] Jin T,Wang Y,Huang Y,et al.Taxonomic structure and functional association of foxtail millet root microbiome[J]. GigaScience,2017,6(10):1-12.

    • [81] Starr E P,Shi S J,Blazewicz S J,et al.Stable isotope informed genome-resolved metagenomics reveals that Saccharibacteria utilize microbially-processed plant-derived carbon[J]. Microbiome,2018,6:122.

    • [82] Vorholt J A,Vogel C,Carlstrom C I,et al.Establishing causality:Opportunities of synthetic communities for plant microbiome research[J].Cell Host & Microbe,2017,22(2):142-155.

    • [83] Zhang H,Chen W,Zhao B,et al.Sandy soils amended with bentonite induced changes in soil microbiota and fungistasis in maize fields[J].Applied Soil Ecology,2020,146:103378.

    • [84] York L M,Carminati A,Mooney S J,et al.The holistic rhizosphere:integrating zones,processes,and semantics in the soil influenced by roots[J].Journal of Experimental Botany,2016,67(12):3629-3643.

    • [85] Cordovez V,Dini-Andreote F,Carrion V J,et al.Ecology and evolution of plant microbiomes[J].Annual Review of Microbiology,2019,73:69-88.

    • [86] Liu W,Zhao Q,Zhang Z,et al.Enantioselective effects of imazethapyr on Arabidopsis thaliana root exudates and rhizosphere microbes[J].Science of the Total Environment 2020,716:137121.

    • [87] Bulgarelli D,Rott M,Schlaeppi K,et al.Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota[J].Nature,2012,488(7409):91-95.

    • [88] Thakur M P,Geisen S.Trophic regulations of the soil microbiome [J].Trends in Plant Science,2019,27(9):771-780.

    • [89] Richter A,Schöning I,Kahl T,et al.Regional environmental conditions shape microbial community structure stronger than local forest management intensity[J].Forest Ecology and Management,2018,409:250-259.

    • [90] Chai Y,Cao Y,Yue M,et al.Soil abiotic properties and plant functional traits mediate associations between soil microbial and plant communities during a secondary forest succession on the Loess Plateau[J].Frontier Microbiology,2019,10:895.

    • [91] Leff J W,Jones S E,Prober S M,et al.Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe[J].Proceedings of the National Academy of Sciences of the United States of America,2015,112(35):10967-10972.

    • [92] Jansson J K,Hofmockel K S.Soil microbiomes and climate change[J].Nature Reviews Microbiology,2020,18(1):35-46.

    • [93] Zheng Q,Hu Y,Zhang S,et al.Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity[J].Soil Biology & Biochemistry,2019,136:107521.

    • [94] Lucas J M,McBride S G,Strickland M S.Trophic level mediates soil microbial community composition and function[J]. Soil Biology & Biochemistry,2020,143:107756.

    • [95] Fierer N,Bradford M,Jackson R.Toward an ecological classification of soil bacteria[J].Ecology,2007,88:1354-1364.

    • [96] Prober S M,Leff J W,Bates S T,et al.Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide[J].Ecology Letters,2014,18(1):85-95.

    • [97] Wang H,Liu S,Kuzyakov Y,et al.Differentiating microbial taxonomic and functional responses to physical disturbance in bulk and rhizosphere soils[J].Land Degradation and Development,2020,31:2858-2871.

    • [98] Lauber C L,Ramirez K S,Aanderud Z,et al.Temporal variability in soil microbial communities across land-use types[J]. Isme Journal,2013,7(8):1641-1650.

    • [99] Mendes L,de Lima B M,Kuramae E,et al.Land-use system shapes soil bacterial communities in Southeastern Amazon region [J].Applied Soil Ecology,2015,95:151-160.

    • [100] Rodrigues J L M,Pellizari V H,Mueller R,et al.Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110:988-993.

    • [101] Lal R.Restoring soil quality to mitigate soil degradation[J]. Sustainability,2015,7(5):5875-5895.

    • [102] Eisenhauer N,Dobies T,Cesarz S,et al.Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110:6889-6894.

    • [103] Essarioui A,Kistler H C,Kinkel L L.Nutrient use preferences among soil Streptomyces suggest greater resource competition in monoculture than polyculture plant communities[J].Plant and Soil,2016,409:1-15.

    • [104] Essarioui A,LeBlanc N,Kistler H C,et al.Plant community richness mediates inhibitory interactions and resource competition between Streptomyces and Fusarium populations in the rhizosphere [J].Microbial Ecology,2017,74:156-157.

    • [105] van der Heijden M G A,de Bruin S,Luckerhoff L,et al.A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity,plant nutrition and seedling recruitment[J].Isme Journal,2016,10:389-399.

    • [106] Vacheron J,Desbrosses G,Bouffaud M L,et al.Plant growthpromoting rhizobacteria and root system functioning[J]. Frontiers in Plant Science,2013,4:356.

    • [107] Richardson A E,Barea J M,McNeill A M,et al.Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms[J].Plant and Soil,2009,321:305-339.

    • [108] Spohn M,Treichel N S,Cormann M,et al.Distribution of phosphatase activity and various bacterial phyla in the rhizosphere of Hordeum vulgare L.depending on P availability[J].Soil Biology & Biochemistry,2015,89:44-51.

    • [109] Menezes-Blackburn D,Giles C,Darch T,et al.Opportunities for mobilizing recalcitrant phosphorus from agricultural soils:a review[J].Plant and Soil,2018,427:5-16.

    • [110] Saha R,Saha N,Donofrio R S,et al.Microbial siderophores:a mini review[J].Journal of Basic Microbiology,2013,53:303-317.

    • [111] Willmann M,Gerlach N,Buer B,et al.Mycorrhizal phosphate uptake pathway in maize:vital for growth and cob development on nutrient poor agricultural and greenhouse soils[J].Frontiers in Plant Science,2013,4:1-15.

    • [112] Quiroga G,Erice G,Ding L,et al.The arbuscular mycorrhizal symbiosis regulates aquaporins activity and improves root cell water permeability in maize plants subjected to water stress[J].Plant Cell and Environment,2019,42:2274-2290.

    • [113] Meena R S,Vijayakumar V,Yadav G S,et al.Response and interaction of Bradyrhizobium japonicum and arbuscular mycorrhizal fungi in the soybean rhizosphere[J].Plant Growth Regulation,2018,84:207-223.

    • [114] Poole P,Ramachandran V,Terpolilli J.Rhizobia:from saprophytes to endosymbionts[J].Nature Reviews Microbiology,2018,16:291-303.

    • [115] Santi C,Bogusz D,Franche C.Biological nitrogen fixation in non-legume plants[J].Annals of Botany London Oup Then Academic Press Then Oxford University Press,2013,111:743-767.

    • [116] Oldroyd G E D,Dixon R.Biotechnological solutions to the nitrogen problem[J].Current Opinion in Biotechnology,2014,26:19-24.

    • [117] Mus F,Crook M B,Garcia K,et al.Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes[J].Applied and Environmental Microbiology,2016,82(13):3698-3710.

    • [118] Friesen M L.Widespread fitness alignment in the legumerhizobium symbiosis[J].The New Phytologist,2012,194:1096-1111.

    • [119] Jansson J K,Hofmockel K S.The soil microbiome-from metagenomics to metaphenomics[J].Current Opinion in Microbiology,2018,43:162-168.

    • [120] Thompson L R,Sanders J G,McDonald D,et al.A communal catalogue reveals Earth’s multiscale microbial diversity[J]. Nature,2017,551(7681):457-463.

    • [121] Zhang C,Zhang Y,Ding Z,et al.Contribution of microbial inter-kingdom balance to plant health[J].Molecular Plant,2019,12(2):148-149.

    • [122] Trivedi C,Delgado-Baquerizo M,Hamonts K,et al.Losses in microbial functional diversity reduce the rate of key soil processes [J].Soil Biology & Biochemistry,2019,135:267-274.

    • [123] Zhang X,Johnston E R,Wang Y,et al.Distinct drivers of core and accessory components of soil microbial community functional diversity under environmental changes[J].mSystems,2019,4(5):1-17.

  • 《中国土壤与肥料》招聘启事
    关闭