en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

燕辉(1984-),男,河南商丘人,副教授,博士,主要研究方向为植物生理与环境生态。E-mail:hnyanhui@yeah.net。同为通讯作者。

参考文献 1
师荣光,郑向群,龚琼,等.农产品产地土壤重金属外源污染来源解析及防控策略研究[J].环境监测管理与技术,2017,29(4):9-13.
参考文献 2
卢信,罗佳,高岩,等.土壤污染对农产品质量安全的影响及防治对策[J].江苏农业科学,2014,42(7):288-293.
参考文献 3
崔广娟,曹华元,陈康,等.镉胁迫对4种基因型大豆生长和体内元素分布的影响[J].华南农业大学学报,2020,41(5):49-57.
参考文献 4
Chaney R L,Reeves P G,Ryan J A,et al.An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks[J]. Biometals,2004,17(5):549-553.
参考文献 5
郭振,汪怡珂.镉在环境中的分布、迁移及转化研究进展 [J].环境保护前沿,2019,9(3):365-370.
参考文献 6
赵宁,寇渊博.土壤对镉(Cd)生物有效性影响的研究[J]. 河南科学,2009,27(9):1089-1092.
参考文献 7
Shifaw E.Review of heavy metals pollution in China in agricultural and urban soils[J].Journal of Health and Pollution,2018,8(18):180607.
参考文献 8
Cai K,Yu Y,Zhang M,et al.Concentration,source,and total health risks of cadmium in multiple media in densely populated areas,China[J].Environmental Research and Public Health,2019,16(13):2269.
参考文献 9
Xue Z,Gao H,Zhao S.Effects of cadmium on the photosynthetic activity in mature and young leaves of soybean plants[J]. Environmental Science and Pollution Research,2014,21(6):4656-4664.
参考文献 10
Szczygłowska M,Piekarska A,Konieczka P,et al.Use of Brassica plants in the phytoremediation and biofumigation processes[J].International Journal of Molecular Sciences,2011,12:7760-7771.
参考文献 11
Ghanem M E,Albacete A,Martinez-Andújar C,et al. Hormonal changes during salinity-induced leaf senescence in tomato(Solanum lycopersicum L.)[J].Journal of Experimental Botany,2008,59(11):3039-3050.
参考文献 12
Yan H,Filardo F,Hu X,et al.Cadmium stress alters the redox reaction and hormone balance in oilseed rape(Brassica napus L.)leaves[J].Environmental Science and Pollution Research,2016,23:3758-3769.
参考文献 13
de Ollas C,Dodd I C.Physiological impacts of ABA-JA interactions under water-limitation[J].Plant Molecular Biology,2016,91:641-650.
参考文献 14
Li S,Li X,Wei Z,et al.ABA-mediated modulation of elevated CO2 on stomatal response to drought[J].Current Opinion in Plant Biology,2020,56:174-180.
参考文献 15
Castro P,Puertolas J,Dodd I C.Stem girdling uncouples soybean stomatal conductance from leaf water potential by enhancing leaf xylem ABA concentration[J].Environmental and Experimental Botany,2019,159:149-156.
参考文献 16
Schachtman D P,Goodger J Q D.Chemical root to shoot signaling under drought[J].Trends in Plant Science,2008,13(6):281-287.
参考文献 17
Stoll M,Loveys B,Dry P.Hormonal changes induced by partial rootzone drying of irrigated grapevine[J].Journal of Experimental Botany,2000,51(350):1627-1634.
参考文献 18
Yan H,Wu L,Filardo F,et al.Chemical and hydraulic signals regulate stomatal behavior and photosynthetic activity in maize during progressive drought[J].Acta Physiologiae Plantarum,2017,39:125.
参考文献 19
Kao W Y,Tsai T T,Tsai H C,et al.Response of three Glycine species to salt stress[J].Environmental and Experimental Botany,2006,56(1):120-125.
参考文献 20
Yan H,Hu X,Li F.Leaf photosynthesis,chlorophyll fluorescence,ion content and free amino acids in Caragana korshinskii Kom exposed to NaCl stress[J].Acta Physiologiae Plantarum,2012,34:2285-2295.
参考文献 21
Yang J,Duursma R A,De Kauwe M G,et al.Incorporating non-stomatal limitation improves the performance of leaf and canopy models at high vapour pressure deficit[J].Tree Physiology,2019,39(12):1961-1974.
参考文献 22
Bellasio C,Quirk J,Beerling D J,et al.Stomatal and nonstomatal limitations in savanna trees and C4 grasses grown at low,ambient and high atmospheric CO2[J].Plant Science,2018,274:181-192.
参考文献 23
Zhou S,Duursma R A,Medlyn B E,et al.How should we model plant responses to drought?An analysis of stomatal and nonstomatal responses to water stress[J].Agricultural and Forest Meteorology,2013,182-183:204-214.
参考文献 24
杨红霞,陈俊良,刘崴.镉对植物的毒害及植物解毒机制研究进展[J].江苏农业科学,2019,47(2):1-8.
参考文献 25
Niu J,Feng Z,Zhang W,et al.Non-stomatal limitation to photosynthesis in Cinnamomum camphora seedings exposed to elevated O3[J].Plos One,2014,9(6):e98572.
参考文献 26
Zhang H,Li X,Xu Z,et al.Toxic effects of heavy metals Pb and Cd on mulberry(Morus alba L.)seedling leaves:Photosynthetic function and reactive oxygen species(ROS)metabolism responses[J].Ecotoxicology and Environmental Safety,2020,195:110469.
参考文献 27
郭丽丽,郝立华,贾慧慧,等.NaCl 胁迫对两种番茄气孔特征、气体交换参数和生物量的影响[J].应用生态学报,2018,29(12):3949-3958.
参考文献 28
Zhou X,Sun C,Zhu P,et al.Effects of antimony stress on photosynthesis and growth of Acorus calamus[J].Frontiers in Plant Science,2018,9:579.
参考文献 29
Zhang S,Gao R.Non-uniform stomatal closure of hybrid poplar clones under light stress determined by scanning electron microscopy and modification of intercellular CO2 concentration[J].Trees,2000,14:376-383.
目录contents

    摘要

    为了探明镉胁迫对作物生理特性的影响,对镉胁迫下大豆叶片镉含量、光合参数、内源激素含量、生长参数变化及内源激素调控气孔开度与光合碳同化的生理机制进行了分析。结果表明:镉胁迫导致了大豆叶片脱落酸(ABA)含量的升高与玉米素核苷(ZR,细胞分裂素的一种)含量的降低,ABA/ZR 升高进一步诱导了气孔收缩。镉胁迫初期,大豆叶片气孔导度、光合速率与胞间 CO2 浓度均呈现出降低的趋势,表明此时气孔因素是限制大豆光合碳同化的主要因素。随着镉处理时间的延长,叶片镉离子含量逐渐升高,对叶肉细胞造成离子毒害。镉胁迫 9 d 后,虽然大豆的气孔导度与光合速率降低,但胞间 CO2 浓度呈现出升高趋势,此时非气孔因素是限制光合碳同化的主要因素。最终,长期镉胁迫导致了大豆幼苗株高、叶面积与根干重较对照显著降低。

    Abstract

    In order to reveal the effect of cadmium stress on crop physiological characteristics,the changes of Cd content, photosynthetic parameters,endogenous hormones and growth parameters in soybean seedlings under cadmium stress and the physiological mechanism of endogenous hormones regulating stomatal aperture and photosynthetic carbon assimilation under cadmium stress were carried out. The results showed that,cadmium stress could lead to the increase of ABA content and the decrease of ZR content in leaves,the increased ABA/ZR could induce stomatal closure. After the initial Cd treatment, stomatal conductance,photosynthetic rate,intercellular CO2 concentration showed a trend towards reduction,which indicated that stomatal limitation was the main factor inhibiting photosynthesis. With the increase of cadmium treatment time, the content of cadmium ion in leaves increased gradually,which could cause ion toxicity to mesophyll cells. After 9 days of Cd stress,stomatal conductance and photosynthetic rate decreased,but the intercellular CO2 concentration showed an increase trend. Thus,non-stomatal factors were the main factors limiting photosynthesis. Finally,the plant height,leaf area and root dry weight of soybean seedlings were significantly reduced under long-term cadmium stress.

  • 近年来,随着矿山开采、金属冶炼与城市交通的迅速发展及农药化肥的大量施用,重金属污染物随着工业三废与农药化肥被不断地释放到外界环境,最终导致了重金属元素在土壤中的大量积累[1-2]。镉是一种对动植物毒害极大的重金属元素[3],它进入土壤后主要累积在土壤表层,极少向下迁移[4-5],从而导致土壤质量不断降低;同时,镉元素具有较高的生物有效性[6],它极易被植物根系吸收,进而在植物体内不断积累,影响植物正常的生长发育。若镉离子经过食物链进入人体,则会对人体健康造成极大威胁。目前,土壤镉污染已经成为限制农业可持续发展和危害人类生命健康的重要环境问题[7-8]

  • 大豆(Glycine max Merr)富含植物蛋白、不饱和脂肪酸和膳食纤维,是我国重要的油料作物、粮食作物和饲料作物[3],在稳定粮食产量和保障粮食安全方面发挥着极其重要的作用。近年来,随着土壤中镉元素的不断积累,镉污染对大豆生产的负面影响也在持续增加。为提高大豆的抗镉性,广大学者开展了大量基础性研究工作[39-10]。但受当前大豆响应镉胁迫生理机制的研究不够全面的影响,提高大豆抗镉性的研究成果收效甚微。因此,要稳定我国大豆产量、保障我国粮食安全,首先就必须探明大豆响应镉胁迫的生理机制。为此,本研究对镉胁迫下大豆叶片镉离子含量、内源激素、光合碳同化及生长参数的变化进行了分析,进而为提高大豆抗镉性研究提供科学依据。

  • 1 材料与方法

  • 1.1 试验材料培养

  • 将大豆种子播于已经装满基质的穴盘,并于种子发芽后选取生长势均匀且发育良好的幼苗,移植到已装相同质量基质的试验盆内。在整个试验期间保证充足的水分供应,以维持大豆幼苗正常的生长发育。幼苗生长2周后,分别使用100mL添加0与200 µmol·L-1 CdSO4 的溶液对大豆幼苗进行胁迫处理。在处理1、3、6与9d后,分别各选取4株幼苗,测定叶片镉含量、光合参数、内源激素与生长参数等指标。

  • 1.2 观测项目与方法

  • 1.2.1 光合参数测定

  • 镉胁迫1、3、6与9d后,采用配置了红蓝光源(Li-6400-02B) 的Licor-6400光合仪(LiCor Inc.Lincoln,Nebraska,USA) 对大豆叶片的光合速率、蒸腾速率、气孔导度、胞间CO2 浓度等光合参数进行测定。测定时红蓝光源设置为1000 μmol·m-2·s-1,样品室CO2 浓度设置为400 μmol·mol-1

  • 1.2.2 生长参数测定

  • 镉胁迫1、3、6与9d后,分别使用刻度尺测定大豆幼苗的株高,随后迅速将幼苗从基质中挖出,将根系剪掉并置于温度为105℃的烘箱中,烘干后称重。同时,迅速将大豆叶片从枝条摘掉并拍照。使用AutoCAD计算叶面积。

  • 1.2.3 叶片镉含量测定

  • 用液氮将叶片研磨成粉末。将天平称重后的一定量叶片粉末、硝酸(10mL)与高氯酸(1mL) 先后倒入三角瓶,静置一夜后,将三角瓶置于约100℃的电热板,消煮至瓶中溶液约0.5mL。用25mL容量瓶定容消煮液,并用原子吸收光谱仪测定叶片中镉离子含量。

  • 1.2.4 叶片内源激素含量测定

  • 称取一定量大豆叶片粉末,采用酶联免疫法测定其中脱落酸(ABA)与玉米素核苷(ZR,细胞分裂素的一种)的含量。

  • 2 结果与分析

  • 2.1 镉离子含量变化

  • 镉处理条件下,大量的镉离子被大豆根系通过主动运输或被动运输的方式吸收。根系吸收的镉离子会进一步通过木质部蒸腾流运输至冠层,导致镉离子在大豆冠层大量积累。对镉胁迫下大豆叶片镉离子含量变化进行分析发现:镉胁迫1d后,大豆叶片镉离子含量即较对照显著升高;伴随着胁迫的加剧,叶片镉离子含量呈逐步升高趋势;200 µmol·L-1 镉离子胁迫9d后,大豆叶片镉离子含量达到最大值(图1)。

  • 图1 镉胁迫下大豆幼苗叶片镉含量变化

  • 注:图柱上不同字母表示差异显著。下同。

  • 2.2 镉胁迫对光合作用的影响

  • 分析反映光合表观特性的气体交换参数变化,对深入认识作物响应逆境胁迫的生理机制有重要的作用。本研究对镉胁迫下气体交换参数的变化进行分析发现,伴随着镉胁迫时间的延长,大豆幼苗叶片光合速率、蒸腾速率、气孔导度均呈现出逐渐降低的趋势;且在镉胁迫9d后达到最低值 (图2A、B、C)。而叶片胞间CO2 浓度的变化趋势与以上光合参数不同。镉胁迫初期,伴随着镉胁迫时间的延长,胞间CO2 浓度呈现出降低趋势;但镉胁迫9d后,胞间CO2 浓度又呈现出升高趋势 (图2D)。

  • 2.3 镉胁迫对内源激素含量的影响

  • 植物内源激素是植物体内产生的微量却能起到生理调节作用的化合物。其中,脱落酸(ABA)与细胞分裂素(CK)是2种重要的植物内源激素,在调节气孔运动、光合碳同化及作物生长过程中发挥着重要作用。对镉胁迫条件下大豆叶片ABA、玉米素核苷(ZR,细胞分裂素的一种)及两者拮抗效应(ABA/ZR)进行分析证实,叶片ABA含量在镉胁迫1d后即呈升高趋势,且在镉胁迫3d后显著升高;镉胁迫9d后,叶片ABA含量升至最高(图3A)。与ABA不同,叶片ZR含量在镉胁迫1d后即呈现降低趋势,且在镉胁迫3d后较对照显著降低;镉胁迫9d后,叶片ZR含量降至最低值(图3B)。叶片ABA/ZR值的变化趋势与叶片ABA含量相似,随着镉胁迫程度的加剧,叶片ABA/ZR值呈现出逐步升高的趋势,且在镉胁迫9d后升至最大值(图3C)。

  • 2.4 镉胁迫下内源激素调控气孔运动与光合碳同化的生理机制

  • 为了探明镉胁迫下内源激素调控气孔运动与光合碳同化的生理机制,本研究对内源激素ABA含量、ZR含量及ABA/ZR与镉离子含量的关系进行了分析,并进一步探讨了ABA、ZR及ABA/ZR与气孔导度及光合速率的相关性。结果表明,叶片ABA含量、ABA/ZR与镉离子含量呈正相关(图4A,C),ZR含量则与镉离子含量呈负相关(图4B)。进一步分析ABA、ZR及ABA/ZR与气孔导度及光合速率的相关性发现,ABA、ABA/ZR与气孔导度及光合速率呈负相关(图5A,B,E,F),而ZR与气孔导度及光合速率呈正相关(图5C,D)。这表明ABA主要起到诱导气孔关闭的作用,而ZR则能够促进气孔开放。

  • 图2 镉胁迫对大豆叶片光合参数的影响

  • 图3 镉胁迫对大豆叶片内源激素的影响

  • 图4 大豆叶片内源激素与镉离子含量的相关及回归分析

  • 图5 大豆叶片内源激素与气孔导度及光合速率的相关及回归分析

  • 2.5 镉胁迫对生长参数的影响

  • 光合作用是作物干物质形成的生物学基础。镉胁迫对大豆光合碳同化的限制最终导致其生长参数的变化,其中,中短期镉胁迫对大豆幼苗株高的影响不显著;长期镉胁迫后,大豆幼苗株高较对照显著降低(图6A)。叶面积与根干重对镉胁迫的生理响应与株高相似,在中短期镉处理下呈现出降低趋势,在长期镉胁迫下较对照显著降低(图6B、C)。

  • 图6 镉胁迫对大豆幼苗生长参数的影响

  • 3 讨论

  • 3.1 镉胁迫下的根源化学信号传输机制

  • 土壤环境变化会首先影响作物根系生理特性。土壤镉离子积累能够对作物根系造成生理干旱,并进一步诱导根区内源激素的合成发生变化[11-12]。其中,生理干旱能够诱导根源ABA的大量合成[13-14], ABA通过木质部蒸腾流向上传输至冠层,并进一步诱导叶片气孔收缩,进而降低作物光合碳同化速率[15]。生理干旱还会降低根系异戊烯酰基转移酶活性,进而减少其催化合成根区ZR的量,通过蒸腾流传输至叶片的ZR量亦会同步降低[16]。ZR能够拮抗ABA诱导的气孔收缩,进而维持气孔开度,提高作物光合碳同化速率[17]。因此,叶片气孔的开放程度取决于ABA与ZR的综合作用[18]。本研究对镉胁迫下内源激素的复合作用(ABA/ZR)与叶片镉离子含量、气孔导度及光合速率的相关性进行了分析,伴随着叶片镉离子含量的升高,叶片ABA/ZR亦呈现出升高的趋势,ABA/ZR的升高会诱导叶片气孔收缩,进而降低叶片光合速率。

  • 3.2 镉胁迫下的光合气孔与非气孔限制

  • 一般说来,降低作物光合碳同化的因素可分为气孔与非气孔两类[19-20]。镉胁迫初期,大豆幼苗能够通过收缩气孔降低叶片蒸腾,进而抑制根区积累的镉离子向冠层运输。同时,气孔收缩亦会限制外界CO2 进入叶肉细胞,导致细胞胞间CO2 浓度降低。当细胞间隙CO2 的量不能满足光合碳同化需求时,即会对光合作用造成气孔限制[21-23]。随着镉处理时间的延长,大量镉离子通过主动运输的方式进入根细胞,并通过木质部蒸腾流不断运输至叶肉细胞。镉离子引起的逆境胁迫会增大叶肉细胞核膜、质膜与细胞器膜透性,严重时还会导致细胞核解体、细胞代谢紊乱、结构受损、功能衰退[24],由此导致PS II反应中心受损,对光合碳同化造成非气孔限制[25]。因此,作物光合碳同化在镉胁迫条件下往往受到气孔限制因素与非气孔限制因素的共同作用[26]。至于哪一种因素在限制光合碳同化过程中起主导作用,目前主要是通过判断气孔导度、光合速率与胞间CO2 浓度的变化方向来确定[27-28]。若气孔导度、光合速率与胞间CO2 浓度同步降低,表明气孔因素在限制作物光合碳同化过程中起主导作用;反之,若气孔导度与光合速率同步降低,而胞间CO2 浓度升高,则表明非气孔因素在限制作物光合过程中占主导[29]。本研究对镉处理条件下光合碳同化的主要限制因素进行分析发现,镉胁迫1~6d时,土壤镉环境形成的生理干旱会刺激化学信号(如内源激素ABA、ZR等)在根区积累;根源化学信号伴随着木质部蒸腾流向上运输至冠层,并诱导气孔收缩。伴随着气孔导度的降低,光合速率与胞间CO2 浓度亦呈现出降低的趋势,表明镉胁迫下的气孔收缩是此时光合碳同化受限制的主要原因。随着胁迫时间的延长,镉胁迫9d后,大量镉离子进入大豆叶肉细胞,这将会对叶肉细胞造成离子毒害,进而降低叶片光合碳同化能力。当大豆叶片光合碳同化消耗的CO2 量低于进入叶肉细胞的CO2 量时,虽然大豆的气孔导度与光合速率降低,但胞间CO2 浓度呈现出升高的趋势。这表明此时非气孔因素是限制光合碳同化的主要原因。镉处理对光合碳同化的限制最终导致长期镉胁迫大豆的株高、叶面积与根干重较对照显著降低。

  • 4 结论

  • 镉胁迫造成了叶片ABA含量升高与ZR含量降低,ABA/ZR升高进一步诱导气孔收缩,限制光合碳同化正常进行。

  • 镉胁迫初期,油菜叶片气孔导度、光合速率与胞间CO2 浓度均逐渐降低,气孔收缩是此时光合受限的主要原因;镉胁迫9d后,伴随着气孔导度与光合速率的降低,胞间CO2 浓度升高,非气孔因素是此时光合受限的主要原因。

  • 镉胁迫对光合碳同化的限制最终导致了大豆株高、叶面积与根干重显著降低。

  • 参考文献

    • [1] 师荣光,郑向群,龚琼,等.农产品产地土壤重金属外源污染来源解析及防控策略研究[J].环境监测管理与技术,2017,29(4):9-13.

    • [2] 卢信,罗佳,高岩,等.土壤污染对农产品质量安全的影响及防治对策[J].江苏农业科学,2014,42(7):288-293.

    • [3] 崔广娟,曹华元,陈康,等.镉胁迫对4种基因型大豆生长和体内元素分布的影响[J].华南农业大学学报,2020,41(5):49-57.

    • [4] Chaney R L,Reeves P G,Ryan J A,et al.An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks[J]. Biometals,2004,17(5):549-553.

    • [5] 郭振,汪怡珂.镉在环境中的分布、迁移及转化研究进展 [J].环境保护前沿,2019,9(3):365-370.

    • [6] 赵宁,寇渊博.土壤对镉(Cd)生物有效性影响的研究[J]. 河南科学,2009,27(9):1089-1092.

    • [7] Shifaw E.Review of heavy metals pollution in China in agricultural and urban soils[J].Journal of Health and Pollution,2018,8(18):180607.

    • [8] Cai K,Yu Y,Zhang M,et al.Concentration,source,and total health risks of cadmium in multiple media in densely populated areas,China[J].Environmental Research and Public Health,2019,16(13):2269.

    • [9] Xue Z,Gao H,Zhao S.Effects of cadmium on the photosynthetic activity in mature and young leaves of soybean plants[J]. Environmental Science and Pollution Research,2014,21(6):4656-4664.

    • [10] Szczygłowska M,Piekarska A,Konieczka P,et al.Use of Brassica plants in the phytoremediation and biofumigation processes[J].International Journal of Molecular Sciences,2011,12:7760-7771.

    • [11] Ghanem M E,Albacete A,Martinez-Andújar C,et al. Hormonal changes during salinity-induced leaf senescence in tomato(Solanum lycopersicum L.)[J].Journal of Experimental Botany,2008,59(11):3039-3050.

    • [12] Yan H,Filardo F,Hu X,et al.Cadmium stress alters the redox reaction and hormone balance in oilseed rape(Brassica napus L.)leaves[J].Environmental Science and Pollution Research,2016,23:3758-3769.

    • [13] de Ollas C,Dodd I C.Physiological impacts of ABA-JA interactions under water-limitation[J].Plant Molecular Biology,2016,91:641-650.

    • [14] Li S,Li X,Wei Z,et al.ABA-mediated modulation of elevated CO2 on stomatal response to drought[J].Current Opinion in Plant Biology,2020,56:174-180.

    • [15] Castro P,Puertolas J,Dodd I C.Stem girdling uncouples soybean stomatal conductance from leaf water potential by enhancing leaf xylem ABA concentration[J].Environmental and Experimental Botany,2019,159:149-156.

    • [16] Schachtman D P,Goodger J Q D.Chemical root to shoot signaling under drought[J].Trends in Plant Science,2008,13(6):281-287.

    • [17] Stoll M,Loveys B,Dry P.Hormonal changes induced by partial rootzone drying of irrigated grapevine[J].Journal of Experimental Botany,2000,51(350):1627-1634.

    • [18] Yan H,Wu L,Filardo F,et al.Chemical and hydraulic signals regulate stomatal behavior and photosynthetic activity in maize during progressive drought[J].Acta Physiologiae Plantarum,2017,39:125.

    • [19] Kao W Y,Tsai T T,Tsai H C,et al.Response of three Glycine species to salt stress[J].Environmental and Experimental Botany,2006,56(1):120-125.

    • [20] Yan H,Hu X,Li F.Leaf photosynthesis,chlorophyll fluorescence,ion content and free amino acids in Caragana korshinskii Kom exposed to NaCl stress[J].Acta Physiologiae Plantarum,2012,34:2285-2295.

    • [21] Yang J,Duursma R A,De Kauwe M G,et al.Incorporating non-stomatal limitation improves the performance of leaf and canopy models at high vapour pressure deficit[J].Tree Physiology,2019,39(12):1961-1974.

    • [22] Bellasio C,Quirk J,Beerling D J,et al.Stomatal and nonstomatal limitations in savanna trees and C4 grasses grown at low,ambient and high atmospheric CO2[J].Plant Science,2018,274:181-192.

    • [23] Zhou S,Duursma R A,Medlyn B E,et al.How should we model plant responses to drought?An analysis of stomatal and nonstomatal responses to water stress[J].Agricultural and Forest Meteorology,2013,182-183:204-214.

    • [24] 杨红霞,陈俊良,刘崴.镉对植物的毒害及植物解毒机制研究进展[J].江苏农业科学,2019,47(2):1-8.

    • [25] Niu J,Feng Z,Zhang W,et al.Non-stomatal limitation to photosynthesis in Cinnamomum camphora seedings exposed to elevated O3[J].Plos One,2014,9(6):e98572.

    • [26] Zhang H,Li X,Xu Z,et al.Toxic effects of heavy metals Pb and Cd on mulberry(Morus alba L.)seedling leaves:Photosynthetic function and reactive oxygen species(ROS)metabolism responses[J].Ecotoxicology and Environmental Safety,2020,195:110469.

    • [27] 郭丽丽,郝立华,贾慧慧,等.NaCl 胁迫对两种番茄气孔特征、气体交换参数和生物量的影响[J].应用生态学报,2018,29(12):3949-3958.

    • [28] Zhou X,Sun C,Zhu P,et al.Effects of antimony stress on photosynthesis and growth of Acorus calamus[J].Frontiers in Plant Science,2018,9:579.

    • [29] Zhang S,Gao R.Non-uniform stomatal closure of hybrid poplar clones under light stress determined by scanning electron microscopy and modification of intercellular CO2 concentration[J].Trees,2000,14:376-383.

  • 参考文献

    • [1] 师荣光,郑向群,龚琼,等.农产品产地土壤重金属外源污染来源解析及防控策略研究[J].环境监测管理与技术,2017,29(4):9-13.

    • [2] 卢信,罗佳,高岩,等.土壤污染对农产品质量安全的影响及防治对策[J].江苏农业科学,2014,42(7):288-293.

    • [3] 崔广娟,曹华元,陈康,等.镉胁迫对4种基因型大豆生长和体内元素分布的影响[J].华南农业大学学报,2020,41(5):49-57.

    • [4] Chaney R L,Reeves P G,Ryan J A,et al.An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks[J]. Biometals,2004,17(5):549-553.

    • [5] 郭振,汪怡珂.镉在环境中的分布、迁移及转化研究进展 [J].环境保护前沿,2019,9(3):365-370.

    • [6] 赵宁,寇渊博.土壤对镉(Cd)生物有效性影响的研究[J]. 河南科学,2009,27(9):1089-1092.

    • [7] Shifaw E.Review of heavy metals pollution in China in agricultural and urban soils[J].Journal of Health and Pollution,2018,8(18):180607.

    • [8] Cai K,Yu Y,Zhang M,et al.Concentration,source,and total health risks of cadmium in multiple media in densely populated areas,China[J].Environmental Research and Public Health,2019,16(13):2269.

    • [9] Xue Z,Gao H,Zhao S.Effects of cadmium on the photosynthetic activity in mature and young leaves of soybean plants[J]. Environmental Science and Pollution Research,2014,21(6):4656-4664.

    • [10] Szczygłowska M,Piekarska A,Konieczka P,et al.Use of Brassica plants in the phytoremediation and biofumigation processes[J].International Journal of Molecular Sciences,2011,12:7760-7771.

    • [11] Ghanem M E,Albacete A,Martinez-Andújar C,et al. Hormonal changes during salinity-induced leaf senescence in tomato(Solanum lycopersicum L.)[J].Journal of Experimental Botany,2008,59(11):3039-3050.

    • [12] Yan H,Filardo F,Hu X,et al.Cadmium stress alters the redox reaction and hormone balance in oilseed rape(Brassica napus L.)leaves[J].Environmental Science and Pollution Research,2016,23:3758-3769.

    • [13] de Ollas C,Dodd I C.Physiological impacts of ABA-JA interactions under water-limitation[J].Plant Molecular Biology,2016,91:641-650.

    • [14] Li S,Li X,Wei Z,et al.ABA-mediated modulation of elevated CO2 on stomatal response to drought[J].Current Opinion in Plant Biology,2020,56:174-180.

    • [15] Castro P,Puertolas J,Dodd I C.Stem girdling uncouples soybean stomatal conductance from leaf water potential by enhancing leaf xylem ABA concentration[J].Environmental and Experimental Botany,2019,159:149-156.

    • [16] Schachtman D P,Goodger J Q D.Chemical root to shoot signaling under drought[J].Trends in Plant Science,2008,13(6):281-287.

    • [17] Stoll M,Loveys B,Dry P.Hormonal changes induced by partial rootzone drying of irrigated grapevine[J].Journal of Experimental Botany,2000,51(350):1627-1634.

    • [18] Yan H,Wu L,Filardo F,et al.Chemical and hydraulic signals regulate stomatal behavior and photosynthetic activity in maize during progressive drought[J].Acta Physiologiae Plantarum,2017,39:125.

    • [19] Kao W Y,Tsai T T,Tsai H C,et al.Response of three Glycine species to salt stress[J].Environmental and Experimental Botany,2006,56(1):120-125.

    • [20] Yan H,Hu X,Li F.Leaf photosynthesis,chlorophyll fluorescence,ion content and free amino acids in Caragana korshinskii Kom exposed to NaCl stress[J].Acta Physiologiae Plantarum,2012,34:2285-2295.

    • [21] Yang J,Duursma R A,De Kauwe M G,et al.Incorporating non-stomatal limitation improves the performance of leaf and canopy models at high vapour pressure deficit[J].Tree Physiology,2019,39(12):1961-1974.

    • [22] Bellasio C,Quirk J,Beerling D J,et al.Stomatal and nonstomatal limitations in savanna trees and C4 grasses grown at low,ambient and high atmospheric CO2[J].Plant Science,2018,274:181-192.

    • [23] Zhou S,Duursma R A,Medlyn B E,et al.How should we model plant responses to drought?An analysis of stomatal and nonstomatal responses to water stress[J].Agricultural and Forest Meteorology,2013,182-183:204-214.

    • [24] 杨红霞,陈俊良,刘崴.镉对植物的毒害及植物解毒机制研究进展[J].江苏农业科学,2019,47(2):1-8.

    • [25] Niu J,Feng Z,Zhang W,et al.Non-stomatal limitation to photosynthesis in Cinnamomum camphora seedings exposed to elevated O3[J].Plos One,2014,9(6):e98572.

    • [26] Zhang H,Li X,Xu Z,et al.Toxic effects of heavy metals Pb and Cd on mulberry(Morus alba L.)seedling leaves:Photosynthetic function and reactive oxygen species(ROS)metabolism responses[J].Ecotoxicology and Environmental Safety,2020,195:110469.

    • [27] 郭丽丽,郝立华,贾慧慧,等.NaCl 胁迫对两种番茄气孔特征、气体交换参数和生物量的影响[J].应用生态学报,2018,29(12):3949-3958.

    • [28] Zhou X,Sun C,Zhu P,et al.Effects of antimony stress on photosynthesis and growth of Acorus calamus[J].Frontiers in Plant Science,2018,9:579.

    • [29] Zhang S,Gao R.Non-uniform stomatal closure of hybrid poplar clones under light stress determined by scanning electron microscopy and modification of intercellular CO2 concentration[J].Trees,2000,14:376-383.

  • 《中国土壤与肥料》招聘启事
    关闭