en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

韩岩松(1978-),工程师,本科,主要从事肥料和土壤调理剂方法研究及评价工作。E-mail:hyssfac@163.com。

通讯作者:

王旭,E-mail:wangxu29@126.com。

参考文献 1
李福长,刘梨平.我国抗生素滥用现状及其对策 [J] .临床合理用药杂志,2014(26):175-177.
参考文献 2
许琳.正确看待养殖业中抗生素的使用 [J] .养禽与禽病防治,2017(7):40-43.
参考文献 3
陈红英,王月颖,傅思武.抗生素在养殖业中的应用现状 [J] .现代畜牧科技,2019,53(5):1-3.
参考文献 4
Zhou L J,Ying G G,Liu S,et al.Excretion masses and environmental occurrence of antibiotics in typical swine and dairy cattle farms in China [J] .Science of the Total Environment,2013,444(2):183-195.
参考文献 5
Zhang Q Q,Ying G G,Pan C G,et al.Comprehensive evaluation of antibiotics emission and fate in the river basins of china:source analysis,multimedia modeling,and linkage to bacterial resistance [J] .Environmental Science & Technology,2015,49(11):6772-6782.
参考文献 6
Hu X,Zhou Q,Yi L.Occurrence and source analysis of typical veterinary antibiotics in manure,soil,vegetables and groundwater from organic vegetable bases,northern China [J] . Environmental Pollution,2010,158(9):2992-2998.
参考文献 7
Sun J,Zeng Q,Tsang D C W,et al.Antibiotics in the agricultural soils from the Yangtze River Delta,China [J] . Chemosphere,2017,189:301-308.
参考文献 8
Petrie B,Barden R,Kasprzyk-Hordern B.A review on emerging contaminants in wastewaters and the environment:Current knowledge,understudied areas and recommendations for future monitoring [J] .Water Research,2015,72:3-27.
参考文献 9
Altenburger R,Aitaissa S,Antczak P,et al.Future water quality monitoring-adapting tools to deal with mixtures of pollutants in water resource management[J] .Science of the Total Environment,2015,512-513:540-551.
参考文献 10
何勇田,熊先哲. 复合污染研究进展 [J] . 环境科学,1994,15(6):79-83.
参考文献 11
Du L,Liu W.Occurrence,fate,and ecotoxicity of antibiotics in agro-ecosystems:A review [J] .Agronomy for Sustainable Development,2012,32(2):309-327.
参考文献 12
刘小云,舒为群.水中抗生素污染现状及检测技术研究进展 [J] .中国卫生检验杂志,2005,15(8):1011-1014.
参考文献 13
孙刚.畜禽粪便中四环素类抗生素检测分析及其在堆肥中的降解研究 [D] .安徽:合肥工业大学,2010.
参考文献 14
刘锋,廖德润,李可,等.畜禽养殖基地磺胺类喹诺酮类和大环内酯类抗生素污染特征 [J] .农业环境科学学报,2013,32(4):847-853.
参考文献 15
张慧敏,章明奎,顾国平.浙北地区畜禽粪便和农田土壤中四环素类抗生素残留 [J] .生态与农村环境学报,2008,24(3):69-73.
参考文献 16
郑佳伦,刘超翔,刘琳,等.畜禽养殖业主要废弃物处理工艺消除抗生素研究进展 [J] .环境化学,2017,36(1):37-47.
参考文献 17
孟磊,杨兵,薛南冬,等.高温堆肥对鸡粪中氟喹诺酮类抗生素的去除 [J] .农业环境科学学报,2015,34(2):377-383.
参考文献 18
许晓玲,李卫芬,雷剑,等.四环素降解菌的选育,鉴定及其降解特性 [J] .农业生物技术学报,2011,19(3):549-556.
参考文献 19
张欣阳,蔡婷静,许旭萍.一株高效四环素降解菌的分离鉴定及其降解性能研究 [J] .生物技术通报,2015,31(1):173-180.
参考文献 20
Guo R,Li G,Jiang T,et al.Effect of aeration rate,C/N ratio and moisture content on the stability and maturity of compost [J] . Bioresource Technology,2012,112(58):171-178.
参考文献 21
Withey J M,Mugo S M,Zhou T,et al.Depletion of hormones and antimicrobials in cattle manure using thermophilic anaerobic digestion [J] .Journal of Chemical Technology & Biotechnology,2016,91(9):2404-2411.
参考文献 22
Turker G,Aydin S,Akyol Ç,et al.Changes in microbial community structures due to varying operational conditions in the anaerobic digestion of oxytetracycline-medicated cow manure [J] . Applied Microbiology & Biotechnology,2016,100(14):6469-6479.
参考文献 23
Arikan O A,Mulbry W,Rice C.Management of antibiotic residues from agricultural sources:Use of composting to reduce chlortetracycline residues in beef manure from treated animals [J].Journal of Hazardous Materials,2009,164(2-3):483-489.
参考文献 24
余佩瑶,刘寒冰,邓艳玲,等.畜禽粪便中抗生素污染特征及堆肥化去除研究进展[J].环境化学,2019,38(2):334-343.
参考文献 25
张树清.规模化养殖畜禽粪有害成分测定及其无害化处理效果[D].北京:中国农业科学院,2004.
参考文献 26
沈颖,魏源送,郭睿,等.超高效液相色谱串联质谱检测猪粪中残留的四环素类抗生素[J].环境化学,2009,28(5):747-752.
参考文献 27
黄荣才,高胜涛,范士杰,等.畜禽粪污源抗生素及耐药基因在环境中的归趋[J].生物技术进展,2019,9(2):146-151.
参考文献 28
应光国.中国抗生素使用与流域污染[C]//中国化学会第30届学术年会摘要集-第二十六分会:环境化学.北京:中国化学会,2016.1.
参考文献 29
张劲强,董元华,安琼,等.兽药抗生素在土壤环境中的行为[J].土壤,2005,37(4):353-361.
参考文献 30
Selvam A,Zhao Z,Li Y,et al.Degradation of tetracycline and sulfadiazine during continuous thermophilic composting of pig manure and sawdust[J].Environmental Technology,2013,34(16):2433-2441.
参考文献 31
Chu Y,Fang C,Wang H,et al.Effects of anaerobic composting on tetracycline degradation in swine manure[J].Chinese Journal of Chemical Engineering,2017,25(10):1505-1511.
参考文献 32
Feng L,Casas M E,Ldm O,et al.Removal of antibiotics during the anaerobic digestion of pig manure[J].Science of the Total Environment,2017,603:219-225.
参考文献 33
Erkan H S,Onkal E G,Ince M,et al.Effect of carbon to nitrogen ratio of feed wastewater and sludge retention time on activated sludge in a submerged membrane bioreactor[J]. Environmental Science &Pollution Research International,2016,23(11):10742-10752.
参考文献 34
葛峰,郭坤,谭丽超,等.有机肥中4类典型兽药抗生素的多残留测定[J].生态与农村环境学报,2012,28(5):587-594.
参考文献 35
田野.固相萃取-高效液相色谱串联质谱法同时测定有机肥料中13种抗生素残留[J].中国土壤与肥料,2017(2):162-168.
参考文献 36
王丽,钟冬莲,陈光才,等.固相萃取-高效液相色谱-串联质谱法测定畜禽粪便中的残留抗生素[J].色谱,2013,31(10):1010-1015.
参考文献 37
GB/T 32951-2016,有机肥料中土霉素、四环素、金霉素和强力霉素的含量测定高效液相色谱法[S].
参考文献 38
NY/T 1896-2010,兽药残留实验室质量控制规范[S].
参考文献 39
张志强,李春花,黄绍文,等.土壤及畜禽粪肥中四环素类抗生素固相萃取-高效液相色谱法的优化与初步应用[J]. 植物营养与肥料学报,2013,19(3):713-726.
参考文献 40
赵健,吕燕,许秀琴,等.超高效液相色谱-串联质谱法测定饲料中6大类50种药物[J].宁波农业科技,2014(2):2-6.
参考文献 41
Takagi R,Fukuda J,Nagata K,et al.A microfluidic microbial culture device for rapid determination of the minimum inhibitory concentration of antibiotics[J].Analyst,2013,138(4):1000-1003.
参考文献 42
席志芳,衷红梅,党全训,等.抗生素微生物检定法-比浊法测定红霉素含量[J].药物分析杂志,2008,28(11):1865-1868.
参考文献 43
Knecht B G,Strasser A,Dietrich R,et al.Automated microarray system for the simultaneous detection of antibiotics in milk[J].Analytical Chemistry,2004,76(3):646-654.
参考文献 44
Lan L Y,Yao Y,Ping J F,et al.Recent advances in nanomaterial-based biosensors for antibiotics detection[J]. Biosensors and Bioelectronics,2017,91:504-514.
参考文献 45
Jester E L,Abraham A,Wang Y S,et al.Performance evaluation of commercial ELISA kits for screening of furazolidone and furaltadone residues in fish[J].Food Chemistry,2014,145:593-598.
参考文献 46
Pastor-Navarro N,Morais S,Maquieira Á,et al.Synthesis of haptens and development of a sensitive immunoassay for tetracycline residues:Application to honey samples[J]. Analytica Chimica Acta,2007,594(2):211-218.
参考文献 47
Lamar J,Petz M.Development of a receptor-based microplate assay for the detection of beta-lactam antibiotics in different food matrices[J].Analytica Chimica Acta,2007,586(1-2):296-303.
参考文献 48
Huet A C,Charlier C,Tittlemier S A,et al.Simultaneous determination of(fluoro)quinolone antibiotics in kidney,marine products,eggs,and muscle by Enzyme-Linked Immunosorbent Assay(ELISA)[J].Journal of Agricultural and Food Chemistry,2006,54(8):2822-2827.
参考文献 49
周爱霞,苏小四,高松,等.高效液相色谱测定地下水、土壤及粪便中4种磺胺类抗生素[J].分析化学,2014,42(3):397-402.
参考文献 50
García-Mayor M A,Garcinuño R M,Fernández-Hernando P,et al.Liquid chromatography–UV diode-array detection method for multi-residue determination of macrolide antibiotics in sheep's milk[J].Journal of Chromatography A,2006,1122(1/2):76-83.
参考文献 51
Fernandez-Torres R,Consentino M O,Lopez M A B,et al. Simultaneous determination of 11 antibiotics and their main metabolites from four different groups by reversed-phase highperformance liquid chromatography-diode array-fluorescence(HPLC-DAD-FLD)in human urine samples[J].Talanta,2010,81(3):871-880.
参考文献 52
Turiel E,Martín-Esteban A,Tadeo J L.Multiresidue analysis of quinolones and fluoroquinolones in soil by ultrasonic-assisted extraction in small columns and HPLC-UV[J].Analytica Chimica Acta,2006,562(19):30-35.
参考文献 53
Raich-Montiu J,Folch J,Compañó R,et al.Analysis of trace levels of sulfonamides in surface water and soil samples by liquid chromatography-fluorescence[J].Journal of Chromatography A,2007,1172(2):186-193.
参考文献 54
Zhang Z W,Li X W,Ding S Y,et al.Multiresidue analysis of sulfonamides,quinolones,and tetracyclines in animal tissues by ultra-high performance liquid chromatography–tandem mass spectrometry[J].Food Chemistry,2016,204:252-262.
参考文献 55
Patyra E,Kwiatek K.Development and validation of multiresidue analysis for tetracycline antibiotics in feed by high performance liquid chromatography coupled to mass spectrometry [J].Food Additives & Contaminants:Part A,2017,34(9):1553-1561.
参考文献 56
Spielmeyer A,Ahlbom J,Hamscher G,et al.Simultaneous determination of 14 sulfonamides an d tetracyclines in biogas plants by liquid-liquid-extraction and liquid chromatography tandem mass spectrometry[J].Analytical and Bioanalytical Chemistry,2014,406(11):2513-2524.
参考文献 57
Di Rocco M,Moloney M,O' Beirne T,et al.Development and validation of a quantitative confirmatory method for 30 β-lactam antibiotics in bovine muscle using liquid chromatography coupled to tandem mass spectrometry[J].Journal of Chromatography A,2017,1500:121-135.
参考文献 58
郭欣妍,王娜,郝利君,等.超高效液相色谱/串联质谱法同时测定水、土壤及粪便中25种抗生素[J].分析化学,2015,43(1):13-20.
参考文献 59
Ye Z Q,Weinberg H S,Meyer M T.Trace analysis of trimethoprim and sulfonamide,macrolide,quinolone,and tetracycline antibiotics in chlorinated drinking water using liquid chromatography electrospray tandem mass spectrometry[J]. Analytical Chemistry,2007,79(3):1135-1144.
目录contents

    摘要

    建立了超高效液相色谱-串联质谱法(UPLC-MS/MS)同时测定鲜羊粪、鲜牛粪、鲜猪粪、鲜鸡粪、处理猪粪及处理鸡粪等畜禽粪便中 34 种氟喹诺酮类、磺胺类及四环素类抗生素含量的方法。畜禽粪便采用甲醇、 Na2EDTA-Mcllvaine 提取液各 10 mL 分 2 次提取,超声 10 min、离心 5 min,固相萃取净化,LC-MS/MS 外标法测定。结果表明,鲜牛粪、鲜羊粪、鲜猪粪、处理猪粪以及鲜鸡粪和处理鸡粪的基质中,34 种目标物均具有良好的线性关系以及较高的精密度和准确度,加标回收率均在 64.6% ~ 117.9% 之间;并且,此方法能满足畜禽粪便中喹诺酮类、磺胺类及四环素类 34 种抗生素含量的分析要求。

    Abstract

    An ultra-performance liquid chromatography tandem mass spectrometry(UPLC-MS / MS)method was developed for the simultaneous determination of 34 fluoroquinolones,sulfonamides and tetracyclines in fresh sheep manure,fresh cow manure,fresh pig manure,fresh chicken manure,treated pig manure and treated chicken manure. Livestock manure were extracted with methanol and Na2EDTA-Mcllvaine extraction solution for 2 times,treated with ultrasonic cleaner for 10 min,centrifuged for 5 min,purified by solid phase extraction,and determined by LC-MS / MS external standard method. The results showed that there was a good linear relationship between the 34 antibiotics in fresh cow manure,fresh sheep manure,fresh pig manure,treated pig manure,fresh chicken manure and treated chicken manure. The recovery rates of standard addition were between 64.6% and 117.9%. This method can meet the analysis requirements of 34 antibiotics content of fluoroquinolones,sulfonamides and tetracyclines in livestock manure.

  • 目前,中国是全球最大的抗生素生产国和消费国,同时也是全球细菌耐药最严重的国家之一[1]。据统计,国内抗生素每年总产量大约为21万t,消费量约18万t,其中用于畜牧及饲料行业的抗生素就有60多种,高达9.7万t,约占消费总量的54%[2-3]。畜禽摄入的抗生素有30%~90%以原药或代谢产物的形式排出体外,2013年中国畜禽养殖使用抗生素总量接近10万t,估计畜禽排泄的抗生素达到5万多t [4-5]。排泄的抗生素随着粪便进入农田[6],导致土壤抗生素污染[7],且土壤中多种抗生素会产生加和、协同、拮抗等交互作用,对土壤中的植物、动物、微生物产生的复合污染毒性效应,导致土壤中多种抗生素复合污染[8-11]。在畜禽粪便肥料化利用过程中,抗生素会被不同程度地降解或消减。堆肥化处理技术通过生物作用和非生物作用实现抗生素的有效降解,是目前畜禽粪便无害化和资源化处理的主要方式,包括好氧堆肥、高温堆肥及厌氧消化3种[12-23]

  • 有研究表明,磺胺类、四环素类和喹诺酮类抗生素是畜禽养殖中最为常用的几类抗生素,这些饲用抗生素若随排泄物进入农田后,可被长期累积,进而对耕地质量、农产品安全、人类和动物健康等造成很大危害[24-33]。然而,目前我国畜禽粪污中抗生素的检测标准相当薄弱,部分研究只针对四环素类及大环内酯类含量进行检测,而对磺胺类、喹诺酮类的测定近乎空白[34-40]。抗生素的检测方法有微生物法[41-42]、生物传感法[43-44]、酶联免疫法[45-48]、液相色谱法[49-53]、液相色谱-质谱法[54-59]等。其中,微生物法和生物传感法操作简单、检测效率高、成本低,但特异性差、灵敏度较低;酶联免疫法前处理简单、灵敏度高、分析速度快,但检测结果会出现假阳性现象;液相色谱法存在分析时间长、检出限高等缺点;相比之下,液相色谱-质谱法(尤其是液相色谱-串联质谱法)具有选择性强、灵敏度和准确性高等优点,特别适合基体复杂、抗生素含量低的样品分析,现已成为抗生素的主流检测方法。根据畜禽粪便样品基体复杂等特点,建立液相色谱-串联质谱法联合测定方法研究有重要意义。

  • 1 材料与方法

  • 1.1 试剂

  • 所用试剂和溶液的配制,在未注明规格和配制方法时,均应按HG/T3696规定执行。超高效液相色谱-串联质谱法用水为超纯水。

  • 甲醇:色谱纯。乙腈:色谱纯。正己烷:色谱纯。盐酸:优级纯。氢氧化钠:分析纯。

  • 氢氧化钠溶液:c(NaOH)=0.01mol/L。

  • 磷酸氢二钠溶液:c(Na2HPO4)=0.2mol/L。

  • 柠檬酸溶液:c(C6H8O7)=0.1mol/L。

  • Mcllvaine溶液:将磷酸氢二钠溶液与柠檬酸溶液按体积比5∶8混合。

  • Na2EDTA-Mcllvaine提取液:c(Na2EDTA-Mcllvaine)=0.1mol/L。称取37.2g二水乙二胺四乙酸二钠(Na2EDTA·2H2O) 于1L Mcllvaine溶液中,用HCl或NaOH调至pH值为4.0。

  • 甲醇溶液:φ(CH3OH)=15%。

  • 甲醇溶液:φ(CH3OH)=65%。

  • 磺胺嘧啶(SDZ)、磺胺噻唑(STZ)、磺胺吡啶(SPD)、磺胺甲基嘧啶(SM1)、磺胺二甲基嘧啶(SM2)、磺胺间甲氧嘧啶(SMM)、磺胺甲噻二唑(SMT)、磺胺对甲氧嘧啶(SMD)、磺胺氯哒嗪(SCP)、磺胺甲氧哒嗪(SMP)、磺胺邻二甲氧嘧啶(SDM′)、磺胺间二甲氧嘧啶(SDM)、磺胺甲基异噁唑(SMZ)、磺胺二甲基异噁唑(SIZ)、苯甲酰磺胺(SB)、磺胺喹恶啉(SQ)、磺胺醋酰(SAA)、甲氧苄氨嘧啶(TMP)、磺胺苯吡唑 (SPA)、金霉素(CTE)、四环素(TCY)、土霉素 (OXY)、强力霉素(DOX)、依诺沙星(ENX)、氧氟沙星(OFX)、诺氟沙星(NOR)、培氟沙星(PEF)、环丙沙星(CIP)、洛美沙星(LOM)、达氟沙星(DAN)、恩诺沙星(ENF)、沙拉沙星(SAR)、双氟沙星(DIF)、司帕沙星(SPX) 单标储备液:ρ=100mg/L。( 购买经国家认证并授予标准物质证书的标准溶液物质,有效期2个月)

  • 34种混合标准溶液:ρ=1mg/L。分别吸取单标储备液0.1至10mL棕色容量瓶中,用甲醇定容,于-20℃避光保存,有效期为1周。

  • 1.2 仪器

  • 超高效液相色谱-串联质谱仪(LCMS-8045,日本岛津);冷冻干燥机(德国Christ Beta2-8LD plus);漩涡混合器(艾卡IKA-MS3);超声波清洗机(YUYI);离心机(8000r/min);旋转蒸发仪 (步琦BUCHI R-100);固相萃取装置;HLB固相萃取柱:500mg;电子天平(精度0.0001g)。

  • 1.3 供试样品

  • 样品来源于收集的牛粪、羊粪、猪粪、鸡粪以及肥料样品共若干个(表1)。

  • 表1 供试样品信息

  • 1.4 样品前处理

  • 本方法采用甲醇、Na2EDTA-Mcllvaine提取液各10mL分2次提取,超声10min、离心5min,固相萃取流速3~5mL/min提取畜禽粪便中的抗生素。

  • 1.4.1 试样的制备

  • 样品经冷冻干燥后,缩分至约100g,迅速研磨至全部通过0.5mm孔径试验筛(如样品潮湿,可通过1.00mm试验筛),混合均匀,置于洁净、干燥容器中,-20℃以下保存备用。

  • 1.4.2 试样溶液的制备

  • 称取试样0.5~1g( 精确至0.0001g) 置于50mL离心管中,加入Na2EDTA-Mcllvaine提取液10mL,涡旋混匀,再加入10mL甲醇,涡旋混匀,常温超声提取10min,在4℃下8000r/min离心5min,上清液转移至棕色分液漏斗,固体部分重复提取一次,合并提取液,加入10mL正己烷去脂后,下层滤液过0.45 µm微孔滤膜,将过膜后液体在旋转蒸发仪(水浴温度不超过40℃为宜)旋蒸至3~5mL,用于净化。

  • HLB固相萃取柱使用前依次用5mL甲醇和5mL水活化。将以上提取液以3~5mL/min流速过柱,用5mL的15%甲醇溶液淋洗HLB固相萃取柱并抽干,用10mL的65%甲醇溶液洗脱目标抗生素,洗脱液于旋转蒸发仪旋蒸至近干,用流动相定容至1mL,过0.22 µm膜,上机待测。

  • 1.5 仪器条件

  • 1.5.1 液相色谱参考条件

  • 色谱柱:Shim-pack GIST,2 µm,(2.1×100) mm,或者相当;流动相:由0.1%甲酸溶液(A) 与乙腈(B)组成,梯度洗脱程序见表2。流速: 0.3mL/min;柱温:40℃;进样量:5 µL。

  • 表2 梯度洗脱程序

  • 1.5.2 质谱参考条件

  • 离子化模式:电喷雾电离(ESI),正离子模式;接口电压:4500V;雾化气:氮气3.0L/min; 干燥气:氮气10L/min;加热气:空气10L/min; 碰撞气:氩气;DL温度:250℃;加热模块温度: 400℃;接口温度:300℃;扫描模式:多反应监测(MRM)模式,MRM参数见表3;驻留时间:5ms;延迟时间:3ms。对于不同质谱仪器,仪器参数可能存在差异,测定前应将质谱参数优化到最佳。

  • 1.6 基质匹配混合标准曲线的绘制

  • 取若干份空白试样,按1.4.2步骤处理与净化。然后用该空白试样溶液和混合标准溶液配制成浓度为10~200 µg/L基质匹配的混合标准系列溶液,供液相色谱-串联质谱分析测定。该系列溶液需临用现配。按浓度由低到高进样检测,以标准系列溶液质量浓度(µg/L)为横坐标,以峰面积为纵坐标,绘制标准曲线。可根据不同仪器灵敏度或样品含量调整标准系列溶液的质量浓度。

  • 1.7 试样溶液的测定

  • 1.7.1 定性

  • 在色谱质谱条件下,分别对基质匹配的混合标准系列溶液和试样溶液进行测定,34种目标抗生素质谱选择离子参数见表3。

  • 表3 34种抗生素MRM优化参数表

  • 表3(续)

  • 注:* 表示定量离子。

  • 在相同实验条件下进行样品测定时,如果检出色谱峰的保留时间与标准样品相一致,偏差在2.5%之内;并且在扣除背景后的样品质谱图中,所选择的离子均出现,而且所选择的离子丰度与标准样品的离子丰度相一致,偏差不超过表4规定的范围,则可判定为样品中存在该抗生素。

  • 表4 定性分析时相对离子丰度的最大允许相对偏差

  • 1.7.2 定量

  • 采用基质匹配标准曲线校准、外标法定量。34种抗生素的基质匹配标准曲线的相关系数应不小于0.99。所测样品中抗生素的响应值应均在该标准曲线的线性范围内。若超出该线性范围,则需减少试样量重新实验或将试样溶液和基质匹配标准溶液做相应稀释后重新测定。

  • 2 结果与分析

  • 2.1 实验条件的确立

  • 针对样品前处理条件的优化,分别考察了鲜羊粪、鲜牛粪、鲜猪粪、鲜鸡粪、处理猪粪及处理鸡粪样品所需提取剂用量及提取次数、超声时间及离心时间、固相萃取时液体流速对结果的影响。

  • 2.1.1 抗生素提取剂用量及提取次数优化

  • 实验采用甲醇、Na2EDTA-Mcllvaine提取液各5mL分2、3次提取与各10mL分2次对S1~S6空白基质样品进行提取实验。空白基质样品加标量为50 μg/L,每个样品进行两次平行测定,处理猪粪结果见图1。

  • 图1 S4空白基质34种抗生素提取剂用量及提取次数优化试验

  • 结果显示,在S4空白样品中,采用甲醇、 Na2EDTA-Mcllvaine提取液各10mL分2次提取是抗生素的最佳提取次数。对S1、S2、S3、S5、S6空白样品进行了同条件验证,验证结果与图1结果相吻合。

  • 2.1.2 提取方式的选择

  • 实验分别考察了超声10、15min,离心5、10min 2个时间点,试样提取液固相萃取流速1、3及5mL/min 3个时间点。各基质空白样品加标量为50 μg/L,进行两次平行测定,S4空白样品结果见图2、3。

  • 结果显示,在S4空白样品中34种抗生素药物的提取,选择超声10min、离心5min,固相萃取流速3~5mL/min是抗生素提取的最佳条件,同条件也适合S1、S2、S3、S5、S6空白样品。

  • 2.2 基质匹配回归方程、线性范围和检出限

  • 用各基质的空白试样溶液和全混合标准工作溶液配制成浓度为0.5~200 µg/L基质匹配的混合标准系列溶液。在所选择的最佳实验条件下进行测定,得到回归方程、线性范围和相关系数见表5、 6。

  • 图2 S4空白基质34种抗生素提取方式的选择

  • 图3 S4空白基质34种抗生素提取液固相萃取流速的确立

  • 表5 S1~S3基质中34种抗生素线性范围及相关系数

  • (续表)

  • 表6 S4~S6基质中34种抗生素线性范围及相关系数

  • (续表)

  • 表5、6结果显示,在液质联用色谱法中,各基质中磺胺类在0.5~200 µg/L范围内具有良好的线性关系;在S1和S2基质中,喹诺酮类及四环素类在0.5~200 µg/L范围内具有良好的线性关系; 在S3、S4、S5及S6样品基质中,喹诺酮类及四环素类在1~200 µg/L范围内具有良好的线性关系。

  • 用各基质空白样品添加34种混合抗生素浓度为0.2、0.5、1、2、5 μg/L,用上述前处理方法进行样品处理,依照确定的色谱和质谱条件进行分析,进样5 μL,进样次数10次,用噪音理论确定34种抗生素的检出限(3倍信噪比)和定量限(10倍信噪比)。本方法6种基质中34种抗生素检出限为0.5~2.0μg/kg,定量限为2.0~5.0 μg/kg。

  • 2.3 精密度实验

  • 为考察超高效液相色谱-串联质谱法的精密度,对各基质进行添加回收实验,添加量为20、 50、100μg/kg,每个添加量平行测定6次,连续重复测定3d,考察批内和批间重复性。采用已建立的方法进行测定,各基质中34种抗生素含量见表7。结果表明各空白基质方法批内变异系数、批间变异系数均不超过25%。

  • 表7 各基质中34种抗生素含量

  • (续表)

  • 注:—表示未检出。

  • 2.4 准确度实验

  • 通过加标回收实验来评价超高效液相色谱-串联质谱法的准确性。在S1~S6基质样品中,加入定量的34种抗生素标准溶液。经两次平行测定,统计本方法的回收率,基质样品本底值见表7。方法对各基质样品中的34种抗生素回收率均在64.6%~117.9%之间(表8~10)。

  • 2.5 10μg/L标准溶液中34 种抗生素色谱图

  • 采用超高效液相色谱-串联质谱仪(LCMS8045,日本岛津)测定10 μg/L标准溶液中34种抗生素色谱图(图4)。

  • 表8 各基质中34种抗生素含量回收率(加标量为20 μg/kg)

  • 表9 各基质中34种抗生素含量回收率(加标量为50 μg/kg)

  • 表10 各基质中34种抗生素含量回收率(加标量为100 μg/kg)

  • 图4 10 μg/L标准溶液中34种抗生素色谱图

  • 3 结论

  • 建立了同时测定畜禽粪便中34种抗生素含量的超高效液相色谱-串联质谱法,并对该方法的样品前处理条件、稳定性、准确性、可靠性等参数进行了研究。结果显示,这种方法的精密度、准确性等方法性能指标均能满足检验的要求,适合畜禽粪便中抗生素的检测。方法的建立将进一步为以畜禽粪便为原料加工成肥料产品的质量监督和市场监管提供技术支撑,从而有效地降低农产品与耕地污染风险,保护生态环境。

  • 参考文献

    • [1] 李福长,刘梨平.我国抗生素滥用现状及其对策 [J] .临床合理用药杂志,2014(26):175-177.

    • [2] 许琳.正确看待养殖业中抗生素的使用 [J] .养禽与禽病防治,2017(7):40-43.

    • [3] 陈红英,王月颖,傅思武.抗生素在养殖业中的应用现状 [J] .现代畜牧科技,2019,53(5):1-3.

    • [4] Zhou L J,Ying G G,Liu S,et al.Excretion masses and environmental occurrence of antibiotics in typical swine and dairy cattle farms in China [J] .Science of the Total Environment,2013,444(2):183-195.

    • [5] Zhang Q Q,Ying G G,Pan C G,et al.Comprehensive evaluation of antibiotics emission and fate in the river basins of china:source analysis,multimedia modeling,and linkage to bacterial resistance [J] .Environmental Science & Technology,2015,49(11):6772-6782.

    • [6] Hu X,Zhou Q,Yi L.Occurrence and source analysis of typical veterinary antibiotics in manure,soil,vegetables and groundwater from organic vegetable bases,northern China [J] . Environmental Pollution,2010,158(9):2992-2998.

    • [7] Sun J,Zeng Q,Tsang D C W,et al.Antibiotics in the agricultural soils from the Yangtze River Delta,China [J] . Chemosphere,2017,189:301-308.

    • [8] Petrie B,Barden R,Kasprzyk-Hordern B.A review on emerging contaminants in wastewaters and the environment:Current knowledge,understudied areas and recommendations for future monitoring [J] .Water Research,2015,72:3-27.

    • [9] Altenburger R,Aitaissa S,Antczak P,et al.Future water quality monitoring-adapting tools to deal with mixtures of pollutants in water resource management[J] .Science of the Total Environment,2015,512-513:540-551.

    • [10] 何勇田,熊先哲. 复合污染研究进展 [J] . 环境科学,1994,15(6):79-83.

    • [11] Du L,Liu W.Occurrence,fate,and ecotoxicity of antibiotics in agro-ecosystems:A review [J] .Agronomy for Sustainable Development,2012,32(2):309-327.

    • [12] 刘小云,舒为群.水中抗生素污染现状及检测技术研究进展 [J] .中国卫生检验杂志,2005,15(8):1011-1014.

    • [13] 孙刚.畜禽粪便中四环素类抗生素检测分析及其在堆肥中的降解研究 [D] .安徽:合肥工业大学,2010.

    • [14] 刘锋,廖德润,李可,等.畜禽养殖基地磺胺类喹诺酮类和大环内酯类抗生素污染特征 [J] .农业环境科学学报,2013,32(4):847-853.

    • [15] 张慧敏,章明奎,顾国平.浙北地区畜禽粪便和农田土壤中四环素类抗生素残留 [J] .生态与农村环境学报,2008,24(3):69-73.

    • [16] 郑佳伦,刘超翔,刘琳,等.畜禽养殖业主要废弃物处理工艺消除抗生素研究进展 [J] .环境化学,2017,36(1):37-47.

    • [17] 孟磊,杨兵,薛南冬,等.高温堆肥对鸡粪中氟喹诺酮类抗生素的去除 [J] .农业环境科学学报,2015,34(2):377-383.

    • [18] 许晓玲,李卫芬,雷剑,等.四环素降解菌的选育,鉴定及其降解特性 [J] .农业生物技术学报,2011,19(3):549-556.

    • [19] 张欣阳,蔡婷静,许旭萍.一株高效四环素降解菌的分离鉴定及其降解性能研究 [J] .生物技术通报,2015,31(1):173-180.

    • [20] Guo R,Li G,Jiang T,et al.Effect of aeration rate,C/N ratio and moisture content on the stability and maturity of compost [J] . Bioresource Technology,2012,112(58):171-178.

    • [21] Withey J M,Mugo S M,Zhou T,et al.Depletion of hormones and antimicrobials in cattle manure using thermophilic anaerobic digestion [J] .Journal of Chemical Technology & Biotechnology,2016,91(9):2404-2411.

    • [22] Turker G,Aydin S,Akyol Ç,et al.Changes in microbial community structures due to varying operational conditions in the anaerobic digestion of oxytetracycline-medicated cow manure [J] . Applied Microbiology & Biotechnology,2016,100(14):6469-6479.

    • [23] Arikan O A,Mulbry W,Rice C.Management of antibiotic residues from agricultural sources:Use of composting to reduce chlortetracycline residues in beef manure from treated animals [J].Journal of Hazardous Materials,2009,164(2-3):483-489.

    • [24] 余佩瑶,刘寒冰,邓艳玲,等.畜禽粪便中抗生素污染特征及堆肥化去除研究进展[J].环境化学,2019,38(2):334-343.

    • [25] 张树清.规模化养殖畜禽粪有害成分测定及其无害化处理效果[D].北京:中国农业科学院,2004.

    • [26] 沈颖,魏源送,郭睿,等.超高效液相色谱串联质谱检测猪粪中残留的四环素类抗生素[J].环境化学,2009,28(5):747-752.

    • [27] 黄荣才,高胜涛,范士杰,等.畜禽粪污源抗生素及耐药基因在环境中的归趋[J].生物技术进展,2019,9(2):146-151.

    • [28] 应光国.中国抗生素使用与流域污染[C]//中国化学会第30届学术年会摘要集-第二十六分会:环境化学.北京:中国化学会,2016.1.

    • [29] 张劲强,董元华,安琼,等.兽药抗生素在土壤环境中的行为[J].土壤,2005,37(4):353-361.

    • [30] Selvam A,Zhao Z,Li Y,et al.Degradation of tetracycline and sulfadiazine during continuous thermophilic composting of pig manure and sawdust[J].Environmental Technology,2013,34(16):2433-2441.

    • [31] Chu Y,Fang C,Wang H,et al.Effects of anaerobic composting on tetracycline degradation in swine manure[J].Chinese Journal of Chemical Engineering,2017,25(10):1505-1511.

    • [32] Feng L,Casas M E,Ldm O,et al.Removal of antibiotics during the anaerobic digestion of pig manure[J].Science of the Total Environment,2017,603:219-225.

    • [33] Erkan H S,Onkal E G,Ince M,et al.Effect of carbon to nitrogen ratio of feed wastewater and sludge retention time on activated sludge in a submerged membrane bioreactor[J]. Environmental Science &Pollution Research International,2016,23(11):10742-10752.

    • [34] 葛峰,郭坤,谭丽超,等.有机肥中4类典型兽药抗生素的多残留测定[J].生态与农村环境学报,2012,28(5):587-594.

    • [35] 田野.固相萃取-高效液相色谱串联质谱法同时测定有机肥料中13种抗生素残留[J].中国土壤与肥料,2017(2):162-168.

    • [36] 王丽,钟冬莲,陈光才,等.固相萃取-高效液相色谱-串联质谱法测定畜禽粪便中的残留抗生素[J].色谱,2013,31(10):1010-1015.

    • [37] GB/T 32951-2016,有机肥料中土霉素、四环素、金霉素和强力霉素的含量测定高效液相色谱法[S].

    • [38] NY/T 1896-2010,兽药残留实验室质量控制规范[S].

    • [39] 张志强,李春花,黄绍文,等.土壤及畜禽粪肥中四环素类抗生素固相萃取-高效液相色谱法的优化与初步应用[J]. 植物营养与肥料学报,2013,19(3):713-726.

    • [40] 赵健,吕燕,许秀琴,等.超高效液相色谱-串联质谱法测定饲料中6大类50种药物[J].宁波农业科技,2014(2):2-6.

    • [41] Takagi R,Fukuda J,Nagata K,et al.A microfluidic microbial culture device for rapid determination of the minimum inhibitory concentration of antibiotics[J].Analyst,2013,138(4):1000-1003.

    • [42] 席志芳,衷红梅,党全训,等.抗生素微生物检定法-比浊法测定红霉素含量[J].药物分析杂志,2008,28(11):1865-1868.

    • [43] Knecht B G,Strasser A,Dietrich R,et al.Automated microarray system for the simultaneous detection of antibiotics in milk[J].Analytical Chemistry,2004,76(3):646-654.

    • [44] Lan L Y,Yao Y,Ping J F,et al.Recent advances in nanomaterial-based biosensors for antibiotics detection[J]. Biosensors and Bioelectronics,2017,91:504-514.

    • [45] Jester E L,Abraham A,Wang Y S,et al.Performance evaluation of commercial ELISA kits for screening of furazolidone and furaltadone residues in fish[J].Food Chemistry,2014,145:593-598.

    • [46] Pastor-Navarro N,Morais S,Maquieira Á,et al.Synthesis of haptens and development of a sensitive immunoassay for tetracycline residues:Application to honey samples[J]. Analytica Chimica Acta,2007,594(2):211-218.

    • [47] Lamar J,Petz M.Development of a receptor-based microplate assay for the detection of beta-lactam antibiotics in different food matrices[J].Analytica Chimica Acta,2007,586(1-2):296-303.

    • [48] Huet A C,Charlier C,Tittlemier S A,et al.Simultaneous determination of(fluoro)quinolone antibiotics in kidney,marine products,eggs,and muscle by Enzyme-Linked Immunosorbent Assay(ELISA)[J].Journal of Agricultural and Food Chemistry,2006,54(8):2822-2827.

    • [49] 周爱霞,苏小四,高松,等.高效液相色谱测定地下水、土壤及粪便中4种磺胺类抗生素[J].分析化学,2014,42(3):397-402.

    • [50] García-Mayor M A,Garcinuño R M,Fernández-Hernando P,et al.Liquid chromatography–UV diode-array detection method for multi-residue determination of macrolide antibiotics in sheep's milk[J].Journal of Chromatography A,2006,1122(1/2):76-83.

    • [51] Fernandez-Torres R,Consentino M O,Lopez M A B,et al. Simultaneous determination of 11 antibiotics and their main metabolites from four different groups by reversed-phase highperformance liquid chromatography-diode array-fluorescence(HPLC-DAD-FLD)in human urine samples[J].Talanta,2010,81(3):871-880.

    • [52] Turiel E,Martín-Esteban A,Tadeo J L.Multiresidue analysis of quinolones and fluoroquinolones in soil by ultrasonic-assisted extraction in small columns and HPLC-UV[J].Analytica Chimica Acta,2006,562(19):30-35.

    • [53] Raich-Montiu J,Folch J,Compañó R,et al.Analysis of trace levels of sulfonamides in surface water and soil samples by liquid chromatography-fluorescence[J].Journal of Chromatography A,2007,1172(2):186-193.

    • [54] Zhang Z W,Li X W,Ding S Y,et al.Multiresidue analysis of sulfonamides,quinolones,and tetracyclines in animal tissues by ultra-high performance liquid chromatography–tandem mass spectrometry[J].Food Chemistry,2016,204:252-262.

    • [55] Patyra E,Kwiatek K.Development and validation of multiresidue analysis for tetracycline antibiotics in feed by high performance liquid chromatography coupled to mass spectrometry [J].Food Additives & Contaminants:Part A,2017,34(9):1553-1561.

    • [56] Spielmeyer A,Ahlbom J,Hamscher G,et al.Simultaneous determination of 14 sulfonamides an d tetracyclines in biogas plants by liquid-liquid-extraction and liquid chromatography tandem mass spectrometry[J].Analytical and Bioanalytical Chemistry,2014,406(11):2513-2524.

    • [57] Di Rocco M,Moloney M,O' Beirne T,et al.Development and validation of a quantitative confirmatory method for 30 β-lactam antibiotics in bovine muscle using liquid chromatography coupled to tandem mass spectrometry[J].Journal of Chromatography A,2017,1500:121-135.

    • [58] 郭欣妍,王娜,郝利君,等.超高效液相色谱/串联质谱法同时测定水、土壤及粪便中25种抗生素[J].分析化学,2015,43(1):13-20.

    • [59] Ye Z Q,Weinberg H S,Meyer M T.Trace analysis of trimethoprim and sulfonamide,macrolide,quinolone,and tetracycline antibiotics in chlorinated drinking water using liquid chromatography electrospray tandem mass spectrometry[J]. Analytical Chemistry,2007,79(3):1135-1144.

  • 参考文献

    • [1] 李福长,刘梨平.我国抗生素滥用现状及其对策 [J] .临床合理用药杂志,2014(26):175-177.

    • [2] 许琳.正确看待养殖业中抗生素的使用 [J] .养禽与禽病防治,2017(7):40-43.

    • [3] 陈红英,王月颖,傅思武.抗生素在养殖业中的应用现状 [J] .现代畜牧科技,2019,53(5):1-3.

    • [4] Zhou L J,Ying G G,Liu S,et al.Excretion masses and environmental occurrence of antibiotics in typical swine and dairy cattle farms in China [J] .Science of the Total Environment,2013,444(2):183-195.

    • [5] Zhang Q Q,Ying G G,Pan C G,et al.Comprehensive evaluation of antibiotics emission and fate in the river basins of china:source analysis,multimedia modeling,and linkage to bacterial resistance [J] .Environmental Science & Technology,2015,49(11):6772-6782.

    • [6] Hu X,Zhou Q,Yi L.Occurrence and source analysis of typical veterinary antibiotics in manure,soil,vegetables and groundwater from organic vegetable bases,northern China [J] . Environmental Pollution,2010,158(9):2992-2998.

    • [7] Sun J,Zeng Q,Tsang D C W,et al.Antibiotics in the agricultural soils from the Yangtze River Delta,China [J] . Chemosphere,2017,189:301-308.

    • [8] Petrie B,Barden R,Kasprzyk-Hordern B.A review on emerging contaminants in wastewaters and the environment:Current knowledge,understudied areas and recommendations for future monitoring [J] .Water Research,2015,72:3-27.

    • [9] Altenburger R,Aitaissa S,Antczak P,et al.Future water quality monitoring-adapting tools to deal with mixtures of pollutants in water resource management[J] .Science of the Total Environment,2015,512-513:540-551.

    • [10] 何勇田,熊先哲. 复合污染研究进展 [J] . 环境科学,1994,15(6):79-83.

    • [11] Du L,Liu W.Occurrence,fate,and ecotoxicity of antibiotics in agro-ecosystems:A review [J] .Agronomy for Sustainable Development,2012,32(2):309-327.

    • [12] 刘小云,舒为群.水中抗生素污染现状及检测技术研究进展 [J] .中国卫生检验杂志,2005,15(8):1011-1014.

    • [13] 孙刚.畜禽粪便中四环素类抗生素检测分析及其在堆肥中的降解研究 [D] .安徽:合肥工业大学,2010.

    • [14] 刘锋,廖德润,李可,等.畜禽养殖基地磺胺类喹诺酮类和大环内酯类抗生素污染特征 [J] .农业环境科学学报,2013,32(4):847-853.

    • [15] 张慧敏,章明奎,顾国平.浙北地区畜禽粪便和农田土壤中四环素类抗生素残留 [J] .生态与农村环境学报,2008,24(3):69-73.

    • [16] 郑佳伦,刘超翔,刘琳,等.畜禽养殖业主要废弃物处理工艺消除抗生素研究进展 [J] .环境化学,2017,36(1):37-47.

    • [17] 孟磊,杨兵,薛南冬,等.高温堆肥对鸡粪中氟喹诺酮类抗生素的去除 [J] .农业环境科学学报,2015,34(2):377-383.

    • [18] 许晓玲,李卫芬,雷剑,等.四环素降解菌的选育,鉴定及其降解特性 [J] .农业生物技术学报,2011,19(3):549-556.

    • [19] 张欣阳,蔡婷静,许旭萍.一株高效四环素降解菌的分离鉴定及其降解性能研究 [J] .生物技术通报,2015,31(1):173-180.

    • [20] Guo R,Li G,Jiang T,et al.Effect of aeration rate,C/N ratio and moisture content on the stability and maturity of compost [J] . Bioresource Technology,2012,112(58):171-178.

    • [21] Withey J M,Mugo S M,Zhou T,et al.Depletion of hormones and antimicrobials in cattle manure using thermophilic anaerobic digestion [J] .Journal of Chemical Technology & Biotechnology,2016,91(9):2404-2411.

    • [22] Turker G,Aydin S,Akyol Ç,et al.Changes in microbial community structures due to varying operational conditions in the anaerobic digestion of oxytetracycline-medicated cow manure [J] . Applied Microbiology & Biotechnology,2016,100(14):6469-6479.

    • [23] Arikan O A,Mulbry W,Rice C.Management of antibiotic residues from agricultural sources:Use of composting to reduce chlortetracycline residues in beef manure from treated animals [J].Journal of Hazardous Materials,2009,164(2-3):483-489.

    • [24] 余佩瑶,刘寒冰,邓艳玲,等.畜禽粪便中抗生素污染特征及堆肥化去除研究进展[J].环境化学,2019,38(2):334-343.

    • [25] 张树清.规模化养殖畜禽粪有害成分测定及其无害化处理效果[D].北京:中国农业科学院,2004.

    • [26] 沈颖,魏源送,郭睿,等.超高效液相色谱串联质谱检测猪粪中残留的四环素类抗生素[J].环境化学,2009,28(5):747-752.

    • [27] 黄荣才,高胜涛,范士杰,等.畜禽粪污源抗生素及耐药基因在环境中的归趋[J].生物技术进展,2019,9(2):146-151.

    • [28] 应光国.中国抗生素使用与流域污染[C]//中国化学会第30届学术年会摘要集-第二十六分会:环境化学.北京:中国化学会,2016.1.

    • [29] 张劲强,董元华,安琼,等.兽药抗生素在土壤环境中的行为[J].土壤,2005,37(4):353-361.

    • [30] Selvam A,Zhao Z,Li Y,et al.Degradation of tetracycline and sulfadiazine during continuous thermophilic composting of pig manure and sawdust[J].Environmental Technology,2013,34(16):2433-2441.

    • [31] Chu Y,Fang C,Wang H,et al.Effects of anaerobic composting on tetracycline degradation in swine manure[J].Chinese Journal of Chemical Engineering,2017,25(10):1505-1511.

    • [32] Feng L,Casas M E,Ldm O,et al.Removal of antibiotics during the anaerobic digestion of pig manure[J].Science of the Total Environment,2017,603:219-225.

    • [33] Erkan H S,Onkal E G,Ince M,et al.Effect of carbon to nitrogen ratio of feed wastewater and sludge retention time on activated sludge in a submerged membrane bioreactor[J]. Environmental Science &Pollution Research International,2016,23(11):10742-10752.

    • [34] 葛峰,郭坤,谭丽超,等.有机肥中4类典型兽药抗生素的多残留测定[J].生态与农村环境学报,2012,28(5):587-594.

    • [35] 田野.固相萃取-高效液相色谱串联质谱法同时测定有机肥料中13种抗生素残留[J].中国土壤与肥料,2017(2):162-168.

    • [36] 王丽,钟冬莲,陈光才,等.固相萃取-高效液相色谱-串联质谱法测定畜禽粪便中的残留抗生素[J].色谱,2013,31(10):1010-1015.

    • [37] GB/T 32951-2016,有机肥料中土霉素、四环素、金霉素和强力霉素的含量测定高效液相色谱法[S].

    • [38] NY/T 1896-2010,兽药残留实验室质量控制规范[S].

    • [39] 张志强,李春花,黄绍文,等.土壤及畜禽粪肥中四环素类抗生素固相萃取-高效液相色谱法的优化与初步应用[J]. 植物营养与肥料学报,2013,19(3):713-726.

    • [40] 赵健,吕燕,许秀琴,等.超高效液相色谱-串联质谱法测定饲料中6大类50种药物[J].宁波农业科技,2014(2):2-6.

    • [41] Takagi R,Fukuda J,Nagata K,et al.A microfluidic microbial culture device for rapid determination of the minimum inhibitory concentration of antibiotics[J].Analyst,2013,138(4):1000-1003.

    • [42] 席志芳,衷红梅,党全训,等.抗生素微生物检定法-比浊法测定红霉素含量[J].药物分析杂志,2008,28(11):1865-1868.

    • [43] Knecht B G,Strasser A,Dietrich R,et al.Automated microarray system for the simultaneous detection of antibiotics in milk[J].Analytical Chemistry,2004,76(3):646-654.

    • [44] Lan L Y,Yao Y,Ping J F,et al.Recent advances in nanomaterial-based biosensors for antibiotics detection[J]. Biosensors and Bioelectronics,2017,91:504-514.

    • [45] Jester E L,Abraham A,Wang Y S,et al.Performance evaluation of commercial ELISA kits for screening of furazolidone and furaltadone residues in fish[J].Food Chemistry,2014,145:593-598.

    • [46] Pastor-Navarro N,Morais S,Maquieira Á,et al.Synthesis of haptens and development of a sensitive immunoassay for tetracycline residues:Application to honey samples[J]. Analytica Chimica Acta,2007,594(2):211-218.

    • [47] Lamar J,Petz M.Development of a receptor-based microplate assay for the detection of beta-lactam antibiotics in different food matrices[J].Analytica Chimica Acta,2007,586(1-2):296-303.

    • [48] Huet A C,Charlier C,Tittlemier S A,et al.Simultaneous determination of(fluoro)quinolone antibiotics in kidney,marine products,eggs,and muscle by Enzyme-Linked Immunosorbent Assay(ELISA)[J].Journal of Agricultural and Food Chemistry,2006,54(8):2822-2827.

    • [49] 周爱霞,苏小四,高松,等.高效液相色谱测定地下水、土壤及粪便中4种磺胺类抗生素[J].分析化学,2014,42(3):397-402.

    • [50] García-Mayor M A,Garcinuño R M,Fernández-Hernando P,et al.Liquid chromatography–UV diode-array detection method for multi-residue determination of macrolide antibiotics in sheep's milk[J].Journal of Chromatography A,2006,1122(1/2):76-83.

    • [51] Fernandez-Torres R,Consentino M O,Lopez M A B,et al. Simultaneous determination of 11 antibiotics and their main metabolites from four different groups by reversed-phase highperformance liquid chromatography-diode array-fluorescence(HPLC-DAD-FLD)in human urine samples[J].Talanta,2010,81(3):871-880.

    • [52] Turiel E,Martín-Esteban A,Tadeo J L.Multiresidue analysis of quinolones and fluoroquinolones in soil by ultrasonic-assisted extraction in small columns and HPLC-UV[J].Analytica Chimica Acta,2006,562(19):30-35.

    • [53] Raich-Montiu J,Folch J,Compañó R,et al.Analysis of trace levels of sulfonamides in surface water and soil samples by liquid chromatography-fluorescence[J].Journal of Chromatography A,2007,1172(2):186-193.

    • [54] Zhang Z W,Li X W,Ding S Y,et al.Multiresidue analysis of sulfonamides,quinolones,and tetracyclines in animal tissues by ultra-high performance liquid chromatography–tandem mass spectrometry[J].Food Chemistry,2016,204:252-262.

    • [55] Patyra E,Kwiatek K.Development and validation of multiresidue analysis for tetracycline antibiotics in feed by high performance liquid chromatography coupled to mass spectrometry [J].Food Additives & Contaminants:Part A,2017,34(9):1553-1561.

    • [56] Spielmeyer A,Ahlbom J,Hamscher G,et al.Simultaneous determination of 14 sulfonamides an d tetracyclines in biogas plants by liquid-liquid-extraction and liquid chromatography tandem mass spectrometry[J].Analytical and Bioanalytical Chemistry,2014,406(11):2513-2524.

    • [57] Di Rocco M,Moloney M,O' Beirne T,et al.Development and validation of a quantitative confirmatory method for 30 β-lactam antibiotics in bovine muscle using liquid chromatography coupled to tandem mass spectrometry[J].Journal of Chromatography A,2017,1500:121-135.

    • [58] 郭欣妍,王娜,郝利君,等.超高效液相色谱/串联质谱法同时测定水、土壤及粪便中25种抗生素[J].分析化学,2015,43(1):13-20.

    • [59] Ye Z Q,Weinberg H S,Meyer M T.Trace analysis of trimethoprim and sulfonamide,macrolide,quinolone,and tetracycline antibiotics in chlorinated drinking water using liquid chromatography electrospray tandem mass spectrometry[J]. Analytical Chemistry,2007,79(3):1135-1144.

  • 《中国土壤与肥料》招聘启事
    关闭