en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王萌(1995-),硕士研究生,研究方向为土壤与植物互作。E-mail:617179515@qq.com。

通讯作者:

宋阿琳,E-mail:songalin@cass.cn。

参考文献 1
George T S,Gregory P J,Wood M,et al.Phosphatase activity and organic acids in the rhizosphere of potential agroforestry species and maize[J].Soil Biology and Biochemistry,2002,34(10):1487-1494.
参考文献 2
Mori A,Fukuda T,Vejchasarn P,et al.The role of root size versus root efficiency in phosphorus acquisition in rice[J]. Journal of Experimental Botany,2016,67(4):1179-1189.
参考文献 3
Marcel B.Functional biology of plant phosphate uptake at root and mycorrhiza interfaces[J].New Phytologist,2007,173(1):11-26.
参考文献 4
Tate K R.The biological transformations of P in soil[J].Plant and Soil,1984,76(1):245-256.
参考文献 5
Hayes J E,Richardson A E,Simpson R J.Components of organic phosphorus in soil extracts that are hydrolysed by phytase and acid phosphatase[J].Biology and Fertility of Soils,2000,32(4):279-286.
参考文献 6
Schachtman D P,Reid R J,Ayling S M,et al.Phosphorus uptake by plants:from soil to cell[J].Plant Physiology,1998,116(2):447-453.
参考文献 7
张清,陈智文,刘吉平,等.提高磷肥利用率的研究现状及发展趋势[J].世界农业,2007(2):50-52.
参考文献 8
Sharma S B,Sayyed R Z,Trivedi M H,et al.Phosphate solubilizing microbes:sustainable approach for managing phosphorus deficiency in agricultural soils[J].Springerplus,2013,2:587.
参考文献 9
Sattari S Z,Bouwman A F,Giller K E,et al.Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle[J].Proceedings of the National Academy of Sciences,2012,109(16):6348-6353.
参考文献 10
付微,李勇,李向越,等.松嫩平原黑土区农田土壤肥力评价研究[J].土壤与作物,2012,1(3):166-174.
参考文献 11
Zaidi A,Khan M S,Ahemad M,et al.Recent advances in plant growth promotion by phosphate-solubilizing microbes [M].Berlin,Heidelberg:Springer Berlin Heidelberg,2009. 23-50.
参考文献 12
Kang S C,Ha C G,Lee T G,et al.Solubilization of insoluble inorganic phosphates by a soil-inhabiting fungus Fomitopsis sp. PS 102[J].Current Science,2002,82(4):439-442.
参考文献 13
David L A,Mark R B,Bernd Z,et al.Long-term organic phosphorus mineralization in Spodosols under forests and its relation to carbon and nitrogen mineralization[J].Soil Biology and Biochemistry,2010,42(9):1479-1490.
参考文献 14
滕泽栋,李敏,朱静,等.解磷微生物对土壤磷资源利用影响的研究进展[J].土壤通报,2017(1):229-235.
参考文献 15
Zhu J,Li M,Whelan M,et al.Phosphorus activators contribute to legacy phosphorus availability in agricultural soils:a review[J]. Science of the Total Environment,2018,612:522-537.
参考文献 16
Bakker P A,Pieterse C M,van Loon L C.Induced systemic resistance by fluorescent pseudomonas spp[J].Phytopathology,2007,97(2):239-43.
参考文献 17
Davide B,Matthias R,Klaus S,et al.Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota [J].Nature:International Weekly Journal of Science,2012,488(7409):91-95.
参考文献 18
Silva U C,Medeiros J D,Leite L R,et al.Long-term rock phosphate fertilization impacts the microbial communities of maize rhizosphere[J].Frontiers in Microbiology,2017,8:1266.
参考文献 19
Berendsen R L,Pieterse C M J,Bakker P A H M,et al.The rhizosphere microbiome and plant health[J].Trends in Plant Science,2012,17(8):478-486.
参考文献 20
赵学强,沈仁芳.土壤微生物在植物获得养分中的作用 [J].生态学报,2015,35(20):6584-6591.
参考文献 21
Durán P,Thiergart T,Garrido-Oter R,et al.Microbial interkingdom interactions in roots promote arabidopsis survival[J].Cell(Cambridge),2018,175(4):973-983.
参考文献 22
Bulgarelli D,Schlaeppi K,Spaepen S,et al.Structure and functions of the bacterial microbiota of plants[J].Annual Review of Plant Biology,2013,64(1):807-838.
参考文献 23
Fierer N,Jackson R B.From the cover:The diversity and biogeography of soil bacterial communities[J].Proceedings of the National Acadeny Sciences of the United States of America,2006,103(3):626-631.
参考文献 24
Fan K,Weisenhorn P,Gilbert J A,et al.Soil pH correlates with the co-occurrence and assemblage process of diazotrophic communities in rhizosphere and bulk soils of wheat fields[J]. Soil Biology and Biochemistry,2018,121:185-192.
参考文献 25
Fan K,Delgado-Baquerizo M,Guo X,et al.Suppressed N fixation and diazotrophs after four decades of fertilization[J]. Microbiome,2019,7(1):110-143.
参考文献 26
Christian L L,Michael S S,Mark A B,et al.The influence of soil properties on the structure of bacterial and fungal communities across land-use types[J].Soil Biology and Biochemistry,2008,40(9):2407-2415.
参考文献 27
Sasaki K,Ikeda S,Ohkubo T,et al.Effects of plant genotype and nitrogen level on bacterial communities in rice shoots and roots [J].Microbes and Environments,2013,28(3):391-395.
参考文献 28
Marschner P,Crowley D,Yang C H,et al.Development of specific rhizosphere bacterial communities in relation to plant species,nutrition and soil type[J].Plant and Soil,2004,261(1-2):199-208.
参考文献 29
Zhao K,Penttinen P,Zhang X,et al.Maize rhizosphere in Sichuan,China,hosts plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities[J]. Microbiological Research,2014,169(1):76-82.
参考文献 30
Zhang J,Liu Y,Zhang N,et al.NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice [J].Nature Biotechnology,2019,37(6):676-684.
参考文献 31
鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
参考文献 32
Robert C E,et al.Search and clustering orders of magnitude faster than BLAST[J].Bioinformatics,2010,26(19):2460-2461.
参考文献 33
Robert C E,Brian J H,Jose C C,et al.UCHIME improves sensitivity and speed of chimera detection[J].Bioinformatics,2010,26(19):2460-2461.
参考文献 34
Robert C E.UPARSE:highly accurate OTU sequences from microbial amplicon reads[J].Nature Methods:Techniques for Life Scientists and Chemists,2013,10(10):996-998.
参考文献 35
Jorquera M A,Crowley D E,Marschner P,et al.Identification ofβ-propeller phytase-encoding genes in culturable Paenibacillus and Bacillus spp.from the rhizosphere of pasture plants on volcanic soils[J].FEMS Microbiology Ecology,2011,75(1):163-172.
参考文献 36
Richardson A E,Simpson R J.Soil Microorganisms mediating phosphorus availability[J].Plant Physiology,2011,156(3):989-996.
参考文献 37
Lauber C L,Hamady M,Knight R,et al.Pyrosequencingbased assessment of soil pH as a predictor of soil bacterial community structure at the continental scale[J].Applied and Environmental Microbiology,2009,75(15):5111-5120.
参考文献 38
Osborne C A,Zwart A B,Broadhurst L M,et al.The influence of sampling strategies and spatial variation on the detected soil bacterial communities under three different land-use types[J]. FEMS Microbiology Ecology,2011,78(1):70-79.
参考文献 39
Philippot L,Raaijmakers J M,Lemanceau P,et al.Going back to the roots:the microbial ecology of the rhizosphere[J].Nature Reviews.Microbiology,2013,11(11):789-799.
参考文献 40
Soussi A,Ferjani R,Marasco R,et al.Plant-associated microbiomes in arid lands:diversity,ecology and biotechnological potential[J].Plant and Soil,2015,405(1-2):357-370.
参考文献 41
Bodenhausen N,Somerville V,Desirò A,et al.Petuniaand arabidopsis-specific root microbiota responses to phosphate Supplementation[J].Phytobiomes Journal,2019,3(2):112-124.
参考文献 42
Zancarini A,Mougel C,Voisin A,et al.Soil nitrogen availability and plant genotype modify the nutrition strategies of M. truncatula and the associated rhizosphere microbial Communities [J].PloS One,2012,7(10):e47096.
参考文献 43
Trabelsi D,Cherni A,Zineb A B,et al.Fertilization of Phaseolus vulgaris with the Tunisian rock phosphate affects richness and structure of rhizosphere bacterial communities[J]. Applied Soil Ecology:a Section of Agriculture,Ecosystems & Environment,2017,114:1-8.
参考文献 44
Robbins C,Thiergart T,Hacquard S,et al.Root-associated bacterial and fungal community profiles of arabidopsis thaliana are robust across contrasting soil P levels[J].Phytobiomes Journal,2018,2(1):24-34.
参考文献 45
Bardgett R D,Mawdsley J L,Edwards S,et al.Plant species and nitrogen effects on soil biological properties of temperate upland grasslands[J].Functional Ecology,1999,13(5):650-660.
参考文献 46
Anne S,Christopher S,John L,et al.Cultivar and phosphorus effects on switchgrass yield and rhizosphere microbial diversity[J]. Appl Microbiol Biotechnol,2019,103(4):1973-1987.
参考文献 47
Jorquera M A,Martinez O A,Marileo L G,et al.Effect of nitrogen and phosphorus fertilization on the composition of rhizobacterial communities of two Chilean Andisol pastures[J]. World J Microbiol Biotechnol,2014,30(1):99-107.
参考文献 48
Hartman K,Tringe S G,et al.Interactions between plants and soil shaping the root microbiome under abiotic stress[J].The Biochemical Journal,2019,476(19):2705-2724.
参考文献 49
Sharma S B,Sayyed R Z,Trivedi M H,et al.Phosphate solubilizing microbes:sustainable approach for managing phosphorus deficiency in agricultural soils[J].Springerplus,2013,2(1):587.
参考文献 50
Shakya M,Gottel N,Castro H,et al.A multifactor analysis of fungal and bacterial community structure in the root microbiome of mature populus deltoides trees[J].PloS One,2013,8(10):e76382.
参考文献 51
Schwartz M W,Hoeksema J D.Specialization and resource trade:biological markets as a model of mutualisms[J].Ecology,1998,79(3):1029-1038.
参考文献 52
Lundberg D S,Lebeis S L,Paredes S H,et al.Defining the core arabidopsis thaliana root microbiome[J].Nature,2012,488(7409):86-90.
参考文献 53
Coleman-Derr D,Desgarennes D,Fonseca-Garcia C,et al.Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species[J].The New Phytologist,2016,209(2):798-811.
参考文献 54
葛艺,徐绍辉,徐艳,等.根际微生物组构建的影响因素研究进展[J].浙江农业学报,2019,31(12):2120-2130.
目录contents

    摘要

    为了探索不同磷形态处理下土壤、水稻根际和根内环境中细菌群落组成、结构、多样性,从而挖掘不同磷形态下水稻根际中介导植物-微生物相互作用的细菌群落特征。以籼稻(kasalath)为试验材料,采集南京的低磷土壤进行为期 8 周的水稻盆栽试验,采用高通量测序方法(16S rDNA Illumina 测序),并结合土壤有效磷浓度和水稻生物学指标,分别比较不同磷形态处理下水稻生长和根际土、根内细菌微生物群落结构组成和多样性。研究发现,有机磷和无机磷处理显著提高了土壤有效磷含量和磷酸酶活性,其中与不加磷对照相比,无机磷处理显著提高了植株全磷含量,有机磷处理与无机磷处理无显著性差异;在根际土和根内细菌中,有机磷和对照处理植株细菌多样性均显著高于无机磷处理;不同磷形态下水稻的根系细菌多样性和丰富度均显著(P < 0.001)低于根际和非根际土壤细菌多样性和丰富度指数。不同处理中主要细菌包括:厚壁菌门(Firmicutes)、变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、酸杆菌门(Acidobacteria)、Ignavibacteriae、绿弯菌门(Chloroflexi)。无机磷处理与对照、有机磷处理相比较,在根际土壤和根内细菌中微杆菌科(Microbacteriaceae)、链霉菌科(Streptomycetaceae)相对丰度较低,高温放线菌科(Thermoactinomycetaceae)、Ignavibacteriaceae 显著高于对照和有机磷处理,其中芽孢杆菌科(Bacillaceae)在根际、非根际土壤及根系相对丰度均低于对照和有机磷处理。根际土细菌多样性与植株全磷呈极显著负相关;根系细菌多样性与地上部生物量呈极显著负相关(P < 0.01),与有效磷和磷酸酶活性呈显著负相关(P < 0.05);根系细菌丰富度与有效磷呈显著负相关:非根际土壤细菌多样性与有效磷呈极显著负相关,与磷酸酶活性和植株全磷呈显著负相关;非根际土壤细菌多样性和丰富度均与有效磷呈极显著负相关,与磷酸酶活性和植株全磷呈显著负相关。本研究结果表明,不同磷形态对水稻根系微生物存在显著差异,无机磷比有机磷的作用更强,为理解磷形态-植物-微生物的相互关系提供了科学依据。

    Abstract

    In order to explore the composition,structure and diversity of bacterial communities in the soil,rice rhizosphere and root endophytic bacteria under different phosphorus forms,and to explore the characteristics of bacterial communities that mediate plant-microbe interactions in rice rhizosphere under different phosphorus forms,using indica rice(kasalath) as the experimental material,collecting low-phosphorus soil in Nanjing for an eight-week rice pot experiment,using highthroughput sequencing(16S rDNA Illumina sequencing),and combined with soil available phosphorus concentration and rice biological indicators,respectively,rice growth and rhizosphere and root endophytic bacterial microbial community structure and diversity under different phosphorus forms were compared.The study found that organic phosphorus and inorganic phosphorus treatments significantly increased soil available phosphorus content and phosphatase activity. Compared with the control without phosphorus,inorganic phosphorus treatment significantly increased the total phosphorus content of plants,while there was no significant difference between organic phosphorus treatment and inorganic phosphorus treatment.Among rhizosphere and rhizobacteria,the bacterial diversity of plants treated with organic phosphorus and without phosphorus treatment was significantly higher than that of inorganic phosphorus treatment.The bacterial diversity and richness of rice roots in different phosphorus treatments were both significantly(P < 0.001)lower than the rhizosphere and non-rhizosphere soil bacterial diversity and richness index.The main bacteria in different treatments mainly include: Firmicutes,Proteobacteria,Actinobacteria,Acidobacteria,Ignavibacteriae,Chloroflexi.Compared with inorganic phosphorus treatment and no phosphorus and organic phosphorus treatment,the relative abundance of Microbacteriaceae and Streptomycetaceae in rhizosphere soil and root bacteria was lower,and Thermoactinomycetaceae,Ignavibacteriaceae were significantly higher than the treatments without phosphorus and organic phosphorus.Among them,the relative abundance of Bacillaceae in the rhizosphere,non-rhizosphere soil and roots were lower than the treatment without phosphorus and organic phosphorus.The bacterial diversity in the rhizosphere soil was extremely significantly negatively correlated with plant total phosphorus;the bacterial diversity in the roots was extremely significantly negatively correlated with above-ground biomass (P < 0.01),and was significantly negatively correlated with available phosphorus and phosphatase activity(P < 0.05); bacterial abundance in the roots was significantly negatively correlated with available phosphorus:non-rhizosphere soil bacterial diversity was extremely significantly negatively correlated with available phosphorus,and was significantly negatively correlated with phosphatase activity and plant total phosphorus;non-rhizosphere soils bacterial diversity and abundance were significantly negatively correlated with available phosphorus,and significantly negatively correlated with phosphatase activity and plant total phosphorus.The results of this study show that different phosphorus forms have significant effect on rice root microorganisms.Inorganic phosphorus has a stronger effect than organic phosphorus,which provides a scientific basis for understanding the relationship between phosphorus forms,plants and microorganisms.

  • 磷(P)是植物正常生长代谢的重要元素之一,与植株体内糖、蛋白质和脂肪的代谢密切相关[1]。供磷不足会影响到植株体内的能量代谢过程,从而抑制植物的正常生长[2]。在土壤中,全磷质量分数一般在0.2~3g/kg之间[3],主要包括无机态磷和有机态磷[4-5]。磷主要以无机正磷酸盐(Pi)的形式被植物根系吸收[6],但土壤中70%~90%的无机磷会被土壤固化[7],不能直接被植物吸收利用[8-9]。虽然施磷可以缓解土壤缺磷状况[10],但磷矿是不可再生资源[11],其储存量一直逐年下降[9]。并且过多的施用磷肥,还会造成水体富营养化等一系列的环境问题[12]。因此,提高植物对有机磷的利用率是解决植物缺磷的关键。研究表明,微生物在土壤磷素循环中起重要的作用[13]。土壤和根际中的多种微生物可通过溶解和矿化作用有效地从土壤总磷中释放磷分子[14],将其转化为植物可利用的磷酸盐,从而增加磷在植物中的吸收[15]。通过调控根际微生物改善作物生长发育已成为生态健康和农业发展研究的热点。

  • 根际是由植物根系与土壤微生物之间相互作用所形成的独特土壤环境[16],也是植物-土壤-微生物相互作用的场所,根际微生物被誉为植物的第二基因组[17-19]。在植物生长和发展过程中发挥着关键的作用[20-21]。大量研究表明,根际微生物受到各种生物或非生物因素的调控[22],其中土壤类型起着决定性作用[23]。土壤理化性质、营养元素含量等因素都会影响植物根际微生物的构建,包括磷(P)、氮(N)和碳(C)也起着重要的作用[24-26]。例如,Sasaki等[27] 通过高通量测序分析发现,氮肥对与根部相关的细菌群落的影响大于所研究植物基因型的影响。通过黄瓜和大麦在缺氮或缺磷的土壤中生长的短期试验,Marschner等[28]发现根际中的细菌群落结构受土壤类型和施肥的影响,但不受植物物种的影响。还有报道指出,向玉米的根际添加少量无机磷可促进细菌对植酸的矿化作用,从而提高植物对磷的吸收[29]。综上表明,磷对植物根际微生物具有显著影响,但迄今不同磷形态如何影响植物根系微生物并不清楚。

  • 因此,本研究选择不同磷处理(不加磷、有机磷、无机磷)的土壤进行水稻盆栽试验,利用高通量测序技术和生物信息学分析技术,探索不同磷形态处理下水稻根际细菌群落结构组成,通过分析对比非根际土、根际土以及根内环境中细菌在不加磷、有机磷和无机磷土壤环境下水稻根际细菌群落结构和多样性差异,深入探究磷形态与水稻根际细菌群落的相互作用机制。

  • 1 材料与方法

  • 1.1 供试材料与盆栽试验

  • 用干净塑料袋分装土壤,每袋3kg。分装完成的土壤共分为3组,其中,对照组为不施磷肥的低磷土壤;2个试验组分别为添加有机磷肥的土壤和添加无机磷肥的土壤。每组进行5次重复,共计15个样品。对照组按照N 200mg/kg、KCl125mg/kg添加养分;有机磷试验组按照N 200mg/kg、KCl125mg/kg、植酸C6H18O24P6,0.5mL/kg添加养分; 无机磷试验组按照N 200mg/kg、K 125mg/kg、 P 100mg/kg添加养分。含水量调节至田间持水量的60%,充分混匀。

  • 表1 供试土壤基本理化性质

  • 将塑料袋直接放入盆中。选择质量相近、外形相似的水稻种子(供试品种为籼稻kasalath)。为避免种子内生菌和表面相关微生物的影响,种子须进行脱壳处理。水稻种子先在75%的乙醇中消毒30s; 然后用2.5%的次氯酸钠溶液消毒3次,每次15min; 最后用无菌去离子水将种子清洗5遍,将其置于MS琼脂培养基中培养萌发[30]。待幼苗长至7cm左右,移栽至准备好的盆中,每盆种4株水稻。幼苗长至10cm及以上时进行间苗,每盆最终保留2株长势均匀的幼苗。盆栽试验在温室中进行,并定期随机调换盆栽的位置。

  • 1.2 样品采集

  • 培育8周后,采集水稻地上部、根系、根际土,同时采集少根土壤作为非根际土壤。具体操作如下:将整株水稻从盆中取出,收集水稻根,用无菌水洗掉粘在水稻根上的松散颗粒,经过涡旋振荡将附着于根系表面的土壤清洗至灭菌的去离子水中,该部分土样即为根际土,用无菌滤纸吸干根部,最后将根和根际土于-20℃中保存。

  • 1.3 土壤基本理化性质的测定

  • 土壤有效磷、磷酸酶活性、植株全磷的测定方法参照文献[31]

  • 1.4 DNA样品提取及高通量测序

  • 称取0.5g保存于-20℃的土壤样品,用Fast DNA SPIN Kit for Soil试剂盒和Fast Prep-24核酸提取仪(MP Biomedicals,USA)提取土壤总DNA,用1%琼脂糖凝胶电泳检验DNA提取质量并用NanoDrop 2000检测其浓度,保存于-20℃冰箱备用。

  • 将提取的DNA原液稀释至约5mg/L作为PCR扩增模板。用引物799F和1193R对细菌16S rRNA V5~V7可变区序列进行聚合酶链式反应 (polymerase chain reaction,PCR)扩增(表2)。扩增体系共计50 μL,包含5 μL 10×buffer、4 μL dNTP、0.5 μL rTaq(Takara)、10 μmol/L的前后引物各1 μL、36.5 μL ddH2O和2 μL模板DNA,每个样品3次重复。扩增程序为:在98℃预变性30s,98℃ 解链10s,55℃ 退火15s,72℃ 延伸1min,30个循环;72℃延伸10min。将3个重复的DNA扩增产物混匀后,用1%的琼脂糖凝胶电泳进行检验。用PicoGreen试剂盒测定所得细菌PCR产物浓度,将产物等量混匀后,采用DNA纯化试剂盒(TIANGEN Biotech,Beijing,China)进行纯化回收。通过Illumina Hiseq2500平台进行细菌16S序列测定。

  • 表2 用于扩增16S rRNA基因的引物序列

  • 1.5 数据处理与分析

  • 高通量序列用USEARCH软件包分析[32],首先除去质量分数低于20以及与引物存在不一致的序列,再将剩余高质量序列统一修剪至250bp[33]。以97%的相似性水平用UPARSE进行OTU聚类[34],序列中的嵌合体用UCHIME过滤,以85%的置信水平为标准,在RDP(http://pyro.cme.msu.edu/) 平台进行物种分类注释,并在各个分类水平上统计每个样品的群落组成。

  • 采用Excel 2010和SPSS 21.0进行数据统计分析和单因素ANOVA方差分析;利用Duncan法进行多重比较(P<0.05)。用R语言的vegen包进行多样性计算和principal co-ordinates analysis(PCoA) 分析,用DESeq2包分析不同磷处理下细菌种水平的显著差异,并用ComplexHeatmap包绘制热图。

  • 2 结果与分析

  • 2.1 不同磷处理下水稻生长和土壤基本化学性质的差异

  • 如表3所示,水稻土壤在不同磷处理下,除地上部生物量(干重)外,土壤有效磷含量、磷酸酶活性以及植株地上部全磷含量指标均存在显著差异。有机磷和无机磷处理有效磷含量明显高于不加磷(对照)处理,且无机磷处理下土壤中有效磷含量最高,为49.39mg/kg。磷酸酶活性从高到低依次为有机磷处理> 无机磷处理> 不加磷处理,其中无机磷、有机磷与不加磷处理之间存在显著性差异。与不加磷处理植株地上部全磷含量相比,无机磷处理的植株全磷含量显著提高。

  • 表3 不同磷处理下水稻生长和土壤的基本理化性质

  • 注:同列数据后不同小写字母表示各处理间差异达到显著水平(P<0.05)。下同。

  • 2.2 不同磷处理下水稻细菌群落的α多样性

  • 由表4可知,不同根系分区土壤的细菌丰富度在842~1276范围内变动,其中不加磷处理的非根际土壤细菌丰富度最高,与根系和根际土壤中细菌丰富度差异显著(P<0.05);从ACE、Chao指数来看,在所有处理中根际土与非根际土中微生物群落的丰富度远远高于根系,差异达到显著水平 (P<0.05),其中细菌丰富度大小顺序为非根际土> 根际土> 根系。通过比较不同磷形态下的细菌群落多样性发现,与不加磷处理相比,有机磷和无机磷处理的细菌群落多样性有所下降,但差异没有达到显著水平(P>0.05)。通过双因素方差分析可知,不同磷处理和不同部位对微生物群落α多样性均有显著影响(P<0.05),但两者之间的交互作用仅对Simpson指数有显著影响(P<0.05),对其他指数影响不显著(P>0.05)。

  • 2.3 不同磷形态水稻细菌群落多样性和结构

  • 由图1可知,在所有处理中,非根际土壤微生物群落多样性高于根际土壤中微生物和根系微生物群落多样性。根际土壤中,有机磷与不施磷处理差异不显著,无机磷处理显著降低了细菌群落多样性;而非根际土壤中,与不施磷相比,施磷处理显著降低土壤细菌群落多样性,有机磷处理细菌群落多样性大于无机磷处理。

  • 基于97%相似度的OTU数据,采用weighted Unifrac算法分别对不同磷处理下根际土壤、非根际土壤及根系细菌微生物群落结构进行了主坐标分析(PCoA)。由图2可知,第一主成分和第二主成分的方差贡献率分别为22.43%和14.06%,累计方差贡献率为36.49%。结果显示,在第一主坐标轴(PCoA1)上,细菌微生物组按照分布部位的不同被分为了两簇,其中根系细菌群落结构与根际及非根际土壤细菌群落结构在PCoA1轴上明显分开,这表明分布部位的不同是细菌群落差异的最主要因素。

  • 表4 不同磷处理下水稻细菌群落的α多样性

  • 图1 不同磷形态水稻细菌Shannon指数

  • 注:P0—不加磷;Phytic-acid—有机磷;NaH2PO4—无机磷;Bulk— 非根际土;Rhizosphere—根际土;Root—根系。下同。

  • 图2 不同磷形态水稻细菌群落主坐标分析

  • 不同磷处理下不同根系分区土壤细菌在门水平的丰度分析(图3)显示,各处理间相对丰度较高的菌属包括厚壁菌门(Firmicutes)、变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、酸杆菌门(Acidobacteria)、Ignavibacteriae、绿弯菌门(Chloroflexi),在根际土壤不加磷、有机磷、无机磷处理下厚壁菌门(Firmicutes)的群落相对丰度分别是59.4%、61.0%、66.6%;变形菌门(Proteobacteria)的群落相对丰度分别是22.2%、 23.5%、16.5%;放线菌门(Actinobacteria)的群落相对丰度分别是8.7%、7.3%、10.1%;酸杆菌门 (Acidobacteria)的相对丰度分别是2.5%、2.1%、 2.3%;绿弯菌门(Chloroflexi)群落相对丰度分别是0.8%、0.5%、0.6%;在非根际土壤中不加磷、有机磷、无机磷处理下厚壁菌门(Firmicutes)的群落相对丰度分别是28.4%、34.4%、41.6%;变形菌门(Proteobacteria)的群落相对丰度分别是22.2%、 23.5%、16.5%; 放线菌门(Actinobacteria)的群落相对丰度分别是8.7%、7.3%、0.1%;酸杆菌门 (Acidobacteria)的相对丰度分别是2.5%、2.1%、 2.3%;绿弯菌门(Chloroflexi)的群落相对丰度分别是1.5%、1.3%、1.3%;在根内中不加磷、有机磷、无机磷处理下厚壁菌门(Firmicutes)的群落相对丰度分别是36.2%、17.2%、31.0%;变形菌门(Proteobacteria)的群落相对丰度分别是41.0%、 51.1%、38.5%;放线菌门(Actinobacteria)的群落相对丰度分别是17.3%、27.5%、26.5%;酸杆菌门 (Acidobacteria)的相对丰度分别是0.6%、0.5%、 0.5%;绿弯菌门(Chloroflexi)的群落相对丰度分别是0.3%、0.3%、0.4%。

  • 图3 不同磷形态水稻细菌群落在门水平分布组成

  • 为了比较不同磷形态下细菌菌属差异,将无机磷、有机磷处理分别与不加磷处理主要细菌在科水平下做了比较,其相关性和差异性揭示了磷形态对根系微生物的影响。从图4可以看出,不同处理中细菌群落组成差异显著且区分明显。例如,无机磷处理与不加磷、有机磷处理相比较,在根系和根际土壤中微杆菌科(Microbacteriaceae)、链霉菌科 (Streptomycetaceae)相对丰度较低,高温放线菌科(Thermoactinomycetaceae)显著高于不加磷和有机磷处理,其中芽孢杆菌科(Bacillaceae)在根际、非根际土壤及根系相对丰度均低于不加磷和有机磷处理。

  • 图4 不同磷形态下细菌热图

  • 从表5可以看出,根际土细菌多样性与植株地上部全磷含量呈极显著负相关;根系细菌多样性与地上部生物量呈极显著负相关(P<0.01),与有效磷含量和磷酸酶活性呈显著负相关(P<0.05); 根系细菌丰富度与有效磷呈显著负相关:非根际土壤细菌多样性与有效磷含量呈极显著负相关,与磷酸酶活性和植株地上部全磷含量呈显著负相关。

  • 表5 细菌多样性与土壤理化性质的相关性分析

  • 注:* 表示P<0.05;** 表示P<0.01。

  • 3 讨论

  • 3.1 不同磷形态对土壤理化性质的影响

  • 与不加磷相比,有机磷和无机磷处理显著增加土壤有效磷含量和磷酸酶活性。其中有机磷处理下的磷酸酶活性最高,有效磷含量最高的是无机磷处理。与不加磷相比,无机磷处理对植株地上部全磷含量具有显著促进作用。有机磷处理与无机磷和不加磷处理均没有显著性差异。值得注意的是,在有机磷处理中,土壤有效磷含量和磷酸酶活性均显著高于不加磷处理,与无机磷处理没有显著性差异,这可能是因为植物在有机磷含量较高的环境下,植物根系分泌的大量磷酸酶和有机酸通过酶催化水解作用,将植物不可吸收的磷转化成可溶态磷,增加了土壤中有效磷含量,弥补了植物无法从有机磷中直接获取磷的能力[35-36],所以植株全磷含量与无机磷处理相比没有显著性差异。

  • 3.2 磷形态对根际细菌群落的调控作用

  • 微生物群落受到各种生物因素和非生物因素的调控[37-40],从而对植物生长发育产生一定的影响,不同植物物种在低磷胁迫下会产生不同的微生物响应[41-45],比如研究发现不同磷水平对拟南芥、柳枝[46]、黑麦草[47] 根际细菌微生物组没有影响[48]。但是在玉米中,施入磷肥丰富了根际细菌的多样性并改变了细菌群落组成[18]。而在本研究中,通过对不同磷处理水稻的不同根系分区细菌群落多样性(图1)的分析发现,与不加磷处理相比,有机磷处理对根际土壤和根系细菌群落多样性的影响不显著,无机磷处理的细菌多样性显著降低,并且在不同门水平和科水平下细菌类群也存在一定的差异(图3、4)。比较科水平下不同磷形态细菌差异,无机磷处理与不加磷、有机磷处理相比较,在根系和根际土壤中微杆菌科(Microbacteriaceae)、链霉菌科(Streptomycetaceae)相对丰度较低,值得注意的是,芽孢杆菌科(Bacillaceae)在根际、非根际土壤及根系相对丰度均低于不加磷和有机磷处理。通过查阅文献了解到,芽孢杆菌属(Bacillus)是土壤中主要的磷酸盐增溶细菌(PSB),可以将植物无法利用的磷酸盐转化为其可溶形式,从而通过在土壤根际分泌有机酸(例如柠檬酸、草酸、琥珀酸、酒石酸和苹果酸)来提高磷的利用率。这也就解释了为什么Bacillaceae更多地富集在不加磷和有机磷处理的根系周围。植物根系是吸收磷的主要器官,在缺磷条件下根系会释放出各种根系分泌物、植物激素等[49],其中部分代谢产物可能会提高细菌的转化率,丰富细菌群落多样性从而提高细菌群落对有机磷的分解和转化利用,而且在可溶态磷酸盐充足的环境下,有机磷的转化水解作用受到一定的抑制。这也说明了水稻根际土和根内细菌群落的构建受到低磷胁迫的影响和调控。

  • 3.3 根系对根内微生物的调控作用

  • 本研究对样品间Bray-Curtis距离进行了非限制性主坐标分析(principal coordinate analysis,PCoA) (图2),结果显示,在第一主坐标轴(PCoA1)上水稻的微生物组按照不同根系分区被分为了两簇,表明在不同根系分区水稻细菌群落组成不同。此外,通过比较样品中的物种丰富度,发现在不同磷处理下根系、根际及非根际土壤细菌群落的物种丰富度没有显著性差异,不加磷和有机磷处理比无机磷处理水稻细菌物种丰富度稍高。但是同一处理下非根际与根际土壤及根系的细菌物种丰富度和多样性呈显著性差异,根际土壤细菌丰富度指数也显著高于根系细菌丰富度指数,说明仅有部分细菌菌属进入根内生长。通过比较根系和根际土壤细菌的优势菌门,发现厚壁菌门(Firmicutes)、变形菌门 (Proteobacteria)、放线菌门(Actinobacteria)和酸杆菌门(Acidobacteria)的相对丰度均比较高,这也表明与根相关的细菌群落结构主要来自土壤中的细菌群落[50-51],但是放线菌门(Proteobacteria) 在根系相对丰度高于根际土壤,酸杆菌门(Acidobacteria)相对丰度在非根际土壤、根际土壤、根系呈递减趋势,说明根系对细菌群落起到过滤筛选作用。综上所述,土壤细菌群落与根内细菌之间存在密切联系[52],根系对进入根内微生物具有调控作用并且根内细菌群落特异性更高[53],多样性较低[54]

  • 4 结论

  • 不同磷形态改变了水稻土壤理化性质,微生物群落结构与组成也存在显著性差异,其中无机磷处理差异更为显著。施入磷肥,对于提高土壤有效磷含量和磷酸酶活性具有重要作用,并且土壤理化性质的改变对微生物群落结构也有一定影响,无机磷处理下细菌群落多样性显著降低,有机磷影响不显著。在不同根系分区中非根际土壤、根系和根际土壤细菌群落结构多样性、丰富度呈显著性差异,根系对进入根内细菌具有选择调控作用。本研究结果从多角度反映了不同磷形态对水稻细菌群落结构调控作用,为进一步探究磷形态与水稻微生物群落结构的相互作用机制提供了理论基础。

  • 参考文献

    • [1] George T S,Gregory P J,Wood M,et al.Phosphatase activity and organic acids in the rhizosphere of potential agroforestry species and maize[J].Soil Biology and Biochemistry,2002,34(10):1487-1494.

    • [2] Mori A,Fukuda T,Vejchasarn P,et al.The role of root size versus root efficiency in phosphorus acquisition in rice[J]. Journal of Experimental Botany,2016,67(4):1179-1189.

    • [3] Marcel B.Functional biology of plant phosphate uptake at root and mycorrhiza interfaces[J].New Phytologist,2007,173(1):11-26.

    • [4] Tate K R.The biological transformations of P in soil[J].Plant and Soil,1984,76(1):245-256.

    • [5] Hayes J E,Richardson A E,Simpson R J.Components of organic phosphorus in soil extracts that are hydrolysed by phytase and acid phosphatase[J].Biology and Fertility of Soils,2000,32(4):279-286.

    • [6] Schachtman D P,Reid R J,Ayling S M,et al.Phosphorus uptake by plants:from soil to cell[J].Plant Physiology,1998,116(2):447-453.

    • [7] 张清,陈智文,刘吉平,等.提高磷肥利用率的研究现状及发展趋势[J].世界农业,2007(2):50-52.

    • [8] Sharma S B,Sayyed R Z,Trivedi M H,et al.Phosphate solubilizing microbes:sustainable approach for managing phosphorus deficiency in agricultural soils[J].Springerplus,2013,2:587.

    • [9] Sattari S Z,Bouwman A F,Giller K E,et al.Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle[J].Proceedings of the National Academy of Sciences,2012,109(16):6348-6353.

    • [10] 付微,李勇,李向越,等.松嫩平原黑土区农田土壤肥力评价研究[J].土壤与作物,2012,1(3):166-174.

    • [11] Zaidi A,Khan M S,Ahemad M,et al.Recent advances in plant growth promotion by phosphate-solubilizing microbes [M].Berlin,Heidelberg:Springer Berlin Heidelberg,2009. 23-50.

    • [12] Kang S C,Ha C G,Lee T G,et al.Solubilization of insoluble inorganic phosphates by a soil-inhabiting fungus Fomitopsis sp. PS 102[J].Current Science,2002,82(4):439-442.

    • [13] David L A,Mark R B,Bernd Z,et al.Long-term organic phosphorus mineralization in Spodosols under forests and its relation to carbon and nitrogen mineralization[J].Soil Biology and Biochemistry,2010,42(9):1479-1490.

    • [14] 滕泽栋,李敏,朱静,等.解磷微生物对土壤磷资源利用影响的研究进展[J].土壤通报,2017(1):229-235.

    • [15] Zhu J,Li M,Whelan M,et al.Phosphorus activators contribute to legacy phosphorus availability in agricultural soils:a review[J]. Science of the Total Environment,2018,612:522-537.

    • [16] Bakker P A,Pieterse C M,van Loon L C.Induced systemic resistance by fluorescent pseudomonas spp[J].Phytopathology,2007,97(2):239-43.

    • [17] Davide B,Matthias R,Klaus S,et al.Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota [J].Nature:International Weekly Journal of Science,2012,488(7409):91-95.

    • [18] Silva U C,Medeiros J D,Leite L R,et al.Long-term rock phosphate fertilization impacts the microbial communities of maize rhizosphere[J].Frontiers in Microbiology,2017,8:1266.

    • [19] Berendsen R L,Pieterse C M J,Bakker P A H M,et al.The rhizosphere microbiome and plant health[J].Trends in Plant Science,2012,17(8):478-486.

    • [20] 赵学强,沈仁芳.土壤微生物在植物获得养分中的作用 [J].生态学报,2015,35(20):6584-6591.

    • [21] Durán P,Thiergart T,Garrido-Oter R,et al.Microbial interkingdom interactions in roots promote arabidopsis survival[J].Cell(Cambridge),2018,175(4):973-983.

    • [22] Bulgarelli D,Schlaeppi K,Spaepen S,et al.Structure and functions of the bacterial microbiota of plants[J].Annual Review of Plant Biology,2013,64(1):807-838.

    • [23] Fierer N,Jackson R B.From the cover:The diversity and biogeography of soil bacterial communities[J].Proceedings of the National Acadeny Sciences of the United States of America,2006,103(3):626-631.

    • [24] Fan K,Weisenhorn P,Gilbert J A,et al.Soil pH correlates with the co-occurrence and assemblage process of diazotrophic communities in rhizosphere and bulk soils of wheat fields[J]. Soil Biology and Biochemistry,2018,121:185-192.

    • [25] Fan K,Delgado-Baquerizo M,Guo X,et al.Suppressed N fixation and diazotrophs after four decades of fertilization[J]. Microbiome,2019,7(1):110-143.

    • [26] Christian L L,Michael S S,Mark A B,et al.The influence of soil properties on the structure of bacterial and fungal communities across land-use types[J].Soil Biology and Biochemistry,2008,40(9):2407-2415.

    • [27] Sasaki K,Ikeda S,Ohkubo T,et al.Effects of plant genotype and nitrogen level on bacterial communities in rice shoots and roots [J].Microbes and Environments,2013,28(3):391-395.

    • [28] Marschner P,Crowley D,Yang C H,et al.Development of specific rhizosphere bacterial communities in relation to plant species,nutrition and soil type[J].Plant and Soil,2004,261(1-2):199-208.

    • [29] Zhao K,Penttinen P,Zhang X,et al.Maize rhizosphere in Sichuan,China,hosts plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities[J]. Microbiological Research,2014,169(1):76-82.

    • [30] Zhang J,Liu Y,Zhang N,et al.NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice [J].Nature Biotechnology,2019,37(6):676-684.

    • [31] 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.

    • [32] Robert C E,et al.Search and clustering orders of magnitude faster than BLAST[J].Bioinformatics,2010,26(19):2460-2461.

    • [33] Robert C E,Brian J H,Jose C C,et al.UCHIME improves sensitivity and speed of chimera detection[J].Bioinformatics,2010,26(19):2460-2461.

    • [34] Robert C E.UPARSE:highly accurate OTU sequences from microbial amplicon reads[J].Nature Methods:Techniques for Life Scientists and Chemists,2013,10(10):996-998.

    • [35] Jorquera M A,Crowley D E,Marschner P,et al.Identification ofβ-propeller phytase-encoding genes in culturable Paenibacillus and Bacillus spp.from the rhizosphere of pasture plants on volcanic soils[J].FEMS Microbiology Ecology,2011,75(1):163-172.

    • [36] Richardson A E,Simpson R J.Soil Microorganisms mediating phosphorus availability[J].Plant Physiology,2011,156(3):989-996.

    • [37] Lauber C L,Hamady M,Knight R,et al.Pyrosequencingbased assessment of soil pH as a predictor of soil bacterial community structure at the continental scale[J].Applied and Environmental Microbiology,2009,75(15):5111-5120.

    • [38] Osborne C A,Zwart A B,Broadhurst L M,et al.The influence of sampling strategies and spatial variation on the detected soil bacterial communities under three different land-use types[J]. FEMS Microbiology Ecology,2011,78(1):70-79.

    • [39] Philippot L,Raaijmakers J M,Lemanceau P,et al.Going back to the roots:the microbial ecology of the rhizosphere[J].Nature Reviews.Microbiology,2013,11(11):789-799.

    • [40] Soussi A,Ferjani R,Marasco R,et al.Plant-associated microbiomes in arid lands:diversity,ecology and biotechnological potential[J].Plant and Soil,2015,405(1-2):357-370.

    • [41] Bodenhausen N,Somerville V,Desirò A,et al.Petuniaand arabidopsis-specific root microbiota responses to phosphate Supplementation[J].Phytobiomes Journal,2019,3(2):112-124.

    • [42] Zancarini A,Mougel C,Voisin A,et al.Soil nitrogen availability and plant genotype modify the nutrition strategies of M. truncatula and the associated rhizosphere microbial Communities [J].PloS One,2012,7(10):e47096.

    • [43] Trabelsi D,Cherni A,Zineb A B,et al.Fertilization of Phaseolus vulgaris with the Tunisian rock phosphate affects richness and structure of rhizosphere bacterial communities[J]. Applied Soil Ecology:a Section of Agriculture,Ecosystems & Environment,2017,114:1-8.

    • [44] Robbins C,Thiergart T,Hacquard S,et al.Root-associated bacterial and fungal community profiles of arabidopsis thaliana are robust across contrasting soil P levels[J].Phytobiomes Journal,2018,2(1):24-34.

    • [45] Bardgett R D,Mawdsley J L,Edwards S,et al.Plant species and nitrogen effects on soil biological properties of temperate upland grasslands[J].Functional Ecology,1999,13(5):650-660.

    • [46] Anne S,Christopher S,John L,et al.Cultivar and phosphorus effects on switchgrass yield and rhizosphere microbial diversity[J]. Appl Microbiol Biotechnol,2019,103(4):1973-1987.

    • [47] Jorquera M A,Martinez O A,Marileo L G,et al.Effect of nitrogen and phosphorus fertilization on the composition of rhizobacterial communities of two Chilean Andisol pastures[J]. World J Microbiol Biotechnol,2014,30(1):99-107.

    • [48] Hartman K,Tringe S G,et al.Interactions between plants and soil shaping the root microbiome under abiotic stress[J].The Biochemical Journal,2019,476(19):2705-2724.

    • [49] Sharma S B,Sayyed R Z,Trivedi M H,et al.Phosphate solubilizing microbes:sustainable approach for managing phosphorus deficiency in agricultural soils[J].Springerplus,2013,2(1):587.

    • [50] Shakya M,Gottel N,Castro H,et al.A multifactor analysis of fungal and bacterial community structure in the root microbiome of mature populus deltoides trees[J].PloS One,2013,8(10):e76382.

    • [51] Schwartz M W,Hoeksema J D.Specialization and resource trade:biological markets as a model of mutualisms[J].Ecology,1998,79(3):1029-1038.

    • [52] Lundberg D S,Lebeis S L,Paredes S H,et al.Defining the core arabidopsis thaliana root microbiome[J].Nature,2012,488(7409):86-90.

    • [53] Coleman-Derr D,Desgarennes D,Fonseca-Garcia C,et al.Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species[J].The New Phytologist,2016,209(2):798-811.

    • [54] 葛艺,徐绍辉,徐艳,等.根际微生物组构建的影响因素研究进展[J].浙江农业学报,2019,31(12):2120-2130.

  • 参考文献

    • [1] George T S,Gregory P J,Wood M,et al.Phosphatase activity and organic acids in the rhizosphere of potential agroforestry species and maize[J].Soil Biology and Biochemistry,2002,34(10):1487-1494.

    • [2] Mori A,Fukuda T,Vejchasarn P,et al.The role of root size versus root efficiency in phosphorus acquisition in rice[J]. Journal of Experimental Botany,2016,67(4):1179-1189.

    • [3] Marcel B.Functional biology of plant phosphate uptake at root and mycorrhiza interfaces[J].New Phytologist,2007,173(1):11-26.

    • [4] Tate K R.The biological transformations of P in soil[J].Plant and Soil,1984,76(1):245-256.

    • [5] Hayes J E,Richardson A E,Simpson R J.Components of organic phosphorus in soil extracts that are hydrolysed by phytase and acid phosphatase[J].Biology and Fertility of Soils,2000,32(4):279-286.

    • [6] Schachtman D P,Reid R J,Ayling S M,et al.Phosphorus uptake by plants:from soil to cell[J].Plant Physiology,1998,116(2):447-453.

    • [7] 张清,陈智文,刘吉平,等.提高磷肥利用率的研究现状及发展趋势[J].世界农业,2007(2):50-52.

    • [8] Sharma S B,Sayyed R Z,Trivedi M H,et al.Phosphate solubilizing microbes:sustainable approach for managing phosphorus deficiency in agricultural soils[J].Springerplus,2013,2:587.

    • [9] Sattari S Z,Bouwman A F,Giller K E,et al.Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle[J].Proceedings of the National Academy of Sciences,2012,109(16):6348-6353.

    • [10] 付微,李勇,李向越,等.松嫩平原黑土区农田土壤肥力评价研究[J].土壤与作物,2012,1(3):166-174.

    • [11] Zaidi A,Khan M S,Ahemad M,et al.Recent advances in plant growth promotion by phosphate-solubilizing microbes [M].Berlin,Heidelberg:Springer Berlin Heidelberg,2009. 23-50.

    • [12] Kang S C,Ha C G,Lee T G,et al.Solubilization of insoluble inorganic phosphates by a soil-inhabiting fungus Fomitopsis sp. PS 102[J].Current Science,2002,82(4):439-442.

    • [13] David L A,Mark R B,Bernd Z,et al.Long-term organic phosphorus mineralization in Spodosols under forests and its relation to carbon and nitrogen mineralization[J].Soil Biology and Biochemistry,2010,42(9):1479-1490.

    • [14] 滕泽栋,李敏,朱静,等.解磷微生物对土壤磷资源利用影响的研究进展[J].土壤通报,2017(1):229-235.

    • [15] Zhu J,Li M,Whelan M,et al.Phosphorus activators contribute to legacy phosphorus availability in agricultural soils:a review[J]. Science of the Total Environment,2018,612:522-537.

    • [16] Bakker P A,Pieterse C M,van Loon L C.Induced systemic resistance by fluorescent pseudomonas spp[J].Phytopathology,2007,97(2):239-43.

    • [17] Davide B,Matthias R,Klaus S,et al.Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota [J].Nature:International Weekly Journal of Science,2012,488(7409):91-95.

    • [18] Silva U C,Medeiros J D,Leite L R,et al.Long-term rock phosphate fertilization impacts the microbial communities of maize rhizosphere[J].Frontiers in Microbiology,2017,8:1266.

    • [19] Berendsen R L,Pieterse C M J,Bakker P A H M,et al.The rhizosphere microbiome and plant health[J].Trends in Plant Science,2012,17(8):478-486.

    • [20] 赵学强,沈仁芳.土壤微生物在植物获得养分中的作用 [J].生态学报,2015,35(20):6584-6591.

    • [21] Durán P,Thiergart T,Garrido-Oter R,et al.Microbial interkingdom interactions in roots promote arabidopsis survival[J].Cell(Cambridge),2018,175(4):973-983.

    • [22] Bulgarelli D,Schlaeppi K,Spaepen S,et al.Structure and functions of the bacterial microbiota of plants[J].Annual Review of Plant Biology,2013,64(1):807-838.

    • [23] Fierer N,Jackson R B.From the cover:The diversity and biogeography of soil bacterial communities[J].Proceedings of the National Acadeny Sciences of the United States of America,2006,103(3):626-631.

    • [24] Fan K,Weisenhorn P,Gilbert J A,et al.Soil pH correlates with the co-occurrence and assemblage process of diazotrophic communities in rhizosphere and bulk soils of wheat fields[J]. Soil Biology and Biochemistry,2018,121:185-192.

    • [25] Fan K,Delgado-Baquerizo M,Guo X,et al.Suppressed N fixation and diazotrophs after four decades of fertilization[J]. Microbiome,2019,7(1):110-143.

    • [26] Christian L L,Michael S S,Mark A B,et al.The influence of soil properties on the structure of bacterial and fungal communities across land-use types[J].Soil Biology and Biochemistry,2008,40(9):2407-2415.

    • [27] Sasaki K,Ikeda S,Ohkubo T,et al.Effects of plant genotype and nitrogen level on bacterial communities in rice shoots and roots [J].Microbes and Environments,2013,28(3):391-395.

    • [28] Marschner P,Crowley D,Yang C H,et al.Development of specific rhizosphere bacterial communities in relation to plant species,nutrition and soil type[J].Plant and Soil,2004,261(1-2):199-208.

    • [29] Zhao K,Penttinen P,Zhang X,et al.Maize rhizosphere in Sichuan,China,hosts plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities[J]. Microbiological Research,2014,169(1):76-82.

    • [30] Zhang J,Liu Y,Zhang N,et al.NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice [J].Nature Biotechnology,2019,37(6):676-684.

    • [31] 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.

    • [32] Robert C E,et al.Search and clustering orders of magnitude faster than BLAST[J].Bioinformatics,2010,26(19):2460-2461.

    • [33] Robert C E,Brian J H,Jose C C,et al.UCHIME improves sensitivity and speed of chimera detection[J].Bioinformatics,2010,26(19):2460-2461.

    • [34] Robert C E.UPARSE:highly accurate OTU sequences from microbial amplicon reads[J].Nature Methods:Techniques for Life Scientists and Chemists,2013,10(10):996-998.

    • [35] Jorquera M A,Crowley D E,Marschner P,et al.Identification ofβ-propeller phytase-encoding genes in culturable Paenibacillus and Bacillus spp.from the rhizosphere of pasture plants on volcanic soils[J].FEMS Microbiology Ecology,2011,75(1):163-172.

    • [36] Richardson A E,Simpson R J.Soil Microorganisms mediating phosphorus availability[J].Plant Physiology,2011,156(3):989-996.

    • [37] Lauber C L,Hamady M,Knight R,et al.Pyrosequencingbased assessment of soil pH as a predictor of soil bacterial community structure at the continental scale[J].Applied and Environmental Microbiology,2009,75(15):5111-5120.

    • [38] Osborne C A,Zwart A B,Broadhurst L M,et al.The influence of sampling strategies and spatial variation on the detected soil bacterial communities under three different land-use types[J]. FEMS Microbiology Ecology,2011,78(1):70-79.

    • [39] Philippot L,Raaijmakers J M,Lemanceau P,et al.Going back to the roots:the microbial ecology of the rhizosphere[J].Nature Reviews.Microbiology,2013,11(11):789-799.

    • [40] Soussi A,Ferjani R,Marasco R,et al.Plant-associated microbiomes in arid lands:diversity,ecology and biotechnological potential[J].Plant and Soil,2015,405(1-2):357-370.

    • [41] Bodenhausen N,Somerville V,Desirò A,et al.Petuniaand arabidopsis-specific root microbiota responses to phosphate Supplementation[J].Phytobiomes Journal,2019,3(2):112-124.

    • [42] Zancarini A,Mougel C,Voisin A,et al.Soil nitrogen availability and plant genotype modify the nutrition strategies of M. truncatula and the associated rhizosphere microbial Communities [J].PloS One,2012,7(10):e47096.

    • [43] Trabelsi D,Cherni A,Zineb A B,et al.Fertilization of Phaseolus vulgaris with the Tunisian rock phosphate affects richness and structure of rhizosphere bacterial communities[J]. Applied Soil Ecology:a Section of Agriculture,Ecosystems & Environment,2017,114:1-8.

    • [44] Robbins C,Thiergart T,Hacquard S,et al.Root-associated bacterial and fungal community profiles of arabidopsis thaliana are robust across contrasting soil P levels[J].Phytobiomes Journal,2018,2(1):24-34.

    • [45] Bardgett R D,Mawdsley J L,Edwards S,et al.Plant species and nitrogen effects on soil biological properties of temperate upland grasslands[J].Functional Ecology,1999,13(5):650-660.

    • [46] Anne S,Christopher S,John L,et al.Cultivar and phosphorus effects on switchgrass yield and rhizosphere microbial diversity[J]. Appl Microbiol Biotechnol,2019,103(4):1973-1987.

    • [47] Jorquera M A,Martinez O A,Marileo L G,et al.Effect of nitrogen and phosphorus fertilization on the composition of rhizobacterial communities of two Chilean Andisol pastures[J]. World J Microbiol Biotechnol,2014,30(1):99-107.

    • [48] Hartman K,Tringe S G,et al.Interactions between plants and soil shaping the root microbiome under abiotic stress[J].The Biochemical Journal,2019,476(19):2705-2724.

    • [49] Sharma S B,Sayyed R Z,Trivedi M H,et al.Phosphate solubilizing microbes:sustainable approach for managing phosphorus deficiency in agricultural soils[J].Springerplus,2013,2(1):587.

    • [50] Shakya M,Gottel N,Castro H,et al.A multifactor analysis of fungal and bacterial community structure in the root microbiome of mature populus deltoides trees[J].PloS One,2013,8(10):e76382.

    • [51] Schwartz M W,Hoeksema J D.Specialization and resource trade:biological markets as a model of mutualisms[J].Ecology,1998,79(3):1029-1038.

    • [52] Lundberg D S,Lebeis S L,Paredes S H,et al.Defining the core arabidopsis thaliana root microbiome[J].Nature,2012,488(7409):86-90.

    • [53] Coleman-Derr D,Desgarennes D,Fonseca-Garcia C,et al.Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species[J].The New Phytologist,2016,209(2):798-811.

    • [54] 葛艺,徐绍辉,徐艳,等.根际微生物组构建的影响因素研究进展[J].浙江农业学报,2019,31(12):2120-2130.

  • 《中国土壤与肥料》招聘启事
    关闭