-
稻田是我国主要农田类型之一,占全国总耕地面积的 27% 左右[1]。长期大量施用氮肥导致氮肥利用率低,氮肥损失严重[2],不仅加重了农业面源污染和地下水硝酸盐累积[3-5],还致使稻田氧化亚氮(N2O)排放加剧而增加全球气候变化风险[6-7]。淹水落干是稻田重要的水分管理措施之一,但该过程已被证实可加速氮素的转化和损失[8-9],包括 N2O 的排放[8,10-11]。有研究表明,水稻土落干后氮素转化速率约为持续淹水处理的 50 倍[10]。土壤氮素转化主要由微生物介导,包括固氮、氨化、硝化和反硝化过程等[12]。研究发现,在水稻土落干过程中随土壤水分的散失和氧气浓度的增加,驱动氮素转化的关键微生物作用机制为硝化与反硝化微生物的协同作用[13-14]。尽管硝化和反硝化过程均由多级反应构成,各级都由特定的功能微生物种群驱动,但其限速步骤分别为氨氧化和硝酸盐还原[9,15-16]。理论上氨氧化过程由氨氧化古菌(AOA)与氨氧化细菌(AOB),硝酸盐还原由含 narG 与 napA基因的反硝化微生物完成[17-19]。由于 AOA 与 AOB 对土壤硝化作用的贡献与环境条件密切相关[20-25],以及具有相异氧气敏感性的含 narG和 napA 的硝酸盐还原菌在落干过程的表现鲜有报道,因此,探讨落干过程中硝化微生物和硝酸盐还原菌作用机制对认知氮素转化机制十分重要。另外,土壤落干过程在物理学上主要表现为水气交换,水分由表及里散失的同时空气也随之填充,由此引发包括氮素循环等系列生物化学过程变化[26-27]。水分散失的循序渐进特征,决定了在一定落干时间内不同土壤剖面深度存在差异性响应,如氮素循环及相关微生物活性等[28-29]。
-
本研究拟通过室内培养试验模拟稻田淹水落干过程,聚焦表层水稻土落干过程硝化基因(古菌 amoA/ 细菌 amoA)与反硝化功能基因(narG/napA) 丰度的变化,同时监测土壤氧化还原电位(Eh)、氧化亚氮(N2O)含量和排放通量等动态变化,以期为认识和理解表层水稻土氮素转化机制、优化田间水分管理措施和提高氮肥利用率提供理论依据。
-
1 材料与方法
-
1.1 供试土壤
-
供试土壤为河流冲积物发育的水稻土,采样地点位于长沙市芙蓉区(113°05′E,28°14′N),采样时间为 2019 年 12 月。采用随机多点取样法采集 0~20 cm 土层土壤,经充分混匀后,取部分土壤样品风干后用于土壤理化性质分析,剩余土壤淹水(表层水深 5 cm)预培养 30 d。土壤基本化学性质为:pH 5.92;NO3--N 0.61 mg/kg;NH4 +-N 101.53 mg/kg;有机质 42.83 g/kg;可溶性有机碳 102.46 mg/kg;全氮 2.05 g/kg。
-
1.2 培养试验
-
试验设置持续淹水(CF)和淹水落干(FD) 两个处理。具体操作如下:首先将经过预培养的土壤表层水排干,以 N 140 mg/kg 干土的施肥量添加尿素,充分混匀。然后将混匀后的土样装入自制的 PVC 培养钵中(图1),每钵装土 3.0 kg(以湿土计),加入去离子水并保持 3 cm 自由水层。每处理设置 37 个培养钵,其中 4 个用于气体采集、3 个用于 Eh 监测,30 个用于土壤样品采集。气体采集:分别在土壤剖面深 2.5 和 7.5 cm 处水平安装硅胶管(长 11 cm,内径 1 cm),硅胶管一端通过不锈钢管连接至钵外三通阀。Eh 监测:分别在土壤剖面深 2.5 和 7.5 cm 处安装铂电极(FJA-3)并固定,参比电极在监测时插入表土。培养钵随机排列,培养温度为 30℃。经淹水培养 30 d 后,用注射器吸取 FD 处理的培养钵表面自由水,开始落干培养,为期 9 d。
-
图1 土壤培养装置示意图
-
1.3 气体样品采集测定与 Eh 监测
-
在落干期间,每天通过静态箱法采集气体(图1),采样方法参照王玲[30]的方法,利用气相色谱仪(Agilent,7890A,美国)测定 N2O 含量。在气体采集的同时用 Eh 仪(PRN-41,Fujiwara,日本) 记录土壤原位 Eh。
-
1.4 土样采集与 NH4 +-N 和 NO3--N 含量的测定
-
分别在落干后 0、2、3、5 和 9 d 破坏性采集土壤样品。采样器由两个 60 mL 注射器改制而成,将一个注射器底部平整切除,另一个切成 5 cm 长管,并用胶带将其连接在除底注射器上。采样时将 3 个采样器垂直插入土壤底部,取出土样后将采样器分离,获得上表层(0~5 cm)和下表层(5~10 cm)土壤样品,然后将每钵的 3 个上表层和下表层土样分别混匀,各样品中一部分用液氮速冻后放于-80℃冰箱用于分子生物学试验,另一部分用于测定 NH4 +-N 和 NO3--N 含量。土壤 NH4 +-N 和 NO3--N 含量采用 0.5 mol/L K2SO4 (1∶5,W/V)浸提,全自动流动注射分析仪(AA3,SEAL,德国) 测定。
-
1.5 土壤 DNA 提取与实时定量 PCR
-
土壤微生物 DNA 提取参照 Chen 等[31] 的方法。实时定量 PCR 反应体系:上下游引物各 0.3 μL(10μmol/L),5μL SYBRⅠ预混 ExTaq(Takara),1μL(5 ng/μL)DNA 模板,补水至 10μL。扩增程序见表1,扩增所用仪器为 LightCycler 480II (Roche,瑞士),引物序列信息见表1,各标准曲线构建参考 Chen 等[31]的方法。
-
1.6 数据处理
-
应用SPSS 18.0 对数据进行单因素方差分析 (ANOVA),差异显著性水平通过单因素方差分析最小显著差异法(LSD)进行检验,功能基因丰度额外采用重复测量方差分析邓肯检验法(Duncan) 检验,利用 OriginPro 9.1 制图。
-
2 结果与分析
-
2.1 土壤氧化还原电位(Eh)
-
培养过程中 CF 处理的上表层和下表层土壤 Eh 均保持在-200 mV 左右(图2)。FD 处理落干 3 d 后土壤 Eh 发生明显变化,其中,上表层土壤 Eh 持续升高,到落干第 9 d 时上升到 500 mV 左右,而下表层土壤 Eh 也呈增加趋势,但上升幅度明显小于上表层,在-200~0 mV 之间波动。在落干后第 5~9 d,FD 处理上表层与下表层土壤 Eh 差异显著(P<0.05)。
-
注:a 上下游引物分别标注为 F 和 R。b Y=C 或 T;S=C 或 G;R=A 或 G;N=A,C,T 或 G;W=A 或 T。
-
图2 土壤氧化还原电位动态变化
-
注:CF,持续淹水;FD,淹水落干;上表层,0~5 cm;下表层, 5~10 cm。下同。
-
2.2 土壤 NH4 +-N 和 NO3--N 含量
-
水稻土 NH4 +-N 和 NO3--N 含量与落干过程有密切关系(图3)。尽管所有处理土壤 NH4 +-N 含量都随培养时间的延长呈下降趋势,但落干过程对上表层和下表层土壤 NH4 +-N 含量的影响不同。与 CF 处理相比,落干导致上表层土壤 NH4+-N 含量快速下降,落干后第 9 d 其浓度从 65.05 mg/kg 下降到了 3.04 mg/kg,而 CF 处理上表层土壤仍保持在 42.21 mg/kg 左右。然而,FD处理的下表层土壤 NH4 +-N 含量变化相对较小,其最大下降值仅为 22.08 mg/kg。落干对土壤 NO3--N 含量的影响主要发生在上表层土壤中,落干 3 d 后其含量开始急剧上升,至落干 9 d 时 NO3--N 含量增加到了 6.94 mg/kg,是同期 CF 处理的 17.08 倍。而 FD 处理的下表层土壤 NO3--N 含量始终维持在 0.09~0.41 mg/kg 之间,与 CF 处理差异不显著(P>0.05)。
-
图3 土壤 NH4 +-N 和 NO3--N 含量动态变化
-
2.3 土壤 N2O 浓度和排放通量
-
落干过程影响水稻土 N2O 浓度和排放通量(图4)。与 CF 处理相比,FD 处理土壤 N2O 浓度呈上升趋势(图4a)。在落干后第 9 d,FD处理土壤 N2O浓度由初始的0.05 mg/kg 左右上升至约0.15mg/kg,而 CF 处理下降了 0.03 mg/kg 左右。在落干过程中,FD 处理上表层土壤 N2O 浓度始终高于下表层,但二者间差异不显著(P>0.05)。落干 6 d 后, FD 处理的 N2O 排放通量急剧增加,至落干 9 d 时, N2O 排放通量达到了 4.40 mg/(m2 ·h)左右,是同期 CF 处理的 18.33 倍。在培养过程中,CF 处理 N2O 排放通量始终维持在 0.24 mg/(m2 ·h)左右。
-
图4 土壤 N2O 浓度和排放通量动态变化
-
2.4 功能基因(古菌 amoA、细菌 amoA、narG 和 napA)丰度
-
经过9 d 落干培养,古菌 amoA 基因丰度由初始的 1.9×109 copies/g 干土左右增加到 4.2× 109~5.1×109 copies/g 干土,其增加量是 CF 处理的 2.1~3.4 倍(图5a)。在落干后第 9 d,FD 处理上、下表层古菌amoA 基因丰度增加到同期 CF 处理的 1.5~1.7 倍,表明落干对上、下表层古菌 amoA 基因丰度影响趋势一致。与对古菌 amoA 丰度的影响不同,落干对细菌 amoA 的影响主要发生在上表层土壤(图5b)。落干后第 9 d 上表层细菌 amoA丰度显著(P<0.05)增加至 CF 处理的 1.31 倍,而在落干过程中,下表层细菌 amoA 丰度始终维持在 1.7×108 copies/g 干土左右,与 CF 处理差异不显著(P>0.05)。
-
落干过程影响硝酸盐还原功能基因丰度(图5c、d)。在培养过程中,所有处理的 narG 丰度都随培养时间的延长呈上升趋势(图5c)。与培养第 0 d 相比,落干第 9 d 上表层和下表层土壤 narG 丰度分别增加了 1.5×1010 和 1.7×1010 copies/g 干土,而同期 CF 处理中分别为 7.0×109 和 1.1×1010 copies/g 干土,具有显著性差异(P<0.05),但两处理中上、下表层之间差异不显著(P>0.05)。napA 基因丰度对落干过程的响应较突出(图5d)。经过 9 d 落干培养,FD 处理上、下表层 napA 基因丰度分别由 4.0×109 和 3.2×109 copies/g 干土增加到8.3 ×109 和 6.7×109 copies/g 干土,显著(P<0.05) 高于CF 处理的 5.6×109 和 4.2×109 copies/g 干土。落干过程对上表层土壤 napA 丰度的影响较下表层强烈。从培养第 2 d 起,FD 处理上表层 napA 基因丰度已达到 5.9×109 copies/g 干土,并在此之后持续增加至 8.3×109 copies/g 干土,而下表层直到培养第 9 d 才增加至 6.7×109 copies/g 干土。各功能基因显著性检验结果见表2。
-
图5 功能基因丰度动态变化
-
注:同列中不同小写字母表示差异显著(P<0.05)。
-
3 讨论
-
淹水落干是稻田常见的水分管理措施,研究显示,水稻土落干过程中土壤水分状况影响硝化和反硝化功能微生物丰度和群落结构[8-9],从而调控稻田土壤氮素转化过程。通常认为好氧环境和较高的 NH4 + 可利用性是促进土壤硝化作用的有利条件[13]。与之相反,反硝化作用则更易在厌氧环境下发生,其主要原因之一是硝酸盐还原酶对氧气更敏感[36]。因此,在稻田淹水至落干过程中,土壤水分的逐渐散失导致氧气在土体中不均匀分布,从而使土体内部氮素转化产生分异[37]。本研究结果发现,落干 4 d 后上表层土壤 Eh 显著高于下表层,说明不同土层间落干速度存在明显差异。同时,落干处理上下表层土壤 NH4+-N 和 NO3--N 含量变化不同(图3),进一步表明不同土层内氮素转化速率存在一定差异。
-
3.1 氨氧化
-
由于长期淹水,上表层与下表层水稻土壤氧化还原状态近乎一致,Eh 均在-200 mV 附近。当开始落干时,上表层土壤水分散失速率更快,Eh 也快速升高。因此,与下表层相比,上表层土壤更利于好氧氨氧化微生物生存。由于土壤氨氧化过程的参与者主要为氨氧化古菌(AOA)和氨氧化细菌(AOB),但二者间哪个主要驱动了土壤氨氧化过程,仍存在一定争议[20-25]。本研究发现,落干处理上表层土壤 NH4 +-N 含量下降速率是下表层的 2~3 倍,故落干期间上表层氨氧化速率可能快于下表层。由于本试验在 30℃的恒定培养室内进行,较高的温度有助于水分散失,加速土壤 NH4 +-N 含量的下降。本研究中上表层土壤 Eh 在 9 d内由约-200 mV 增加到约 500 mV(图2),表示该环境条件下,上表层水分散失速度快,导致土壤氧化还原条件十分有利于氨氧化的发生。故 NH4 +-N 变化速率快于实际稻田的 NH4 +-N 含量变化速率。此外,落干处理上表层土壤 AOB 丰度发生显著变化(图5b),而下表层与对照无显著差异,且上、下表层 AOA 丰度均随落干的进程显著增加(图5a),由此推测落干处理上表层土壤 AOB 丰度变化动态与氨氧化关系较为密切,故可能为上表层土壤氨氧化作用的主要驱动者。倘若在落干过程中由 AOA 主导氨氧化过程,则落干期间上、下表层土壤 AOA 丰度差异应逐渐拉大,而非平行增加。尽管功能基因丰度不足以完全代表活性,但大量文献显示功能基因丰度动态与活性密切相关[38-40]。有研究提出尽管土壤中存在大量的 AOA,但其丰度与氨氧化速率无关[24],相比之下,只有 AOB 丰度与潜在硝化速率呈正显著相关[41]。郭俊杰等[42]综合分析了土壤总硝化潜势和 amoA 基因丰度,认为细菌 amoA丰度的增加促进了土壤硝化潜势,进而控制着土壤硝化作用。以上表明,氨氧化细菌可能是稻田淹水-落干过程中土壤硝化作用的主要驱动者。
-
3.2 硝酸盐还原
-
较快的氨氧化速率意味着相同时间内将产生更多的反硝化底物。本研究结果显示,落干第 9 d 时上表层土壤 NO3--N 含量显著高于下表层(图3b),同时落干 9 d 内上表层的 NO3--N 消耗值约是下表层的 2 倍左右,表明高 NO3--N 浓度可促进反硝化过程的进行。已有研究指出 NO3--N 含量与土壤反硝化能力呈正相关关系[11,30]。因此,淹水落干处理上表层土壤反硝化能力应强于下表层。尽管除反硝化外,硝化微生物的反硝化、氨氧化等过程都伴随 N2O 的产生,但前者要求环境中含有较低的有机碳[43],不符合本研究供试土壤条件,而后者产生的 N2O 比 NO2- 低3~6 个数量级,NO2- 仍是该过程的主要产物[44],再者,反硝化潜势越高的土壤,产 N2O 能力越强[45]。故淹水落干处理上表层土壤的 N2O 浓度应高于下表层土壤。但与之相反的是,上表层与下表层土壤 N2O 浓度并未体现显著性差异(P>0.05)(图4a),其主要原因可能是,与空气相比上表层土壤具有较高的 N2O 浓度,同时上表层土壤与大气相接,因此,受扩散效应的影响,其上表层 N2O 比下表层更易于排放[30]。此外,由于下表层氨氧化过程相对较弱,使得反硝化底物较少,从而导致下表层反硝化过程不如上表层强烈,其 N2O 产生能力相对较弱,进而导致上下表层土壤 N2O 浓度差异不大。同时,落干过程导致narG 和 napA基因丰度显著增加(P<0.05),但上表层土壤 napA 基因丰度从第 3 d 起显著(P<0.05)高于下表层(图5d),而narG基因丰度并未呈现相同的变化趋势(图5c)。在落干过程中,上表层土壤具有更丰富的反硝化底物和更好氧的环境。含有 napA 基因的硝酸盐还原酶在好氧或厌氧环境下均能发挥作用,而含有 narG 基因的硝酸盐还原酶主要在厌氧环境下优先表达,且仅在厌氧状态下发挥作用[45-48]。因此,上表层土壤氧化还原状态的改善并未使 napA 型反硝化微生物受到较大程度的抑制,反而可能因为 NO3--N 含量的增加促进了napA 基因丰度的显著增加。故含 napA型反硝化微生物很可能为驱动落干过程中水稻土上表层硝酸盐还原过程的关键微生物类群。此外,在落干过程中,大量扩散进入上表层土壤的氧气可能在一定程度上抑制 narG型反硝化微生物的生长及活性,但上表层和下表层土壤的 narG 丰度从落干第 5 d 起均显著高于淹水对照,其主要原因可能是上表层土壤 NO3--N 底物浓度的增加刺激并促进了 narG型反硝化微生物的生长,从而抵消了氧气对其的抑制作用。另外,也可能因为土壤较高的异质性使得上表层土壤中仍存在厌氧微域,为 narG 型反硝化微生物的生长提供了适宜生境。已有研究也表明在淹水落干过程中 narG[9,11,30] 基因丰度显著增加。这说明 narG 型反硝化微生物在一定程度上仍具有驱动落干过程上表层土壤反硝化的功能,但其对反硝化过程的相对贡献需进一步探索。
-
因此,落干过程中土体内水分散失程度存在不均一性,上、下表层土壤中硝化和反硝化微生物对落干的响应也表现出明显差异,从而导致土层间氮素转化速率的分异现象。研究结果可为稻田水分和氮素管理提供科学依据。
-
4 结论
-
落干过程显著促进水稻土氮素转化,与下表层土壤相比,上表层土壤的氮素转化速率更快。不同土层驱动硝化和反硝化过程的关键功能微生物种群均受落干过程影响。上表层土壤氨氧化作用可能以氨氧化细菌(AOB)驱动为主,而驱动硝酸盐还原作用可能以含 napA基因的反硝化微生物为主。
-
参考文献
-
[1] FAOSTAT.Emissions Database Asia and Pacific Commission on Agricultural Statistics Vientiane[R].Lao PDR,2014.
-
[2] Anas M,Liao F,Verma,K K,et al.Fate of nitrogen in agriculture and environment:agronomic,eco-physiological and molecular approaches to improve nitrogen use efficiency[J]. Biological Research,2020,53(1):47-67.
-
[3] Yu D,Yan W,Chen N,et al.Modeling increased riverine nitrogen export:Source tracking and integrated watershed-coast management[J].Marine Pollution Bulletin,2015,101(2):642-652.
-
[4] Kurwadkar S.Groundwater pollution and vulnerability assessment[J].Water Environment Research,2017,89(10):1561-1577.
-
[5] 杨阳,倪晓宇,刘斌美,等.基质型缓释尿素对蕹菜产量、品质及氮肥利用率的影响[J].中国土壤与肥料,2020,(2):146-153.
-
[6] Sun B F,Zhao H,LÜ Y Z,et al.The effects of nitrogen fertilizer application on methane and nitrous oxide emission/uptake in Chinese croplands[J].Journal of Integrative Agriculture,2016,15(2):440-450.
-
[7] Reay D S,Davidson E A,Smith K A,et al.Global agriculture and nitrous oxide emissions[J].Nature Climate Change,2012,2(6):410-416.
-
[8] Yang H C,Sheng R,Zhang Z Z,et al.Responses of nitrifying and denitrifying bacteria to flooding-drying cycles in flooded rice soil[J].Applied Soil Ecology,2016,103:101-109.
-
[9] Wang L,Sheng R,Yang H C,et al.Stimulatory effect of exogenous nitrate on soil denitrifiers and denitrifying activities in submerged paddy soil[J].Geoderma,2017,286:64-72.
-
[10] LiU J B,Hou H J,Sheng R,et al.Denitrifying communities differentially respond to flooding drying cycles in paddy soils[J]. Applied Soil Ecology,2012,62:155-162.
-
[11] 卢静,刘金波,盛荣,等.短期落干对水稻土反硝化微生物丰度和 N2O 释放的影响[J].应用生态学报,2014,25(10):2879-2884.
-
[12] 贺纪正,张丽梅.氨氧化微生物生态学与氮循环研究进展 [J].生态学报,2009,29(1):406-415.
-
[13] Ishii S,Ikeda S,Minamisawa K,et al.Nitrogen cycling in rice paddy environments:Past achievements and future challenges [J].Microbes and Environments,2011,26(4):282-292.
-
[14] Shioiri M.Denitrification in rice paddy soils[J].Soil Manure Japan,1942,16:104-116.
-
[15] Philippot L.Denitrifying genes in bacterial and Archaeal genomes [J].Biochimica Et Biophysica Acta-Gene Structure and Expression,2002,1577(3):355-376.
-
[16] Tolar B B,Herrmann J,van den Bedem H,et al.Integrated structural biology and molecular ecology of N-cycling enzymes from ammonia-oxidizing archaea[J].Environ Microbiol Rep,2017,9(5):484-491.
-
[17] Francis C A,Kathryn J R,Beman J M,et al.,Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean[J].Proceedings of the National Academy of Science of the United States of America,2005,102(41):14683-14688.
-
[18] Hooper A B,Vannelli T,Bergmann D J,et al.Enzymology of the oxidation of ammonia to nitrite by bacteria[J].Antonie van Leeuwenhoek,1997,71(1):59-67.
-
[19] Moreno C,Cabello P,Martínez-Luque M,et al.Prokaryotic nitrate reduction:Molecular properties and functional distinction among bacterial nitrate reductases[J].Journal of Bacteriology,1999,181(21):6573-6584.
-
[20] Leininger S,Urich T,Schloter M,et al.Archaea predominate among ammonia-oxidizing prokaryotes in soils[J].Nature,2006,442(7104):806-809.
-
[21] Nicol G W,Leininger S,Schleper C,et al.The influence of soil pH on the diversity,abundance and transcriptional activity of ammonia oxidizing archaea and bacteria[J].Environmental Microbiology,2008,10(11):2966-2978.
-
[22] Jia Z J,Conrad R.Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil[J]. Environmantal Microbiology,2009,11(7):1658-1671.
-
[23] 张振兴.水稻根际环境影响N2O释放的硝化及反硝化分子机理[D].北京:中国科学院大学,2016.
-
[24] Di H J,Cameron K C,Shen J P,et al.Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils[J]. Nature Geoscience,2009,2(9):621-624.
-
[25] Chen X P,Zhu Y G,Xia Y,et al.Ammonia-oxidizing archaea:important players in paddy rhizosphere soil?[J]. Environ Microbiol,2008,10(8):1978-1987.
-
[26] Galloway J N,Dentener F J,Capone D G,et al.Nitrogen cycles:Past,present,and future[J].Biogeochemistry,2004,70(2):153-226.
-
[27] Kogel-Knabner I,Amelung W,Cao Z H,et al.Biogeochemistry of paddy soils[J].Geoderma,2010,157:1-14.
-
[28] Young S R,Black A S,Conyers M K,et al.Distribution of nitrification within surface soils under pasture[J]. Communications in Soil Science and Plant Analysis,2002,33(9-10):1507-1518.
-
[29] Brauer N,Maynard J J,Dahlgren R A,et al.Fate of nitrate in seepage from a restored wetland receiving agricultural tailwater [J].Ecological Engineering,2015,81:207-217.
-
[30] 王玲.典型水稻土 N2O 产生、转化与排放的微生物机制研究 [D].北京:中国科学院大学,2017.
-
[31] Chen Z,Luo X Q,Hu R G,et al.Impact of long-term fertilization on the composition of denitrifier communities based on nitrite reductase analyses in a paddy soil[J].Microbial Ecology,2010,60(4):850-861.
-
[32] Sahan E,Muyzer G.Diversity and spatio-temporal distribution of ammonia-oxidizing archaea and bacteria in sediments of the Westerschelde estuary[J].FEMS Microbiology Ecology,2008,64(2):175-186.
-
[33] Rotthauwe J H,Witzel K P,Liesack W.The ammonia monooxygenase structural gene amoA as a functional marker:Molecular fine-scale analysis of natural ammonia-oxidizing populations[J].Applied and Environmental Microbiology,1997,63(12):4704-4712.
-
[34] Chen Z,Liu J B,Wu M N,et al.Differentiated response of denitrifying communities to fertilization regime in paddy soil[J]. Microbial Ecology,2012,63(2):446-459.
-
[35] Bru D,Sarr A,Philippot L.Relative abundances of proteobacterialmembrane-bound and periplasmic nitrate reductases in selected environments[J].Applied and Environmental Microbiology,2007,73(18):5971-5974.
-
[36] Zumft W G,Kroneck P M H.Respiratory transformation of nitrous oxide(N2O)to dinitrogen by bacteria and archaea[M],Advances in Microbial Physiology,UK:Elsevier,2006.107-227.
-
[37] Clough T J,Condron L M.Biochar and the nitrogen cycle:introduction[J].Journal of Environmental Quality,2010,39(4):1218-1223.
-
[38] Gao D D,Sheng R,Whiteley A S,et al.Effect of phosphorus amendments on rice rhizospheric methanogens and methanotrophs in a phosphorus deficient soil[J].Geoderma,2020,368.
-
[39] Qin H L,Yuan H Z,Zhang H,et al.Ammonia-oxidizing archaea are more important than ammonia-oxidizing bacteria in nitrification and NO3 −-N loss in acidic soil of sloped land[J]. Biology and Fertility of Soils,2013,49(6):767-776.
-
[40] Zhang W Z,Sheng R,Zhang M M,et al.Effects of continuous manure application on methanogenic and methanotrophic communities and methane production potentials in rice paddy soil [J].Agriculture,Ecosystems & Environment,2018,258:121-128.
-
[41] 于翠,李欣,朱志贤,等长期偏施氮肥对桑园土壤氨氧化微生物的影响[J].中国土壤与肥料,2021(3):35-44.
-
[42] 郭俊杰,朱晨,刘文波,等.不同施肥模式对土壤氮循环功能微生物的影响[J].植物营养与肥料学报,2021,27(5):751-759.
-
[43] Braker G,Conrad R.Advances in Applied Microbiology[M]. Applied Microbidogy Advances in Marburg,Germany:Elsevier Inc,2011.33-70.
-
[44] Arp D J,Stein L Y.Metabolism of inorganic N compounds by ammonia-oxidizing bacteria[J].Critical Reviews in Biochemistry and Molecular Biology,2003,38(6):471-495.
-
[45] Denis K S,Dias F M,Rowe J J.Oxygen regulation of nitrate transport by diversion of electron flow in escherichia-coli [J].Journal of Biological Chemistry,1990,265(30):18095-18097.
-
[46] Richardson D J,Watmough N J.Inorganic nitrogen metabolism in bacteria[J].Current Opinion in Chemical Biology,1999,3(2):207-219.
-
[47] Berks B C,Ferguson S J,Moir J W B,et al.Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions[J].Biochimica Et Biophysica Acta-Bioenergetics,1995,1232(3):97-173.
-
[48] Roldan M D,Reyes F,Morenovivian C,et al.Chlorate and nitrate reduction in the phototrophic bacteria rhodobacter-capsulatus and rhodobacter-sphaeroides[J].Current Microbiology,1994,29(4):241-245.
-
摘要
落干过程中稻田土壤氮素转化发生显著变化,但表层土壤不同层次的氮素转化特征及相关机制尚不清楚。通过室内土壤培养试验,探讨了落干过程中(9 d)上表层(0 ~ 5 cm)和下表层(5 ~ 10 cm)水稻土氧化还原电位(Eh)、土体氧化亚氮(N2O)浓度和排放通量等的动态变化特征,并利用实时荧光定量 PCR 测定氨氧化基因 (古菌 amoA 和细菌 amoA)和硝酸盐还原酶基因(narG 和 napA)的丰度变化。结果表明,经 9 d 落干上表层水稻土 Eh 由 -200 mV 上升至 500 mV 左右,而下表层在 -200 ~ 0 mV 之间波动。上表层水稻土 NH4 + -N 含量下降速率和 NO3 - -N 含量上升速率分别是下表层的 2.8 和 1.8 倍。落干过程中,上表层水稻土氨氧化作用可能是由氨氧化细菌(AOB)主导的,而驱动硝酸盐还原作用可能以含 napA 基因反硝化微生物为主。
Abstract
The nitrogen conversion in paddy soil changed significantly during the drying process,but the characteristics and related mechanisms of nitrogen transformation at different soil layers were unclear.In this experiment,the dynamic characteristics of soil redox potential(Eh),soil N2O concentration and emission flux in upper surface layer(0 ~ 5 cm) and lower surface layer(5 ~ 10 cm)during 9 days of drying were studied by soil incubation experiment.The abundance changes of ammoxidation genes(archaea amoA and bacteria amoA)and nitrate reductase genes(narG and napA)were determined by real-time quantitative PCR.The results showed that the soil Eh in the upper surface layer increased from -200 to about 500 mV after 9 days of drying,while the soil Eh in the lower surface layer fluctuated from -200 to 0 mV.The decreasing rate of NH4 + -N content and increasing rate of NO3 - -N content in the upper layer of paddy soil were 2.8 and 1.8 times of that in the lower layer,respectively.In the drying process,ammonia-oxidizing bacteria(AOB)may be dominant in the upper surface of paddy soil,while napA-containing denitrifying microorganisms may be dominant in driving nitrate reduction.
Keywords
paddy soil ; drying process ; nitrogen transformation ; functional genes