en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张爽(1992-),在读硕士研究生,研究方向为新型肥料研制与推广。E-mail:957991000@qq.com。

通讯作者:

孙福军,E-mail:fjsun@syau.edu.cn。

张蕾,E-mail:leizhang@iae.ac.cn。

参考文献 1
武志杰,石元亮,李东坡,等.新型高效肥料研究展望 [J].土壤与作物,2012,1(1):2-9.
参考文献 2
Kreyenschulte D,Krull R,Margaritis A.Recent advances in microbial biopolymer production and purification[J].Critical Reviews in Biotechnology,2014,34:1-15.
参考文献 3
Oppermann-Sanio F B,Steinbüchel A.Occurrence,functions and biosynthesis of polyamides in microorganisms and biotechnological production[J].Naturwissenschaften,2002,89:11-22.
参考文献 4
Bajaj I,Singhal R.Poly(glutamic acid)-an emerging biopolymer of commercial interest[J].Bioresource Technology,2011,102:5551-5561.
参考文献 5
Buescher J M,Margaritis A.Microbial biosynthesis of polyglutamic acid biopolymer and applications in the biopharmaceutical,biomedical and food industries[J].Critical Reviews in Biotechnology,2007,27:1-19.
参考文献 6
Luo Z T,Guo Y,Liu J D,et al.Microbial synthesis of polyγ-glutamic acid:current progress,challenges,and future perspectives[J].Biotechnology for Biofuels,2016,9:134.
参考文献 7
Ogunleye A,Bhat A,Irorere V U,et al. P ol y-γglutamic acid:production,properties and applications[J]. Microbiology,2015,161:1-17.
参考文献 8
Sanda F,Fujiyama T,Endo T.Chemical synthesis of poly-γ-glutamic acid by polycondensation ofγ-glutamic acid dimer:synthesis and reaction of poly-γ-glutamic acid methyl ester [J].Journal of Polymer Science Part A-Polymer Chemisity. 2001,39:732-741.
参考文献 9
Ashiuchi M,Kamei T,Misono H.Poly-γ-glutamate synthetase of Bacillus subtilis[J].Journal of Molecular Catalysis B:Enzymatic,2003,23:101-106.
参考文献 10
Sung M H,Park C,Kim C J,et al.Natural and edible biopolymer poly-γ-glutamic acid:synthesis,production,and applications[J].The Chemical Record,2005,5:352-366.
参考文献 11
Ashiuchi M.Microbial production and chemical transformation of poly-γ-glutamate[J].Microbial Biotechnology,2013,6:664-674.
参考文献 12
Ivanovics G,Bruckner V.Chemical and immunologic studies on the mechanism of anthrax infection and immunity.The chemical structure of capsule substance of anthrax bacilli and its identity with that of the B.mesentericus[J].Zeitschrift Fur Immunitaetsforschung Und Experimentelle Therapie,1937,90:304-318.
参考文献 13
Ivanovics G,Bruckner V.The chemical nature of the immuno-specific capsule substance of anthrax bacillus[J]. Naturwissenschaften,1937,25:250.
参考文献 14
Shih I L,Van Y T.The production of poly-(γ-glutamic acid)from microorganisms and its various applications[J]. Bioresource Technology,2001,79:207-225.
参考文献 15
Sawamura S.On Bacillus natto[J].J Coll Agric Tokyo Imp Vniv,1913,5:189-191.
参考文献 16
Hisao F.On the formation of mucilage by Bacillus natto.Part III. Chemical constitutions of mucilage in natto(1)[J].Nippon Nogeikagaku Kaishi,1963,37:407-411.
参考文献 17
Candela T,Moya M,Haustant M,et al.Fusobacterium nucleatum,the first Gram-negative bacterium demonstrated to produce polyglutamate[J].Canadian Journal of Microbiol,2009,55:627-632.
参考文献 18
Hezayen F F,Rehm B H,Tindall B J,et al.Transfer of Natrialba asiatica B1T to Natrialba taiwanensis sp.nov.and description of Natrialba aegyptiaca sp.nov.,a novel extremely halophilic,aerobic,non-pigmented member of the Archaea from Egypt that produces extracellular poly(glutamic acid)[J].International Journal of Systematic Evolutionary Microbiology,2001,51:1133-1142.
参考文献 19
Weber J.Poly(γ-glutamic acid)s are the major constituents of nematocysts in Hydra(Hydrozoa,Cnidaria)[J].Journal of Biological Chemistry,1990,265:9664-9669.
参考文献 20
Candela T,Fouet A.Poly-γ-glutamate in bacteria[J]. Molecular Microbiology,2006,60:1091-1098.
参考文献 21
Chen X,Chen S,Sun M,et al.High yield of poly-γ-glutamic acid from Bacillus subtilis by solid-state fermentation using swine manure as the basis of a solid substrate[J].Bioresource Technology,2005,96:1872-1879.
参考文献 22
Chen X,Chen S W,Sun M,et al.Medium optimization by response surface methodology for poly-γ-glutamic acid production using dairy manure as the basis of a solid substrate[J].Applied Microbiology Biotechnology,2005,69:390-396.
参考文献 23
Ji G,Xu L,Lyu Q,et al.Poly-γ-glutamic acid production by simultaneous saccharification and fermentation using corn straw and its fertilizer synergistic effect evaluation[J].Bioprocess and Biosystems Engineering,2021,44:2181-2191.
参考文献 24
Wang Q,Chen S,Zhang J,et al.Co-producing lipopeptides and poly-γ-glutamic acid by solid-state fermentation of Bacillus subtilis using soybean and sweet potato residues and its biocontrol and fertilizer synergistic effects[J].Bioresource Technology,2008,99:3318-3323.
参考文献 25
Xu Z,Wan C,Xu X,et al.Effect of poly(γ-glutamic acid)on wheat productivity,nitrogen use efficiency and soil microbes [J].Journal of Soil Science and Plant Nutrition,2013,13:744-755.
参考文献 26
Xu Z,Lei P,Feng X,et al.Effect of poly(γ-glutamic acid)on microbial community and nitrogen pools of soil[J].Acta Agricultural Scandinavica,Section B-Soil and Plant Science,2013,63:657-668.
参考文献 27
Xu Z,Lei P,Feng X,et al.Calcium involved in the poly(γ-glutamic acid)-mediated promotion of Chinese cabbage nitrogen metabolism[J].Plant Physiology Biochemistry,2014,80:144-152.
参考文献 28
Xu Z,Lei P,Feng X,et al.Analysis of the metabolic pathways affected by poly(γ-glutamic acid)in Arabidopsis thaliana based on genechip microarray[J].Journal of Agricultural and Food Chemistry,2016,64:6257-6266.
参考文献 29
Chen L,Fei L,Wang Z,et al.The effects of ploy(γ-glutamic acid)on spinach productivity and nitrogen use efficiency in North-West China[J].Plant Soil and Environment,2018,64:517-522.
参考文献 30
Bai N,Zhang H,Li S,et al.Effects of application rates of poly-γ-glutamic acid on vegetable growth and soil bacterial community structure[J].Applied Soil Ecology,2020,147:103405.
参考文献 31
Liang J,Shi W.Poly-γ-glutamic acid improves water-stable aggregates,nitrogen and phosphorus uptake efficiency,waterfertilizer productivity,and economic benefit in barren desertified soils of Northwest China[J].Agricultural Water Management,2021,245:106551.
参考文献 32
徐虹,许宗奇,冯小海,等.一种γ-聚谷氨酸抗旱保水种衣剂及其制备方法:中国,CN 102276364A[P].2011-12-14.
参考文献 33
Xu Z,Lei P,Pang X,et al.Exogenous application of polyγ-glutamic acid enhances stress defense in Brassica napus L.seedlings by inducing cross-talks between Ca2+,H2O2,brassinolide,and jasmonic acid in leaves[J].Plant Physiology and Biochemistry,2017,118:460-470.
参考文献 34
Xu Z,Ma J,Lei P,et al.Poly-γ-glutamic acid induces system tolerance to drought stress by promoting abscisic acid accumulation in Brassica napus L[J].Scientific Reports,2020,10:252.
参考文献 35
Lei P,Xu Z,Ding Y,et al.Effect of Poly(γ-glutamic acid)on the physiological responses and calcium signaling of rape seedlings(Brassica napus L.)under cold stress[J].Journal of Agricultural and Food Chemistry,2015,63:10399-10406.
参考文献 36
Lei P,Xu Z Q,Liang J F,et al.Poly(γ-glutamic acid)enhanced tolerance to salt stress by promoting proline accumulation in Brassica napus L[J].Plant Growth Regulation,2016,78:233-241.
参考文献 37
Lei P,Pang X,Feng X,et al.The microbe-secreted isopeptide poly-γ-glutamic acid induces stress tolerance in Brassica napus L.seedlings by activating crosstalk between H2O2 and Ca2+[J]. Scientific Reports,2017,7:41618.
参考文献 38
Guo Z,Yang N,Zhu C,et al.Exogenously applied poly-γglutamic acid alleviates salt stress in wheat seedlings by modulating ion balance and the antioxidant system[J].Environmental Science Pollution Research,2017,24:6592-6598.
参考文献 39
Yin A,Jia Y,Qiu T,et al.Poly-γ-glutamic acid improves the drought resistance of maize seedlings by adjusting the soil moisture and microbial community structure[J].Applied Soil Ecology,2018,129:128-135.
参考文献 40
Potter M,Oppermann-Sanio F B,Steinbuchel A.Cultivation of bacteria producing polyamino acids with liquid manure as carbon and nitrogen source[J].Applied and Environmental Microbiology,2001,67:617-622.
参考文献 41
Hoppensack A,Oppermann-Sanio F B,Steinbuchel A. Conversion of the nitrogen content in liquid manure into biomass and polyglutamic acid by a newly isolated strain of Bacillus licheniformis[J].FEMS Microbiology Letters,2003,218:39-45.
参考文献 42
张静静,白由路,杨俐苹,等.γ-聚谷氨酸提高夏玉米产量和养分吸收的机制[J].植物营养与肥料学报,2019,25:1856-1867.
参考文献 43
Pang X,Lei P,Feng X,et al.Poly-γ-glutamic acid,a bio-chelator,alleviates the toxicity of Cd and Pb in the soil and promotes the establishment of healthy Cucumis sativus L.seedling [J].Environmental Science and Pollution Research,2018,25:19975-19988.
参考文献 44
Guo J,Shi W,Li J,et al.Effects of poly-γ-glutamic acid and poly-γ-glutamic acid super absorbent polymer on the sandy loam soil hydro-physical properties[J].Plos One,2021,16(1):e0245365.
参考文献 45
Guo J,Shi W,Wen L,et al.Effects of a super-absorbent polymer derived from poly-γ-glutamic acid on water infiltration,field water capacity,soil evaporation,and soil water-stable aggregates[J].Archives of Agronomy and Soil Science,2020,66:1627-1638.
参考文献 46
Shi X,Shi W,Pang L,et al.Effects ofγ-polyglutamic acid on soil water and nitrogen transport characteristics[J].Journal of Soil and Water Conservation,2020,34:190-197.
参考文献 47
King W E,Fister R P,Norris S J,et al.Composition useful as fertilizer comprises water-insoluble slow-release nitrogen fertilizer and a water-soluble non-aromatic poly(amino acid)having molecular size larger than that which can be absorbed by plant:US,039365-A1[P].2007-02-22.
参考文献 48
陈守文,喻子牛,陈雄.聚-γ-谷氨酸作为肥料增效剂在农业种植中的应用:中国,ZL 200610018395.3 [P].2006-02-22.
参考文献 49
李汉涛,杨国正,柯云,等.聚γ-谷氨酸增效复合肥对油菜产量及其构成因素的影响[J].湖北农业科学,2010,49(10):2395-2397.
参考文献 50
朱安婷,蒋友武,谢国生,等.外源聚γ-谷氨酸对水稻幼苗耐旱性和渗透调节的影响[J].核农学报,2010,24(6):1269-1273,1279.
参考文献 51
刘端义,梅金先,张旅峰,等.聚-γ-谷氨酸及其增效肥在水稻上的应用[J].湖北农业科学,2010,49(10):2390-2394,2400.
参考文献 52
尹成红,雍晓雨,冉炜,等.产γ-聚谷氨酸菌株的筛选及其对玉米幼苗生长的影响[J].南京农业大学学报,2011,34(2):91-96.
参考文献 53
翟云龙,曹新川,吕双庆,等.聚γ-谷氨酸增效肥对棉花干物质积累与分配的影响[J].湖北农业科学,2013,52(21):5167-5170.
参考文献 54
王建平,王晓丽,王昌军,等.聚-γ-谷氨酸对烟草种子萌发及苗期生长的影响[J].华中农业大学学报,2007,26(3):340-343.
参考文献 55
许宗齐,万传宝,许仙菊,等.肥料增效剂γ-聚谷氨酸对小青菜产量和品质的影响[J].生物加工过程,2012,10(1):58-62.
参考文献 56
张世根,宋杰,李敏,等.肥料增效剂γ-聚谷氨酸的生产与应用[J].农产品加工(学刊),2010(8):60-61,65.
参考文献 57
孙刚忠,谭启玲,胡承孝,等.聚-γ-谷氨酸对小白菜生长和光合作用的影响[J].华中农业大学学报,2012,31(2):216-219.
参考文献 58
孙刚忠.聚γ-谷氨酸在小白菜上的应用效果及其作用机理 [D].武汉:华中农业大学,2012.
参考文献 59
尚玉洁,曾路生,杨华青,等.盐渍土壤中聚氨酸肥料对普通白菜生长、土壤酶活性及微生物量的影响[J].中国蔬菜,2015(1):37-41.
参考文献 60
Zhang L,Gao D C,Wang L L,et al.Effects of poly-γglutamic acid(γ-PGA)on plant growth and its distribution in a controlled plant-soil system[J].Scientific Reports,2017,7(1):6090.
参考文献 61
曾路生,石元亮,卢宗云,等.新型聚氨酸增效剂对蔬菜生长和产量的影响[J].中国农学通报,2013,29(31):168-173.
参考文献 62
喻三保,张红艳,陈守文,等.聚-γ-谷氨酸施用对草莓产量和果实品质的影响[J].湖北农业科学,2010,49(7):1638-1641.
参考文献 63
王润凡,尹业雄,胡世权,等.PGA 增效剂在温州蜜柑中施用效果的评价[J].湖北农业科学,2010,49(4):884-887.
参考文献 64
刘方丹,刘榴,高久林,等.聚-γ-谷氨酸提高藤稔葡萄品质的研究[J].中国南方果树,2014,43(1):23-27.
参考文献 65
陈雄,陈守文,喻子牛.聚-γ-谷氨酸在环境中降解特性的初步研究[J].环境科学与技术,2008,31(11):35-37,88.
参考文献 66
Forde B G,Lea P J.Glutamate in plants:metabolism,regulation,and signalling[J].Journal of Experimental Botany,2007,58:2339-2358.
参考文献 67
Forde B G,Walch-Liu P.Nitrate and glutamate as environmental cues for behavioural responses in plant roots[J].Plant Cell Environment,2009,32:682-693.
参考文献 68
Walch-Liu P,Liu LH,Remans T,et al.Evidence that L-glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana[J].Plant and Cell Physiology,2006,47:1045-1057.
目录contents

    摘要

    聚 -γ- 谷氨酸(γ-PGA)是一种主要由微生物生产的胞外高分子聚酰胺,仅由谷氨酸单体组成,具有阴离子特性、离子吸附性、螯合性、吸水性、生物可降解性和生物兼容性。在农业生产中用作肥料增效剂,能显著地促进作物生长、增加作物产量和提高肥料利用率,具有显著的增产节肥效应。γ-PGA 具备完全生物可降解性和生物兼容性,相较于其它肥料增效剂具有突出的生态和环保优势,未来在农业生产中具有广阔的应用前景。理解其增产节肥作用机制是应用和推广γ-PGA 新型肥料的理论基础,为进一步扩大和加深γ-PGA 在肥料产业和农业中的效果和贡献,未来应着重从土壤养分转化、植物营养和植物生理角度开展其增产节肥作用机制。同时,开展其对不同化肥的增效效果研究是靶向开发与应用新型聚氨酸肥料的理论基础和科学支撑。

    Abstract

    Poly-γ-glutamic acid(γ-PGA)is a kind of extracellular macromolecule polyamide that mainly produced by microorganisms and is only made of glutamic acid units.γ-PGA is anionic,ionic adsorptive,chelating,water-absorptive, biodegradable,and biocompatibility.As a kind of fertilizer synergist in agriculture,γ-PGA can promote plant growth, increase crop yield and improve fertilizer efficiency significantly.Its totally biodegradable and biocompatibility properties make it distinguished from other chemical fertilizer synergists and have outstanding ecological and environmental advantages, which makes it has promising application prospects in agriculture in future.Currently,the theoretical basis for applying and promotingγ-PGA fertilizer is to understand its mechanism of yield-increasing and fertilizer-saving function.In order to further expand and deepen the function and contribution ofγ-PGA in fertilizer industry and agriculture,this mechanism should be further studied from the perspectives of plant physiology,plant nutrition and soil nutrient cycling.At the same time,it is very needed to carry out research about synergistic effect ofγ-PGA on different fertilizers,which is the theoretical basis and scientific support for developing and applying the novelγ-PGA fertilizers.

  • 1 聚-γ-谷氨酸简介

  • 新型肥料是针对传统肥料存在的缺点,利用新方法、新工艺,对传统肥料进行的物理、化学或生物化学改性后生产出的一类高效、缓释控释、长效和环境友好的肥料[1]。新型肥料的出现有效缓减了施用传统肥料带来的资源浪费和环境污染问题。近年来,由同一种氨基酸单体合成的高分子聚合物材料,例如聚天门冬氨酸、聚赖氨酸、聚谷氨酸 (PGA),因其安全环保、可降解和其它诸多优良特性而快速走入农业科学家们的视野[2-3]。在诸多高分子聚合物材料中,PGA 的诸多优良特性及其能利用微生物发酵进行工业化生产,使其迅速发展和应用[4-5]

  • PGA 是一种与众不同的阴离子型同质聚酰胺,仅由谷氨酸单体组成,由谷氨酸单体之间的α-氨基和羧基(α或者γ)组成的酰胺键链接而成[6]。根据组成酰胺键的羧基类型,可以将 PGA 分为聚-α-谷氨酸(α-PGA) 和聚-γ-谷氨酸 (γ-PGA)[57]。α-PGA 目前只能通过化学方法合成,尽管有些研究者尝试采用生物工程的方法利用微生物发酵生产α-PGA,但均未实现[5]。而合成γ-PGA 的方法目前有 4 种,包括化学合成、多肽合成、生物转化和微生物发酵[8]。与其它 3 种合成方法相比,微生物发酵方法具有最高的经济效益和巨大的优势,因为该方法的原材料价格便宜、环境污染最小、产物天然且纯度高、生产反应条件温和,因此,目前绝大多数γ-PGA 的工业化生产采用的是微生物发酵方法[6]。因为α-PGA 合成方法的限制和微生物合成γ-PGA 的突出优势,目前文献中报道和应用的 PGA 主要是微生物合成的γ-PGA,尽管有些文献报导中混淆了α-PGA、 γ-PGA 和微生物合成的 PGA[5]。根据谷氨酸单体的类型,可以将γ-PGA 分为以下 3 种类型, 1)γ-L-PGA,仅由 L-谷氨酸组成,2)γ-D-PGA,仅由 D-谷氨酸组成,3)γ-LD-PGA,由 D-谷氨酸和 L-谷氨酸共同组成[9-11]。此外,目前文献中报导的γ-PGA 分子量变化范围在 10~10000 kDa 之间[11],根据分子量,可以将γ-PGA 分为低分子量 γ-PGA(10~200 kDa)、中分子量γ-PGA(200~2000 kDa)和高分子量γ-PGA(>2000 kDa)[510]

  • γ-PGA 于 1937 年首次在炭疽杆菌(Bacilllus anthracis)的荚膜中被发现[12-14],这是第一次在自然界发现γ-PGA。早期也有学者发现日本传统食物纳豆(natto)的黏液是γ-PGA 和果聚糖的混合物[15-16]。目前的研究表明,γ-PGA 主要由革兰氏阳性菌产生,且主要是芽孢杆菌属(Bacillius),同时至少有一种革兰氏阴性细菌(Fusobacterium nucleatum),一些古菌和真核生物也能产生γ-PGA[717-20]。 γ-PGA 具有类似尼龙的主链结构[11],由单个谷氨酸分子之间的α-氨基和γ-羧基聚合形成的酰胺键链接而成的主链上含有大量羧基,使其具有阴离子特性,因而对阳离子具有良好的吸附性;其含有的氨基氮和羧基中的羰基使其具有强烈螯合离子的能力;羧基上的羟基易在分子之间或内部形成氢键,使其具有很强的吸水保水性;酰胺键易分解,使其具有良好的生物可降解性;同时降解产物完全对生物和环境无害,具有优良的生物兼容性; 此外,γ-PGA 主要是以可再生资源为基质,如猪粪[21]、牛粪[22]、玉米秸秆[23]等,在枯草芽孢杆菌等微生物的作用下合成的,因而具有可持续性,是可再生资源[24-51014]

  • 由于γ-PGA 的阴离子特性、吸附性、螯合性、吸水保水性、生物可降解和生物兼容性等多种优良特性,γ-PGA 在生物修复、食品、医药、日化、生物工程和农业等领域应用广泛[24-711]。在农业领域,γ-PGA 有广阔的应用前景,可用作肥料增效剂[23-31]、抗胁迫剂[32-39]、液体肥料[40-42]、土壤重金属螯合剂[43]、保水剂[3144-46]等;近年来, γ-PGA 作为肥料增效剂的应用越来越广泛,并逐渐开发成新型的聚氨基酸肥料[51447-48],与近年来广泛使用的肥料添加剂(硝化抑制剂 DCD、DMPP 和脲酶抑制剂 NBPT)相比,γ-PGA 具有无残留、安全无毒、不污染环境、无副作用等明显优点[24-51014]。因此,添加有γ-PGA 的肥料成为近几年来新型肥料领域具有广阔前景的热门之一[47]

  • 2 聚-γ-谷氨酸(γ-PGA)对作物产量和品质的影响

  • 作为一种绿色、无副作用的肥料增效剂, γ-PGA 或γ-PGA 增效肥的施用对多种粮食、经济、蔬菜和水果作物产生明显的促生和增产效果。大量的研究结果表明,γ-PGA 施用能显著提高冬小麦产量 7.17%[25]、油菜产量 5.7%~11.5%[2649]、水稻产量 4.5%~8.4%[50-51]、玉米幼苗干重 17.0%[52]、玉米幼苗鲜重 4.28%~40.70%[39]、夏玉米产量 3.42% 和干物质总量 5.08%[42]、棉花产量 11.1%~17.1%[53]和干物质量 11.0%~62.8%[31]、烟草幼苗生物量 8.7%~33.6%[54]、小白菜生物量 8.0%~43.5%[3455-60]、黄瓜幼苗生物量 33.8%[24]、茄子产量 3.1%~11.8%[61]、甘蓝产量 2.5%~5.8%[61]、辣椒产量 13.46%[23]、菠菜鲜重 5.26%~184.21% 和干重 61.29%~190.32%[29]、草莓产量 19.9%~30.4%[62]、蜜柑产量 10.0%~20.7%[63]、藤稔葡萄产量 3.9%~7.6%[64]。Bai 等[30]探究了γ-PGA 添加量对大白菜生长的影响,研究结果表明在减少基肥 1/3 施用量的基础上,不添加γ-PGA 和添加 γ-PGA 1.8 mg·kg-1 分别能减少大白菜产量 14.29% 和 17.30%,在减少基肥 1/3 施用量的基础上添加 γ-PGA 2.8 和 4.8 mg·kg-1 以及在减少基肥 1/2 施用量的基础上添加γ-PGA 2.8 mg·kg-1 均能增加植株产量,增幅达到 17.34%~33.64%。

  • 另外,γ-PGA 的施用还对作物品质产生重要影响。γ-PGA 添加后,玉米幼苗地上部的叶绿素含量显著提高 71.9%~85.9%,根系活力显著提高 14.2%~35.8%[52],玉米株高增加 23.54%~57.62%、叶面积增加 15.44%~128.72%、根系生物量增加 7.81%~19.59%[39],油菜幼苗的叶绿素含量和植株相对含水量分别显著提升 43.5% 和 33.8%[34],大白菜叶面积增加 9.62%~19.24%[30],辣椒的长度和含水量分别提高 5.71% 和 1.39%[23],菠菜叶面积和叶面积指数分别增加 4.92%~149.68% 和 44.81%~99.53%[29],小青菜叶绿素相对含量明显增加 3.7%~20.8%、维生素 C 含量显著提高 18.1%、硝酸盐含量大幅降低 44.8%[55],小白菜叶部的叶绿素 a 含量、光合速率、气孔导度、胞间二氧化碳浓度、蒸腾速率均有所增加[57-58],盐渍土壤中小白菜和苏州青的叶绿素含量分别提高 31.00% 和 27.27%[59],温州蜜柑果实的榨汁率、可溶性固形物、果实维生素 C 含量均显著增加,大棚栽植柑橘的外观品质也明显改善[63],藤稔葡萄果实的可溶性固形物、维生素 C、可溶性蛋白含量极显著增多[64],草莓果实中可溶性固形物,果实亮度 L 值、着色强度 C 值、红色着色 a 值均比对照增加,果实表面更富有光泽[62]

  • 3 聚-γ-谷氨酸对作物生长和代谢的影响

  • 现阶段,只有少数研究探究了γ-PGA 对作物生长和代谢的影响。研究发现添加γ-PGA 明显改善小白菜碳物质累积和氮素代谢中的关键酶(硝酸还原酶、谷氨酰胺合成酶、蛋白酶)活性[58], γ-PGA 通过调控植株 Ca2+/CaM 信号通道促进植株氮同化,并因此促进植株生长[27]。Xu 等[28]采用基因芯片技术分析了γ-PGA 对拟南芥新陈代谢途径基因转录的影响,研究结果表明 299 种基因受到 γ-PGA 的调控,这些具有不同表型的基因主要参与拟南芥的新陈代谢和胞内过程以及拟南芥的刺激响应过程,并且γ-PGA 显著促进拟南芥的氮同化过程、油菜素类固醇、茉莉酸和木质素的生物合成过程。

  • 另外,γ-PGA 在提高植株抵抗各种胁迫(盐、冻、旱)的功能上有明显效果。研究结果表明,在盐胁迫条件下γ-PGA 是通过激活脯氨酸合成途径、促进脯氨酸积累来提高油菜幼苗对盐害胁迫的抗性[36],也是通过调节离子平衡和抗氧化系统来能缓解小麦幼苗的盐胁迫[38]。Lei 等[37] 调查了油菜幼苗遭受盐胁迫和冷冻胁迫之后γ-PGA 诱导的抗性,发现γ-PGA 是通过激发H2O2 信号分子的突增以及随后H2O2 信号和 Ca2+ 信号之间的相互作用而调控油菜的抗胁迫性能。而 Xu 等[33] 的研究结果进一步表明γ-PGA 通过诱导油菜幼苗中 Ca2+ 信号、H2O2 信号、油菜内脂素和茉莉酸之间的相互作用来增强油菜幼苗的抗盐胁迫和抗冷胁迫功能。Xu 等[34] 的研究表明在干旱胁迫下显著提升油菜幼苗的脯氨酸含量和抗氧化酶活性,可显著减少丙二醛含量,同时显著增加干旱应激激素脱落酸的含量以及脱落酸合成调控基因 BnNCED3BnZEPBnAAO4 的丰度。以上研究结果均表明γ-PGA 深刻影响植物的生长和代谢,未来应进一步加深该方面的研究。

  • γ-PGA 进入土壤后,在微生物的作用下降解成谷氨酸后被矿化分解[65]。Zhang 等[60]采用 13C 和 15N 双标记方法得到的研究结果表明γ-PGA 或 γ-PGA 的分解产物能以有机分子形式被根系吸收,而 Lei 等[35-36]采用荧光标记方法发现γ-PGA 分子不能进入根系细胞的细胞质,只能附着在根系细胞原生质体的表面。以上研究结果说明γ-PGA 在土壤中的降解产物谷氨酸能作用于根系。另外,大量研究已经表明谷氨酸是生物体内的信号分子之一[66],且外源的低浓度谷氨酸可以影响植株的生长发育和根系的形态建成[67-68]。综合以上研究结果,谷氨酸调控植物生长发育可能是未来阐明 γ-PGA 作用机理的突破口之一。

  • 4 聚-γ-谷氨酸对土壤养分和微生物的影响

  • γ-PGA 是由谷氨酸单体组成,氨基酸是微生物生命活动的良好碳源和氮源,能对土壤的微生物数量、活性和群落组成以及土壤酶活性产生重要影响。研究结果表明γ-PGA 添加对土壤养分产生重要影响。γ-PGA 施入土壤后能明显提升种植小麦和油菜土壤的铵态氮和硝态氮含量[25-26]以及小青菜土壤的铵态氮含量[55]。Zhang 等[60]研究结果表明γ-PGA 施用后种植小白菜的土壤铵态氮含量显著降低 7.94%~64.04%,硝态氮含量在其施用后的前 3 d 显著降低 23.12%~35.70%,在第 7 d 至第 45 d 显著增加 3.50%~36.30%。这些研究结果均表明γ-PGA 添加对肥料氮在土壤中的释放和转化产生重要影响。然而,现有的研究对γ-PGA 添加后肥料氮在土壤中具体转化过程的认识十分有限,未来可借助 15N 同位素标记等手段阐明肥料氮在土壤中具体的转化过程和含量分布。

  • 此外,研究结果还发现γ-PGA 添加对土壤胞外酶、土壤微生物数量和多样性产生重要影响。 γ-PGA 添加后,种植小麦和油菜土壤的微生物量氮含量和土壤脲酶活性[25-26]、土壤蔗糖酶和脱氢酶的活性[25]和细菌、放线菌数量以及微生物多样性[26]均得到不同程度地提高,种植四季小白菜和苏州青盐渍土壤土壤呼吸强度分别提高 69.48% 和 28.57%,土壤脲酶和蔗糖酶活性提高 19%~32%,土壤微生物量氮和微生物量磷含量增加 8%~33%,代谢熵提高 14%~40%[59]。种植小白菜土壤的微生物量碳氮、脲酶、酸性磷酸酶和脱氢酶活性显著增加,蔗糖酶和中性磷酸酶活性在添加γ-PGA 后期也显著提升[60]。Bai 等研究了γ-PGA 不同的添加量对大白菜产量和微生物群落的影响,他们的研究结果表明在肥料减少 1/3 施用量的基础上不添加γ-PGA 和添加γ-PGA 1.8 mg·kg-1 减少微生物群落多样性、丰富度、均匀度;在减少肥料 1/3 施用量的基础上添加γ-PGA 2.8 和 4.8 mg·kg-1,以及在减少肥料 1/2 施用量的基础上添加γ-PGA2.8 mg·kg-1 均能增加微生物群落多样性、丰富度、均匀度,γ-PGA 添加量对植株产量和土壤微生物影响显著,中高量的γ-PGA 通过增加肥料利用率、土壤中的植物促生菌数量来提高卷心菜的产量[30]。Yin 等[39]的研究结果表明γ-PGA 发酵液添加明显改变玉米土壤微生物群落,根际附近的枯草芽孢杆菌属、假单胞菌属和伯克氏菌属等促生菌数量显著增加。以上研究结果均证实γ-PGA 的添加能对土壤酶活性、微生物数量和多样性产生重要影响。然而目前的研究结果并没有深入和全面地揭示γ-PGA 添加后肥料氮转化过程中伴随着的土壤微生物群落结构和土壤酶活性变化,无法从土壤微生物和土壤酶学角度系统支撑γ-PGA 对肥料氮转化的微生物驱动机制。

  • 5 聚-γ-谷氨酸对肥料养分释放和利用的影响

  • γ-PGA 本身所具有的阴离子特性、离子吸附性和螯合性会使其对土壤养分的释放和分布规律产生一定影响。Xu 等[26]认为γ-PGA 可能是通过土壤微生物量氮固定矿质氮使更多的肥料氮保存于土壤中,这部分微生物固定氮在后期逐渐释放出来,从而有效延长氮肥的可利用时间。Zhang 等[60]研究结果表明尿素氮在γ-PGA 的作用下改变了其释放规律,并推断γ-PGA 可能是在吸附、螯合和微生物固定等途径的共同作用下降低土壤铵态氮含量,逐渐释放铵态氮,使铵态氮向硝态氮的转化时间延长,进而延长硝态氮的可利用时间。另外不少研究均证实,施用γ-PGA 能显著提高肥料利用率。例如,γ-PGA 施用显著增加菠菜的吸氮量和氮肥利用率,增幅分别达到 93.02%~179.11% 和 7.55%~207.29%[29],显著增加西北干旱土壤棉花的吸氮量(21.0%~81.1%)和氮肥吸收效率(20.7%~82.8%)以及棉花的吸磷量(4.8%~51.2%) 和磷肥吸收效率(4.2%~50.0%)[31],有效提高种植小麦土壤的氮肥利用率 11.30%~14.00%[25]和种植小白菜的土壤明显提高土壤铵态氮的含量和氮肥利用率 10.6%[55]。Bai 等[30]的研究结果发现在减少 1/3 基肥施用量基础上添加 γ-PGA,大白菜对肥料氮、磷和钾养分的表观利用率分别增加 27.82%~52.27%、17.05%~64.59% 和 32.73%~41.43%。另外,在玉米上喷施γ-PGA 能显著增加玉米对肥料中氮、磷、钾养分的吸收量,增幅分别为 5.20%~6.97%、7.29%~10.85%、3.48 %~5.27%[42]。这些研究结果均表明γ-PGA 的添加能对肥料氮在土壤中的释放和转化产生重要影响,然而,现有的研究对γ-PGA 添加后肥料氮在土壤中具体转化过程的认识十分有限,未来可借助 15N 同位素标记等手段阐明肥料氮在土壤中的具体转化过程和含量分布。

  • 6 研究展望

  • 鉴于γ-PGA 突出的增产节肥效应,未来应不断增加γ-PGA 对不同肥料和作物的增产节肥效果研究,从而建立γ-PGA 的科学施用模式,促进 γ-PGA 肥料新品种的开发。此外,鉴于γ-PGA 对土壤氮养分、酶和微生物产生重要影响,以及对植物生长和代谢也产生深刻影响,因此,未来应着重研究γ-PGA 对肥料养分在土壤中的转化过程及其微生物驱动机制,以及γ-PGA 影响植物生长和代谢的潜在生理机制,尤其是从谷氨酸信号分子角度阐明其潜在生理机制。从土壤养分转化和植物生理角度明晰γ-PGA 的增产节肥机制,是指导γ-PGA 新型肥料研发和构建聚氨酸肥料施用管理模式的重要依据,具有重要理论意义和应用价值。

  • 参考文献

    • [1] 武志杰,石元亮,李东坡,等.新型高效肥料研究展望 [J].土壤与作物,2012,1(1):2-9.

    • [2] Kreyenschulte D,Krull R,Margaritis A.Recent advances in microbial biopolymer production and purification[J].Critical Reviews in Biotechnology,2014,34:1-15.

    • [3] Oppermann-Sanio F B,Steinbüchel A.Occurrence,functions and biosynthesis of polyamides in microorganisms and biotechnological production[J].Naturwissenschaften,2002,89:11-22.

    • [4] Bajaj I,Singhal R.Poly(glutamic acid)-an emerging biopolymer of commercial interest[J].Bioresource Technology,2011,102:5551-5561.

    • [5] Buescher J M,Margaritis A.Microbial biosynthesis of polyglutamic acid biopolymer and applications in the biopharmaceutical,biomedical and food industries[J].Critical Reviews in Biotechnology,2007,27:1-19.

    • [6] Luo Z T,Guo Y,Liu J D,et al.Microbial synthesis of polyγ-glutamic acid:current progress,challenges,and future perspectives[J].Biotechnology for Biofuels,2016,9:134.

    • [7] Ogunleye A,Bhat A,Irorere V U,et al. P ol y-γglutamic acid:production,properties and applications[J]. Microbiology,2015,161:1-17.

    • [8] Sanda F,Fujiyama T,Endo T.Chemical synthesis of poly-γ-glutamic acid by polycondensation ofγ-glutamic acid dimer:synthesis and reaction of poly-γ-glutamic acid methyl ester [J].Journal of Polymer Science Part A-Polymer Chemisity. 2001,39:732-741.

    • [9] Ashiuchi M,Kamei T,Misono H.Poly-γ-glutamate synthetase of Bacillus subtilis[J].Journal of Molecular Catalysis B:Enzymatic,2003,23:101-106.

    • [10] Sung M H,Park C,Kim C J,et al.Natural and edible biopolymer poly-γ-glutamic acid:synthesis,production,and applications[J].The Chemical Record,2005,5:352-366.

    • [11] Ashiuchi M.Microbial production and chemical transformation of poly-γ-glutamate[J].Microbial Biotechnology,2013,6:664-674.

    • [12] Ivanovics G,Bruckner V.Chemical and immunologic studies on the mechanism of anthrax infection and immunity.The chemical structure of capsule substance of anthrax bacilli and its identity with that of the B.mesentericus[J].Zeitschrift Fur Immunitaetsforschung Und Experimentelle Therapie,1937,90:304-318.

    • [13] Ivanovics G,Bruckner V.The chemical nature of the immuno-specific capsule substance of anthrax bacillus[J]. Naturwissenschaften,1937,25:250.

    • [14] Shih I L,Van Y T.The production of poly-(γ-glutamic acid)from microorganisms and its various applications[J]. Bioresource Technology,2001,79:207-225.

    • [15] Sawamura S.On Bacillus natto[J].J Coll Agric Tokyo Imp Vniv,1913,5:189-191.

    • [16] Hisao F.On the formation of mucilage by Bacillus natto.Part III. Chemical constitutions of mucilage in natto(1)[J].Nippon Nogeikagaku Kaishi,1963,37:407-411.

    • [17] Candela T,Moya M,Haustant M,et al.Fusobacterium nucleatum,the first Gram-negative bacterium demonstrated to produce polyglutamate[J].Canadian Journal of Microbiol,2009,55:627-632.

    • [18] Hezayen F F,Rehm B H,Tindall B J,et al.Transfer of Natrialba asiatica B1T to Natrialba taiwanensis sp.nov.and description of Natrialba aegyptiaca sp.nov.,a novel extremely halophilic,aerobic,non-pigmented member of the Archaea from Egypt that produces extracellular poly(glutamic acid)[J].International Journal of Systematic Evolutionary Microbiology,2001,51:1133-1142.

    • [19] Weber J.Poly(γ-glutamic acid)s are the major constituents of nematocysts in Hydra(Hydrozoa,Cnidaria)[J].Journal of Biological Chemistry,1990,265:9664-9669.

    • [20] Candela T,Fouet A.Poly-γ-glutamate in bacteria[J]. Molecular Microbiology,2006,60:1091-1098.

    • [21] Chen X,Chen S,Sun M,et al.High yield of poly-γ-glutamic acid from Bacillus subtilis by solid-state fermentation using swine manure as the basis of a solid substrate[J].Bioresource Technology,2005,96:1872-1879.

    • [22] Chen X,Chen S W,Sun M,et al.Medium optimization by response surface methodology for poly-γ-glutamic acid production using dairy manure as the basis of a solid substrate[J].Applied Microbiology Biotechnology,2005,69:390-396.

    • [23] Ji G,Xu L,Lyu Q,et al.Poly-γ-glutamic acid production by simultaneous saccharification and fermentation using corn straw and its fertilizer synergistic effect evaluation[J].Bioprocess and Biosystems Engineering,2021,44:2181-2191.

    • [24] Wang Q,Chen S,Zhang J,et al.Co-producing lipopeptides and poly-γ-glutamic acid by solid-state fermentation of Bacillus subtilis using soybean and sweet potato residues and its biocontrol and fertilizer synergistic effects[J].Bioresource Technology,2008,99:3318-3323.

    • [25] Xu Z,Wan C,Xu X,et al.Effect of poly(γ-glutamic acid)on wheat productivity,nitrogen use efficiency and soil microbes [J].Journal of Soil Science and Plant Nutrition,2013,13:744-755.

    • [26] Xu Z,Lei P,Feng X,et al.Effect of poly(γ-glutamic acid)on microbial community and nitrogen pools of soil[J].Acta Agricultural Scandinavica,Section B-Soil and Plant Science,2013,63:657-668.

    • [27] Xu Z,Lei P,Feng X,et al.Calcium involved in the poly(γ-glutamic acid)-mediated promotion of Chinese cabbage nitrogen metabolism[J].Plant Physiology Biochemistry,2014,80:144-152.

    • [28] Xu Z,Lei P,Feng X,et al.Analysis of the metabolic pathways affected by poly(γ-glutamic acid)in Arabidopsis thaliana based on genechip microarray[J].Journal of Agricultural and Food Chemistry,2016,64:6257-6266.

    • [29] Chen L,Fei L,Wang Z,et al.The effects of ploy(γ-glutamic acid)on spinach productivity and nitrogen use efficiency in North-West China[J].Plant Soil and Environment,2018,64:517-522.

    • [30] Bai N,Zhang H,Li S,et al.Effects of application rates of poly-γ-glutamic acid on vegetable growth and soil bacterial community structure[J].Applied Soil Ecology,2020,147:103405.

    • [31] Liang J,Shi W.Poly-γ-glutamic acid improves water-stable aggregates,nitrogen and phosphorus uptake efficiency,waterfertilizer productivity,and economic benefit in barren desertified soils of Northwest China[J].Agricultural Water Management,2021,245:106551.

    • [32] 徐虹,许宗奇,冯小海,等.一种γ-聚谷氨酸抗旱保水种衣剂及其制备方法:中国,CN 102276364A[P].2011-12-14.

    • [33] Xu Z,Lei P,Pang X,et al.Exogenous application of polyγ-glutamic acid enhances stress defense in Brassica napus L.seedlings by inducing cross-talks between Ca2+,H2O2,brassinolide,and jasmonic acid in leaves[J].Plant Physiology and Biochemistry,2017,118:460-470.

    • [34] Xu Z,Ma J,Lei P,et al.Poly-γ-glutamic acid induces system tolerance to drought stress by promoting abscisic acid accumulation in Brassica napus L[J].Scientific Reports,2020,10:252.

    • [35] Lei P,Xu Z,Ding Y,et al.Effect of Poly(γ-glutamic acid)on the physiological responses and calcium signaling of rape seedlings(Brassica napus L.)under cold stress[J].Journal of Agricultural and Food Chemistry,2015,63:10399-10406.

    • [36] Lei P,Xu Z Q,Liang J F,et al.Poly(γ-glutamic acid)enhanced tolerance to salt stress by promoting proline accumulation in Brassica napus L[J].Plant Growth Regulation,2016,78:233-241.

    • [37] Lei P,Pang X,Feng X,et al.The microbe-secreted isopeptide poly-γ-glutamic acid induces stress tolerance in Brassica napus L.seedlings by activating crosstalk between H2O2 and Ca2+[J]. Scientific Reports,2017,7:41618.

    • [38] Guo Z,Yang N,Zhu C,et al.Exogenously applied poly-γglutamic acid alleviates salt stress in wheat seedlings by modulating ion balance and the antioxidant system[J].Environmental Science Pollution Research,2017,24:6592-6598.

    • [39] Yin A,Jia Y,Qiu T,et al.Poly-γ-glutamic acid improves the drought resistance of maize seedlings by adjusting the soil moisture and microbial community structure[J].Applied Soil Ecology,2018,129:128-135.

    • [40] Potter M,Oppermann-Sanio F B,Steinbuchel A.Cultivation of bacteria producing polyamino acids with liquid manure as carbon and nitrogen source[J].Applied and Environmental Microbiology,2001,67:617-622.

    • [41] Hoppensack A,Oppermann-Sanio F B,Steinbuchel A. Conversion of the nitrogen content in liquid manure into biomass and polyglutamic acid by a newly isolated strain of Bacillus licheniformis[J].FEMS Microbiology Letters,2003,218:39-45.

    • [42] 张静静,白由路,杨俐苹,等.γ-聚谷氨酸提高夏玉米产量和养分吸收的机制[J].植物营养与肥料学报,2019,25:1856-1867.

    • [43] Pang X,Lei P,Feng X,et al.Poly-γ-glutamic acid,a bio-chelator,alleviates the toxicity of Cd and Pb in the soil and promotes the establishment of healthy Cucumis sativus L.seedling [J].Environmental Science and Pollution Research,2018,25:19975-19988.

    • [44] Guo J,Shi W,Li J,et al.Effects of poly-γ-glutamic acid and poly-γ-glutamic acid super absorbent polymer on the sandy loam soil hydro-physical properties[J].Plos One,2021,16(1):e0245365.

    • [45] Guo J,Shi W,Wen L,et al.Effects of a super-absorbent polymer derived from poly-γ-glutamic acid on water infiltration,field water capacity,soil evaporation,and soil water-stable aggregates[J].Archives of Agronomy and Soil Science,2020,66:1627-1638.

    • [46] Shi X,Shi W,Pang L,et al.Effects ofγ-polyglutamic acid on soil water and nitrogen transport characteristics[J].Journal of Soil and Water Conservation,2020,34:190-197.

    • [47] King W E,Fister R P,Norris S J,et al.Composition useful as fertilizer comprises water-insoluble slow-release nitrogen fertilizer and a water-soluble non-aromatic poly(amino acid)having molecular size larger than that which can be absorbed by plant:US,039365-A1[P].2007-02-22.

    • [48] 陈守文,喻子牛,陈雄.聚-γ-谷氨酸作为肥料增效剂在农业种植中的应用:中国,ZL 200610018395.3 [P].2006-02-22.

    • [49] 李汉涛,杨国正,柯云,等.聚γ-谷氨酸增效复合肥对油菜产量及其构成因素的影响[J].湖北农业科学,2010,49(10):2395-2397.

    • [50] 朱安婷,蒋友武,谢国生,等.外源聚γ-谷氨酸对水稻幼苗耐旱性和渗透调节的影响[J].核农学报,2010,24(6):1269-1273,1279.

    • [51] 刘端义,梅金先,张旅峰,等.聚-γ-谷氨酸及其增效肥在水稻上的应用[J].湖北农业科学,2010,49(10):2390-2394,2400.

    • [52] 尹成红,雍晓雨,冉炜,等.产γ-聚谷氨酸菌株的筛选及其对玉米幼苗生长的影响[J].南京农业大学学报,2011,34(2):91-96.

    • [53] 翟云龙,曹新川,吕双庆,等.聚γ-谷氨酸增效肥对棉花干物质积累与分配的影响[J].湖北农业科学,2013,52(21):5167-5170.

    • [54] 王建平,王晓丽,王昌军,等.聚-γ-谷氨酸对烟草种子萌发及苗期生长的影响[J].华中农业大学学报,2007,26(3):340-343.

    • [55] 许宗齐,万传宝,许仙菊,等.肥料增效剂γ-聚谷氨酸对小青菜产量和品质的影响[J].生物加工过程,2012,10(1):58-62.

    • [56] 张世根,宋杰,李敏,等.肥料增效剂γ-聚谷氨酸的生产与应用[J].农产品加工(学刊),2010(8):60-61,65.

    • [57] 孙刚忠,谭启玲,胡承孝,等.聚-γ-谷氨酸对小白菜生长和光合作用的影响[J].华中农业大学学报,2012,31(2):216-219.

    • [58] 孙刚忠.聚γ-谷氨酸在小白菜上的应用效果及其作用机理 [D].武汉:华中农业大学,2012.

    • [59] 尚玉洁,曾路生,杨华青,等.盐渍土壤中聚氨酸肥料对普通白菜生长、土壤酶活性及微生物量的影响[J].中国蔬菜,2015(1):37-41.

    • [60] Zhang L,Gao D C,Wang L L,et al.Effects of poly-γglutamic acid(γ-PGA)on plant growth and its distribution in a controlled plant-soil system[J].Scientific Reports,2017,7(1):6090.

    • [61] 曾路生,石元亮,卢宗云,等.新型聚氨酸增效剂对蔬菜生长和产量的影响[J].中国农学通报,2013,29(31):168-173.

    • [62] 喻三保,张红艳,陈守文,等.聚-γ-谷氨酸施用对草莓产量和果实品质的影响[J].湖北农业科学,2010,49(7):1638-1641.

    • [63] 王润凡,尹业雄,胡世权,等.PGA 增效剂在温州蜜柑中施用效果的评价[J].湖北农业科学,2010,49(4):884-887.

    • [64] 刘方丹,刘榴,高久林,等.聚-γ-谷氨酸提高藤稔葡萄品质的研究[J].中国南方果树,2014,43(1):23-27.

    • [65] 陈雄,陈守文,喻子牛.聚-γ-谷氨酸在环境中降解特性的初步研究[J].环境科学与技术,2008,31(11):35-37,88.

    • [66] Forde B G,Lea P J.Glutamate in plants:metabolism,regulation,and signalling[J].Journal of Experimental Botany,2007,58:2339-2358.

    • [67] Forde B G,Walch-Liu P.Nitrate and glutamate as environmental cues for behavioural responses in plant roots[J].Plant Cell Environment,2009,32:682-693.

    • [68] Walch-Liu P,Liu LH,Remans T,et al.Evidence that L-glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana[J].Plant and Cell Physiology,2006,47:1045-1057.

  • 参考文献

    • [1] 武志杰,石元亮,李东坡,等.新型高效肥料研究展望 [J].土壤与作物,2012,1(1):2-9.

    • [2] Kreyenschulte D,Krull R,Margaritis A.Recent advances in microbial biopolymer production and purification[J].Critical Reviews in Biotechnology,2014,34:1-15.

    • [3] Oppermann-Sanio F B,Steinbüchel A.Occurrence,functions and biosynthesis of polyamides in microorganisms and biotechnological production[J].Naturwissenschaften,2002,89:11-22.

    • [4] Bajaj I,Singhal R.Poly(glutamic acid)-an emerging biopolymer of commercial interest[J].Bioresource Technology,2011,102:5551-5561.

    • [5] Buescher J M,Margaritis A.Microbial biosynthesis of polyglutamic acid biopolymer and applications in the biopharmaceutical,biomedical and food industries[J].Critical Reviews in Biotechnology,2007,27:1-19.

    • [6] Luo Z T,Guo Y,Liu J D,et al.Microbial synthesis of polyγ-glutamic acid:current progress,challenges,and future perspectives[J].Biotechnology for Biofuels,2016,9:134.

    • [7] Ogunleye A,Bhat A,Irorere V U,et al. P ol y-γglutamic acid:production,properties and applications[J]. Microbiology,2015,161:1-17.

    • [8] Sanda F,Fujiyama T,Endo T.Chemical synthesis of poly-γ-glutamic acid by polycondensation ofγ-glutamic acid dimer:synthesis and reaction of poly-γ-glutamic acid methyl ester [J].Journal of Polymer Science Part A-Polymer Chemisity. 2001,39:732-741.

    • [9] Ashiuchi M,Kamei T,Misono H.Poly-γ-glutamate synthetase of Bacillus subtilis[J].Journal of Molecular Catalysis B:Enzymatic,2003,23:101-106.

    • [10] Sung M H,Park C,Kim C J,et al.Natural and edible biopolymer poly-γ-glutamic acid:synthesis,production,and applications[J].The Chemical Record,2005,5:352-366.

    • [11] Ashiuchi M.Microbial production and chemical transformation of poly-γ-glutamate[J].Microbial Biotechnology,2013,6:664-674.

    • [12] Ivanovics G,Bruckner V.Chemical and immunologic studies on the mechanism of anthrax infection and immunity.The chemical structure of capsule substance of anthrax bacilli and its identity with that of the B.mesentericus[J].Zeitschrift Fur Immunitaetsforschung Und Experimentelle Therapie,1937,90:304-318.

    • [13] Ivanovics G,Bruckner V.The chemical nature of the immuno-specific capsule substance of anthrax bacillus[J]. Naturwissenschaften,1937,25:250.

    • [14] Shih I L,Van Y T.The production of poly-(γ-glutamic acid)from microorganisms and its various applications[J]. Bioresource Technology,2001,79:207-225.

    • [15] Sawamura S.On Bacillus natto[J].J Coll Agric Tokyo Imp Vniv,1913,5:189-191.

    • [16] Hisao F.On the formation of mucilage by Bacillus natto.Part III. Chemical constitutions of mucilage in natto(1)[J].Nippon Nogeikagaku Kaishi,1963,37:407-411.

    • [17] Candela T,Moya M,Haustant M,et al.Fusobacterium nucleatum,the first Gram-negative bacterium demonstrated to produce polyglutamate[J].Canadian Journal of Microbiol,2009,55:627-632.

    • [18] Hezayen F F,Rehm B H,Tindall B J,et al.Transfer of Natrialba asiatica B1T to Natrialba taiwanensis sp.nov.and description of Natrialba aegyptiaca sp.nov.,a novel extremely halophilic,aerobic,non-pigmented member of the Archaea from Egypt that produces extracellular poly(glutamic acid)[J].International Journal of Systematic Evolutionary Microbiology,2001,51:1133-1142.

    • [19] Weber J.Poly(γ-glutamic acid)s are the major constituents of nematocysts in Hydra(Hydrozoa,Cnidaria)[J].Journal of Biological Chemistry,1990,265:9664-9669.

    • [20] Candela T,Fouet A.Poly-γ-glutamate in bacteria[J]. Molecular Microbiology,2006,60:1091-1098.

    • [21] Chen X,Chen S,Sun M,et al.High yield of poly-γ-glutamic acid from Bacillus subtilis by solid-state fermentation using swine manure as the basis of a solid substrate[J].Bioresource Technology,2005,96:1872-1879.

    • [22] Chen X,Chen S W,Sun M,et al.Medium optimization by response surface methodology for poly-γ-glutamic acid production using dairy manure as the basis of a solid substrate[J].Applied Microbiology Biotechnology,2005,69:390-396.

    • [23] Ji G,Xu L,Lyu Q,et al.Poly-γ-glutamic acid production by simultaneous saccharification and fermentation using corn straw and its fertilizer synergistic effect evaluation[J].Bioprocess and Biosystems Engineering,2021,44:2181-2191.

    • [24] Wang Q,Chen S,Zhang J,et al.Co-producing lipopeptides and poly-γ-glutamic acid by solid-state fermentation of Bacillus subtilis using soybean and sweet potato residues and its biocontrol and fertilizer synergistic effects[J].Bioresource Technology,2008,99:3318-3323.

    • [25] Xu Z,Wan C,Xu X,et al.Effect of poly(γ-glutamic acid)on wheat productivity,nitrogen use efficiency and soil microbes [J].Journal of Soil Science and Plant Nutrition,2013,13:744-755.

    • [26] Xu Z,Lei P,Feng X,et al.Effect of poly(γ-glutamic acid)on microbial community and nitrogen pools of soil[J].Acta Agricultural Scandinavica,Section B-Soil and Plant Science,2013,63:657-668.

    • [27] Xu Z,Lei P,Feng X,et al.Calcium involved in the poly(γ-glutamic acid)-mediated promotion of Chinese cabbage nitrogen metabolism[J].Plant Physiology Biochemistry,2014,80:144-152.

    • [28] Xu Z,Lei P,Feng X,et al.Analysis of the metabolic pathways affected by poly(γ-glutamic acid)in Arabidopsis thaliana based on genechip microarray[J].Journal of Agricultural and Food Chemistry,2016,64:6257-6266.

    • [29] Chen L,Fei L,Wang Z,et al.The effects of ploy(γ-glutamic acid)on spinach productivity and nitrogen use efficiency in North-West China[J].Plant Soil and Environment,2018,64:517-522.

    • [30] Bai N,Zhang H,Li S,et al.Effects of application rates of poly-γ-glutamic acid on vegetable growth and soil bacterial community structure[J].Applied Soil Ecology,2020,147:103405.

    • [31] Liang J,Shi W.Poly-γ-glutamic acid improves water-stable aggregates,nitrogen and phosphorus uptake efficiency,waterfertilizer productivity,and economic benefit in barren desertified soils of Northwest China[J].Agricultural Water Management,2021,245:106551.

    • [32] 徐虹,许宗奇,冯小海,等.一种γ-聚谷氨酸抗旱保水种衣剂及其制备方法:中国,CN 102276364A[P].2011-12-14.

    • [33] Xu Z,Lei P,Pang X,et al.Exogenous application of polyγ-glutamic acid enhances stress defense in Brassica napus L.seedlings by inducing cross-talks between Ca2+,H2O2,brassinolide,and jasmonic acid in leaves[J].Plant Physiology and Biochemistry,2017,118:460-470.

    • [34] Xu Z,Ma J,Lei P,et al.Poly-γ-glutamic acid induces system tolerance to drought stress by promoting abscisic acid accumulation in Brassica napus L[J].Scientific Reports,2020,10:252.

    • [35] Lei P,Xu Z,Ding Y,et al.Effect of Poly(γ-glutamic acid)on the physiological responses and calcium signaling of rape seedlings(Brassica napus L.)under cold stress[J].Journal of Agricultural and Food Chemistry,2015,63:10399-10406.

    • [36] Lei P,Xu Z Q,Liang J F,et al.Poly(γ-glutamic acid)enhanced tolerance to salt stress by promoting proline accumulation in Brassica napus L[J].Plant Growth Regulation,2016,78:233-241.

    • [37] Lei P,Pang X,Feng X,et al.The microbe-secreted isopeptide poly-γ-glutamic acid induces stress tolerance in Brassica napus L.seedlings by activating crosstalk between H2O2 and Ca2+[J]. Scientific Reports,2017,7:41618.

    • [38] Guo Z,Yang N,Zhu C,et al.Exogenously applied poly-γglutamic acid alleviates salt stress in wheat seedlings by modulating ion balance and the antioxidant system[J].Environmental Science Pollution Research,2017,24:6592-6598.

    • [39] Yin A,Jia Y,Qiu T,et al.Poly-γ-glutamic acid improves the drought resistance of maize seedlings by adjusting the soil moisture and microbial community structure[J].Applied Soil Ecology,2018,129:128-135.

    • [40] Potter M,Oppermann-Sanio F B,Steinbuchel A.Cultivation of bacteria producing polyamino acids with liquid manure as carbon and nitrogen source[J].Applied and Environmental Microbiology,2001,67:617-622.

    • [41] Hoppensack A,Oppermann-Sanio F B,Steinbuchel A. Conversion of the nitrogen content in liquid manure into biomass and polyglutamic acid by a newly isolated strain of Bacillus licheniformis[J].FEMS Microbiology Letters,2003,218:39-45.

    • [42] 张静静,白由路,杨俐苹,等.γ-聚谷氨酸提高夏玉米产量和养分吸收的机制[J].植物营养与肥料学报,2019,25:1856-1867.

    • [43] Pang X,Lei P,Feng X,et al.Poly-γ-glutamic acid,a bio-chelator,alleviates the toxicity of Cd and Pb in the soil and promotes the establishment of healthy Cucumis sativus L.seedling [J].Environmental Science and Pollution Research,2018,25:19975-19988.

    • [44] Guo J,Shi W,Li J,et al.Effects of poly-γ-glutamic acid and poly-γ-glutamic acid super absorbent polymer on the sandy loam soil hydro-physical properties[J].Plos One,2021,16(1):e0245365.

    • [45] Guo J,Shi W,Wen L,et al.Effects of a super-absorbent polymer derived from poly-γ-glutamic acid on water infiltration,field water capacity,soil evaporation,and soil water-stable aggregates[J].Archives of Agronomy and Soil Science,2020,66:1627-1638.

    • [46] Shi X,Shi W,Pang L,et al.Effects ofγ-polyglutamic acid on soil water and nitrogen transport characteristics[J].Journal of Soil and Water Conservation,2020,34:190-197.

    • [47] King W E,Fister R P,Norris S J,et al.Composition useful as fertilizer comprises water-insoluble slow-release nitrogen fertilizer and a water-soluble non-aromatic poly(amino acid)having molecular size larger than that which can be absorbed by plant:US,039365-A1[P].2007-02-22.

    • [48] 陈守文,喻子牛,陈雄.聚-γ-谷氨酸作为肥料增效剂在农业种植中的应用:中国,ZL 200610018395.3 [P].2006-02-22.

    • [49] 李汉涛,杨国正,柯云,等.聚γ-谷氨酸增效复合肥对油菜产量及其构成因素的影响[J].湖北农业科学,2010,49(10):2395-2397.

    • [50] 朱安婷,蒋友武,谢国生,等.外源聚γ-谷氨酸对水稻幼苗耐旱性和渗透调节的影响[J].核农学报,2010,24(6):1269-1273,1279.

    • [51] 刘端义,梅金先,张旅峰,等.聚-γ-谷氨酸及其增效肥在水稻上的应用[J].湖北农业科学,2010,49(10):2390-2394,2400.

    • [52] 尹成红,雍晓雨,冉炜,等.产γ-聚谷氨酸菌株的筛选及其对玉米幼苗生长的影响[J].南京农业大学学报,2011,34(2):91-96.

    • [53] 翟云龙,曹新川,吕双庆,等.聚γ-谷氨酸增效肥对棉花干物质积累与分配的影响[J].湖北农业科学,2013,52(21):5167-5170.

    • [54] 王建平,王晓丽,王昌军,等.聚-γ-谷氨酸对烟草种子萌发及苗期生长的影响[J].华中农业大学学报,2007,26(3):340-343.

    • [55] 许宗齐,万传宝,许仙菊,等.肥料增效剂γ-聚谷氨酸对小青菜产量和品质的影响[J].生物加工过程,2012,10(1):58-62.

    • [56] 张世根,宋杰,李敏,等.肥料增效剂γ-聚谷氨酸的生产与应用[J].农产品加工(学刊),2010(8):60-61,65.

    • [57] 孙刚忠,谭启玲,胡承孝,等.聚-γ-谷氨酸对小白菜生长和光合作用的影响[J].华中农业大学学报,2012,31(2):216-219.

    • [58] 孙刚忠.聚γ-谷氨酸在小白菜上的应用效果及其作用机理 [D].武汉:华中农业大学,2012.

    • [59] 尚玉洁,曾路生,杨华青,等.盐渍土壤中聚氨酸肥料对普通白菜生长、土壤酶活性及微生物量的影响[J].中国蔬菜,2015(1):37-41.

    • [60] Zhang L,Gao D C,Wang L L,et al.Effects of poly-γglutamic acid(γ-PGA)on plant growth and its distribution in a controlled plant-soil system[J].Scientific Reports,2017,7(1):6090.

    • [61] 曾路生,石元亮,卢宗云,等.新型聚氨酸增效剂对蔬菜生长和产量的影响[J].中国农学通报,2013,29(31):168-173.

    • [62] 喻三保,张红艳,陈守文,等.聚-γ-谷氨酸施用对草莓产量和果实品质的影响[J].湖北农业科学,2010,49(7):1638-1641.

    • [63] 王润凡,尹业雄,胡世权,等.PGA 增效剂在温州蜜柑中施用效果的评价[J].湖北农业科学,2010,49(4):884-887.

    • [64] 刘方丹,刘榴,高久林,等.聚-γ-谷氨酸提高藤稔葡萄品质的研究[J].中国南方果树,2014,43(1):23-27.

    • [65] 陈雄,陈守文,喻子牛.聚-γ-谷氨酸在环境中降解特性的初步研究[J].环境科学与技术,2008,31(11):35-37,88.

    • [66] Forde B G,Lea P J.Glutamate in plants:metabolism,regulation,and signalling[J].Journal of Experimental Botany,2007,58:2339-2358.

    • [67] Forde B G,Walch-Liu P.Nitrate and glutamate as environmental cues for behavioural responses in plant roots[J].Plant Cell Environment,2009,32:682-693.

    • [68] Walch-Liu P,Liu LH,Remans T,et al.Evidence that L-glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana[J].Plant and Cell Physiology,2006,47:1045-1057.

  • 《中国土壤与肥料》招聘启事
    关闭