en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

宋柏龙(1995-),硕士研究生,主要从事农业资源开发与利用研究。E-mail:675466388@qq.com。

通讯作者:

郝卫平,E-mail:haoweiping@caas.cn。

参考文献 1
Saraiva M,Protas É,Salgado M,et al.Automatic mapping of center pivot irrigation systems from satellite images using deep learning[J].Remote Sensing,2020,12(3):558.
参考文献 2
Mu X,Yang J,Zhao D,et al.Effect of brackish water irrigation on soil water-salt distribution[C]//IOP Conference Series:Earth and Environmental Science.IOP Publishing,2018,208(1):012062.
参考文献 3
Peng J,Ma J,Wei X,et al.Accumulation of beneficial bacteria in the rhizosphere of maize(Zea mays L.)grown in a saline soil in responding to a consortium of plant growth promoting rhizobacteria[J]. Annals of Microbiology,2021,71(1):1-12.
参考文献 4
Yan N,Marschner P,Cao W,et al.Influence of salinity and water content on soil microorganisms[J].International Soil and Water Conservation Research,2015,3(4):316-323.
参考文献 5
Liu L P,Long X H,Shao H B,et al.Ameliorants improve saline-alkaline soils on a large scale in northern Jiangsu Province,China[J].Ecological Engineering,2015,81:328-334.
参考文献 6
孙波,赵其国,张桃林,等.土壤质量与持续环境─Ⅲ.土壤质量评价的生物学指标[J].土壤,1997(5):225-234.
参考文献 7
Tang X,Xie G,Shao K,et al.Influence of salinity on the bacterial community composition in Lake Bosten,a large oligosaline lake in arid northwestern China[J].Applied and Environmental Microbiology,2012,78(13):4748-4751.
参考文献 8
Wang J,Yang D,Zhang Y,et al.Do patterns of bacterial diversity along salinity gradients differ from those observed for macroorganisms?[J].Plos One,2011,6(11):e27597.
参考文献 9
Yang J,Ma L,Jiang H,et al.Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan Lakes[J].Scientific Reports,2016,6(1):1-6.
参考文献 10
Ruhl I A,Grasby S E,Haupt E S,et al.Analysis of microbial communities in natural halite springs reveals a domain-dependent relationship of species diversity to osmotic stress[J].Environmental Microbiology Reports,2018,10(6):695-703.
参考文献 11
陆雅海,张福锁.根际微生物研究进展[J].土壤,2006(2):113-121.
参考文献 12
Ibekwe A M,Ors S,Ferreira J F S,et al.Seasonal induced changes in spinach rhizosphere microbial community structure with varying salinity and drought[J].Science of the Total Environment,2017,579:1485-1495.
参考文献 13
Liu B,Wang S,Kong X,et al.Modeling and assessing feasibility of long-term brackish water irrigation in vertically homogeneous and heterogeneous cultivated lowland in the North China Plain[J]. Agricultural Water Management,2019,211:98-110.
参考文献 14
Cong X,Pang G B,Xu Z H.Physiological responses of winter wheat(triticum aestivum L.)to alternate irrigation with fresh and brackish water[J].Applied Ecology and Environmental Research,2021,19(4):3137-3152.
参考文献 15
Pang H C,Li Y Y,Yang J S,et al.Effect of brackish water irrigation and straw mulching on soil salinity and crop yields under monsoonal climatic conditions[J].Agricultural Water Management,2010,97(12):1971-1977.
参考文献 16
鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
参考文献 17
Liu C,Cui Y,Li X,et al.microeco:an R package for data mining in microbial community ecology[J].FEMS Microbiology Ecology,2021,97(2):fiaa255.
参考文献 18
Maestre F T,Delgado-Baquerizo M,Jeffries T C,et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands[J].Proceedings of the National Academy of Sciences,2015,112(51):15684-15689.
参考文献 19
Azarbad H,Tremblay J,Giard-LalibertéC,et al.Four decades of soil water stress history together with host genotype constrain the response of the wheat microbiome to soil moisture[J]. FEMS Microbiology Ecology,2020,96(7):fiaa098.
参考文献 20
Lüneberg K,Schneider D,Siebe C,et al.Drylands soil bacterial community is affected by land use change and different irrigation practices in the Mezquital Valley,Mexico[J]. Scientific Reports,2018,8(1):1-15.
参考文献 21
Azarbad H,Constant P,Giard-Laliberté C,et al.Water stress history and wheat genotype modulate rhizosphere microbial response to drought[J].Soil Biology and Biochemistry,2018,126:228-236.
参考文献 22
Khalvati M A,Hu Y,Mozafar A,et al.Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth,water relations,and gas exchange of barley subjected to drought stress[J].Plant Biology,2005,7(6):706-712.
参考文献 23
Guo H,Ma L,Liang Y,et al.Response of ammonia-oxidizing Bacteria and Archaea to long-term saline water irrigation in alluvial grey desert soils[J].Scientific reports,2020,10(1):1-11.
参考文献 24
Fierer N,Jackson R B.The diversity and biogeography of soil bacterial communities[J].Proceedings of the National Academy of Sciences,2006,103(3):626-631.
参考文献 25
梁悦萍,李科江,张俊鹏,等.咸水灌溉棉田休耕期土壤胞外酶活性和微生物多样性研究[J].农业环境科学学报,2018,37(4):732-740.
参考文献 26
苏寒,王金涛,董心亮,等.不同质量浓度咸水灌溉对冬小麦产量和生理生化特性的影响[J].灌溉排水学报,2021,40(8):1-9.
参考文献 27
韩梦娴.Na+ 、K+ 、Ca2+ 对植物耐盐性影响的研究进展[J]. 广东农业科学,2009(10):81-83.
参考文献 28
陈燕飞.pH 对微生物的影响[J].太原师范学院学报(自然科学版),2009,8(3):121-124,131.
参考文献 29
杜杭涛,徐睿,徐慧,等.不同生境来源硝化细菌群对氨氮的去除性能[J].环境工程技术学报,2022,12(1):81-91.
参考文献 30
Chen L J,Li C S,Feng Q,et al.An integrative influence of saline water irrigation and fertilization on the structure of soil bacterial communities[J].The Journal of Agricultural Science,2019,157(9-10):693-700.
参考文献 31
Suman A,Shukla L,Marag P S,et al.Potential use of plant colonizing pantoea as generic plant growth promoting bacteria for cereal crops[J].Journal of Environmental Biology,2020,41(5):987-994.
参考文献 32
Tahir M,Naeem M A,Shahid M,et al.Inoculation of pqqe gene inhabiting pantoea and pseudomonas strains improves the growth and grain yield of wheat with a reduced amount of chemical fertilizer[J]. Journal of Applied Microbiology,2020,129(3):575-589.
参考文献 33
Loiret F G,Ortega E,Kleiner D,et al.A putative new endophytic nitrogen-fixing bacterium Pantoea sp.from sugarcane[J]. Journal of Applied Microbiology,2004,97(3):504-511.
参考文献 34
Xu J,Zhang Y,Zhang P,et al.The structure and function of the global citrus rhizosphere microbiome[J].Nature Communications,2018,9(1):1-10.
参考文献 35
赵天涛,胡庆梅,张丽杰,等.一株从矿化垃圾中分离的纤维弧菌[J].重庆理工大学学报(自然科学版),2011,25(6):1-5.
参考文献 36
汪颖,陈永静,孙庆业,等.Inquilinus sp.P6-4 菌株的生理生化特征及萘降解特性[J].生物技术通报,2021,37(6):117-126.
参考文献 37
冯希.海洋疣微菌的分离、鉴定及疣微菌门分类体系整理[D]. 济南:山东大学,2021.
参考文献 38
Son H J,Park G T,Cha M S,et al.Solubilization of insoluble inorganic phosphates by a novel salt-and pH-tolerant pantoea agglomerans R-42 isolated from soybean rhizosphere[J]. Bioresource Technology,2006,97(2):204-210.
参考文献 39
Bowman J P,Nichols C M,Gibson J A E.Algoriphagus ratkowskyi gen.nov.,sp.nov.,Brumimicrobium glaciale gen.nov.,sp.nov.,Cryomorpha ignava gen.nov.,sp.nov.and Crocinitomix catalasitica gen.nov.,sp.nov.,novel flavobacteria isolated from various polar habitats[J].International Journal of Systematic and Evolutionary Microbiology,2003,53(5):1343-1355.
参考文献 40
Fuhlbohm M J,Ryley M J,Aitken E A B.Macrophomina phaseolina causing leaf spot of mungbean[J].Australasian Plant Pathology,1996,25(4):247-248.
参考文献 41
Yin X,Peñuelas J,Xu X,et al.Effects of addition of nitrogenenriched biochar on bacteria and fungi community structure and C,N,P,and Fe stoichiometry in subtropical paddy soils[J]. European Journal of Soil Biology,2021,106:103351.
参考文献 42
Soothar R K,Wang C,Li L,et al.Soil salt accumulation,physiological responses,and yield simulation of winter wheat to alternate saline and fresh water irrigation in the North China Plain[J]. Journal of Soil Science and Plant Nutrition,2021,21(3):2072-2082.
参考文献 43
Soothar R K,Zhang W,Zhang Y,et al.Evaluating the performance of SALTMED model under alternate irrigation using saline and fresh water strategies to winter wheat in the North ChinaPlain[J].Environmental Science and Pollution Research,2019,26(33):34499-34509.
参考文献 44
Soothar R K,Zhang W,Liu B,et al.Sustaining yield of winter wheat under alternate irrigation using saline water at different growth stages:a case study in the North China Plain[J]. Sustainability,2019,11(17):4564.
参考文献 45
Noor S O,Al-Zahrani D A,Hussein R M,et al.Assessment of fungal diversity in soil rhizosphere associated with rhazya stricta and some desert plants using metagenomics[J].Archives of Microbiology,2021,203(3):1211-1219.
参考文献 46
Otero J T,Bayman P,Ackerman J D.Variation in mycorrhizal performance in the epiphytic orchid tolumnia variegata in vitro:the potential for natural selection[J].Evolutionary Ecology,2005,19(1):29-43.
参考文献 47
全妙华,佘朝文,陈东明,等.基于高通量测序的两种典型忽地笑栽培土壤根际真菌群落多样性[J].微生物学通报,2018,45(10):2105-2111.
参考文献 48
陈贝贝,王敏,胡鸢雷,等.地黄内生真菌促生作用的初步研究[J].中国中药杂志,2011,36(9):1137-1140.
参考文献 49
Abbott E V.Scolecobasidium,a new genus of soil fungi[J]. Mycologia,1927,19(1):29-31.
目录contents

    摘要

    针对我国华北平原淡水资源短缺这一现状,合理利用其地下微咸水进行农业灌溉是缓解水资源供需矛盾的有效途径。持续 5 年的田间定位试验,开展微咸水灌溉对冬小麦根际微生物影响的研究,试验共设置 5 个试验处理:雨养(NI)、淡水和微咸水交替灌溉(FS)、淡水灌溉(FF)、微咸水灌溉(SS)、微咸水和淡水交替灌溉(SF)。研究结果表明:FS 和 SS 处理导致土壤表层(0 ~ 10 cm)EC 值显著增加 29.9% ~ 52.4%,并且 SS 处理对冬小麦造成了盐胁迫。但微咸水灌溉(FS、SS、SF)较 FF 处理未对根际微生物 Alpha 多样性和群落结构造成显著影响,仅 SS 处理显著增加了部分属生物标记物如噬冷菌属(Algoriphagus)和有害菌壳球孢属 (Macrophomina)等的相对丰度。较雨养而言,灌溉处理(FS、SS、FF、SF)导致表层土壤含水量(SWC)和 pH 分别增加 42.4% ~ 56.2% 和 3% ~ 5.2%;硝态氮(NO3- -N)和铵态氮(NH4+ -N)含量分别减少 52.7% ~ 65.2% 和 27.5% ~ 43.2%。SWC 值是影响根际细菌多样性的主要因子,因此,灌溉处理显著增加了根际细菌 Alpha 多样性;但未对真菌多样性造成显著影响。同时,根际微生物群落结构均受土壤 pH 值和 NO3- -N 含量影响,因此灌溉处理和 NI 处理群落结构存在差异,显著增加了纤维弧菌属(Cellvibrio)和有益菌角菌根菌属(Ceratobasidium)等属生物标记物的相对丰度。以上研究表明,长期使用 3 g·L-1 微咸水灌溉未对根际微生物多样性及群落结构造成显著影响,但是会改变部分属生物标记物相对丰度。这些研究结果为华北平原冬小麦微咸水灌溉的推广应用提供科学依据和理论基础。

    Abstract

    Facing with the shortage of freshwater resources in the North China Plain,irrigated by brackish water is the effective way to solve this problem.This study investigated the effect of brackish water irrigation on the rhizosphere bacterial and fungal of winter wheat during the grain filling period.In this study,the field trials were conducted during the wheat growing seasons at the experimental station of Institute of Dryland Farming,Hebei Academy of Agriculture and Forestry Sciences for 5 years.The treatments comprised rain-fed cultivation(NI),fresh and saline water irrigation(FS),saline and fresh water irrigation(SF),saline water irrigation(SS)and fresh water irrigation(FF)during the growth stages.The resultsshowed that SS and FS significantly increased EC in topsoil(0 ~ 10 cm)by 29.9% ~ 52.4%.Meanwhile,SS treatment caused salt stress to winter wheat,compared with FF,it had no effect on rhizosphere microorganism diversity through brackish water irrigation treatment (FS,SS,SF).But SS significantly increased the relative abundance of some genera biomarkers,such as Algoriphagus and Macrophomina.Nitrate-nitrogen(NO3- -N)content in topsoil significantly decreased in the range of 52.7% ~ 65.2% in irrigation treatment(FS,SS,FF,SF).In addition,ammonium nitrogen(NH4+ -N)also decreased by 27.5% ~ 43.2%. But soil water content(SWC)increased by 42.4% ~ 56.2% and 3% ~ 5.2%,respectively.SWC is the main factor affecting rhizosphere bacterial diversity.Therefore,irrigation treatment significantly increased rhizosphere bacterial diversity compared with NI.But it had no effect on fungal diversity.In addition,rhizosphere microbial community structure was significantly positively correlated with soil pH and NO3--N content,so there were differences in community structure between irrigation treatment and NI.Irrigation treatment significantly increased the relative abundance of biomarkers of Cellvibrio and Ceratobasidium.The above research shows that long-term irrigation with 3 g·L-1 brackish water has no significant impact on rhizosphere microbial diversity and community structure,but it will change the relative abundance of some genera biomarkers.It provided scientific and theoretical basis for the application of brackish water irrigation for winter wheat in the North China Plain.

    关键词

    微咸水雨养冬小麦根际细菌真菌

  • 目前,全球范围淡水短缺已成为限制农业生产的主要因素[1],合理利用地下微咸水资源进行农业灌溉是缓解淡水资源需求矛盾的有效途径,适当的微咸水灌溉还有利于地下水资源的更新,对淡水存储以及生态环境建设与保护也有十分重要的意义[2]。华北平原是我国主要的冬小麦产区,该地区水资源日益短缺与粮食需求日益增多之间的矛盾尖锐。该区域地下浅层有丰富的微咸水资源,可达 75 亿 m3[3],充分利用该地区地下微咸水资源是缓解这一矛盾的重要途径之一。

  • 微咸水灌溉除了补充土壤水分,还会将多余的盐分带入土壤。目前,世界上大约 20% 的耕地处于盐碱胁迫下,土壤盐分在全世界范围内都对农业生产和生态系统构成威胁[4]。导致该现象发生的原因之一就是使用富含盐分的水灌溉[5]。微生物对盐比较敏感,其作为土壤的组成部分,具有稳定生态系统等作用,可作为土壤质量改变时灵敏参考指标[6]。已有研究表明,土壤盐度可以影响不同环境中微生物多样性和群落结构[7-9],比如,Ruhl 等[10] 研究发现,细菌的多样性与可溶性盐浓度(EC)值呈显著负相关,即随着盐度的增加,细菌的 Alpha 多样性表现,出降低的趋势。根际(rhizosphere)的概念是 1904 年被德国微生物学家 L.Hiltner 第一次提出,他将根系周围以及影响根系生长的土体定义为根际[11]。有研究显示,根际微生物比土壤微生物对盐胁迫更为敏感[12]。目前,关于华北平原微咸水灌溉小麦的研究主要集中在微咸水灌溉下土壤盐分状况[13]、冬小麦叶片生理特性[14]及作物产量[15]等方面,而微咸水灌溉对根际微生物的研究鲜有报道。本研究基于华北平原冬小麦微咸水灌溉持续 5 年的田间定位试验,采用高通量测序技术研究微咸水灌溉对根际细菌和真菌多样性及群落结构的影响。研究结果为华北平原冬小麦微咸水灌溉提供科学依据。

  • 1 材料与方法

  • 1.1 试验区概况

  • 试验地点位于河北省农林科学院旱作节水试验站(115°10′~116°34′E、37°03′~38°23′N,海拔 17.5~28 m)。该区域属于暖温带半湿润区,四季分明,冷热干湿区分明显,是典型的大陆性季风气候,多年平均气温 12.8℃,日照时数 2509.4 h;多年平均蒸发量 1785.4 mm,全年辐射总量为 119.0~131.1 kJ·cm-2。该区域年均降水量为 497.0 mm,且季节和年际分布不均,冬小麦多年全生育期降水量平均为 120~160 mm。试验田 0~100 cm 土壤颗粒组成见表1。

  • 表1 0~100 cm 土层土壤颗粒组成

  • 1.2 试验设计

  • 本长期定位试验于 2015 年 10 月开始,种植作物为冬小麦(Triticum aestivumL.,衡 0628)。按照当地农民的管理方式,在冬小麦返青拔节期和扬花灌浆期分别进行灌溉,每次灌溉 90 mm,试验设置 5 个处理:①全生育期雨养(NI);②返青拔节期淡水,扬花灌浆期微咸水灌溉(FS);③全生育期淡水灌溉 (FF);④全生育期微咸水灌溉(SS);⑤返青拔节期微咸水,扬花灌浆期淡水灌溉(SF)。用于灌溉的淡水来自当地深层地下水,电导率为 390 µS·cm-1; 用于灌溉的微咸水电导率是 4700 µS·cm-1,浓度为 3 g·L-1,代表华北平原大部分浅层地下水中的微盐水浓度,试验期间用于灌溉的淡水和盐水的离子组成见表2。田间试验采用完全随机设计,每个处理 3 次重复。每个重复的地块大小为 10 m×7.5 m。在灌溉地块周围设置缓冲区,以防止相邻地块的相互影响。所有处理播种前灌溉 97 mm 的淡水作为底墒水;撒施 375 kg·hm-2 复合肥(N∶P∶K=20∶20∶8) 作为底肥。除灌溉措施外,其他栽培管理措施一致。

  • 表2 田间试验灌溉水离子组成

  • 注:钠吸附比 =Na+ /[(Ca2++Mg2+)/2]1/2,离子数据单位为 meq·L-1

  • 1.3 样品采集

  • 本试验于 2020 年 5 月 18 日(5 年长期定位试验所有灌溉完成后第 7 d)采集土壤和植株样品。每个重复小区采用 5 点取样法,将冬小麦从土壤中拔出,收集抖落的土壤样品,用于土壤表层(0~10 cm)理化性质测定。另外,将冬小麦根系与地上部植株分离,根系运回实验室保存于-20℃条件下; 地上部植株 105℃杀青 30 min,65℃烘干至恒重。

  • 1.4 土壤理化性质及植株离子测定

  • 土壤基本理化性质的测定参考鲁如坤[16]的方法。土壤水分含量(SWC)采用称重法测定;土壤 pH 和 EC 值采用土 / 水质量比 1∶5 浸提,分别用 pH 计(LE43,瑞士 METTLER TOLEDO)和 EC 计(LE703,瑞士 METTLER TOLEDO)测定;土壤有机质(OM)采用重铬酸钾氧化-外加热法测定; 土样采用 2 mol·L-1 KCl 浸提,使用流动分析仪测定土壤铵态氮(NH4+-N)和硝态氮(NO3--N)浓度。土壤全碳(TC)和全氮(TN)采用元素分析仪 (Vario ELIII,德国 Elementar)测定。植株样品使用微波消解仪消解后,采用原子吸收光谱仪(iCE3500,美国 Thermo Fisher Scientific)测定钠离子和钾离子浓度。

  • 1.5 样品 DNA 提取、PCR 扩增及高通量测序

  • 将采集的根系土壤样品分别放置于装有 30 mL PBS 缓冲液的 50 mL 离心管中,震荡洗涤,然后取出根系组织再于 8000 r·min-1,4℃下离心 5 min,弃上清液后收集土壤样品,称量土壤样品到带有无菌玻璃珠的离心管中,用 Mini-bead beater(Biospec MiniBeadbeater-16,USA)破碎。根据 MO BIO 的土壤 DNA 提取试剂盒(Power Soil DNA Isolation kit)的流程提取 DNA,对提取的 DNA 利用 NanoDrop 2000 分光光度计进行质量检测,将高质量的 DNA 模板统一稀释到 10 ng·µL-1 用于后续的 16S rRNA、ITS 基因的 PCR 反应。本试验中用到的扩增引物为:细菌为 515F(5′-GTGYCAGCMGCCGCGGTA-3′),909R(5′-CCCCGYCAATTCMTTTRAGT-3′); 真菌为 ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) 和 gITS7(5′-GTGARTCATCGARTCTTTG-3′)。反应体系为 25 µL:包括 2×Es Taq Master Mix(康为世纪,中国)12.5µL、引物各 1 µL(浓度为 1 µmol·L-1)、DNA 模板 10 ng、超纯水(ddH2O)9.5 µL。细菌 PCR 反应程序为:预变性(94℃,4 min),变性(94℃,30 s),退火(55℃,30 s),延伸(72℃,45 s),共 30 个循环,最后 72℃再延伸 10 min。真菌 PCR 反应程序为:预变性(94℃,5 min),变性(94℃,30 s),退火(56℃, 30 s),延伸(68℃,45 s),共 35 个循环,最后 72℃ 再延伸 10 min。扩增产物利用胶回收试剂盒 AxyPrep DNA Gel Extraction Kit(Axygen Biosciences,Union City,CA,USA)纯化,并且利用 NanoDrop 分光光度计进行质量检测。合格的样品进行等摩尔质量混合,使用 TruSeq® DNA PCR-Free Sample Preparation Kit 建库试剂盒建库并利用 Illumina NovaSeq 测序仪进行 PE250 测序。

  • 1.6 生物信息处理

  • 双端测序下机数据用 Flash-1.2.8 软件合并,不同样品根据 barcode 的唯一性借助 FastxToolkit 软件 (hannonlab.cshl.edu/fastx toolkit/ind3ex.html)进行拆分。将样品序列导入 QIIME2(https://qiime2.org/)平台进行后续处理。dada2 用于扩增子序列去除测序噪音、错误和嵌合体,并挑选扩增序列变体(amplicon sequence variant,ASV)和生成特征表(feature table)。用单个核苷酸水平上的差异来区分不同的序列。使用数据库对代表性序列进行分类物种注释,16S rRNA 基因比对数据库为 Greengenes(V13.8),ITS 基因比对数据库为 UNITE(8.0),未被注释到细菌门类和真菌门类的序列将被去除。细菌序列按照样品最低序列数(90876)进行重抽样,真菌序列按照样品最低序列数(19463)进行重抽样。

  • 1.7 统计分析

  • 在 SPSS 26.0 中进行方差分析(ANOVA),并采用邓肯(Duncan)法进行多重比较。α多样性指数、Bray-Curtis 相异矩阵计算、物种丰度计算、生物标记物(随机森林算法)计算及其与环境因子的相关分析均在 R 中的“.microeco”包[17] 中完成。采用皮尔森(Pearson)分析法进行α多样性指数、群落结构与环境因子的相关分析,借助微生物组数据库进行绘制(http://egcloud.cib.cn/index-cn.html)。

  • 2 结果与分析

  • 2.1 不同处理对冬小麦地上部 Na+、K+ 和 K+ /Na+ 的影响

  • 与其他处理相比,SS 处理的冬小麦地上部 Na+ 含量最高(3.85 g·kg-1),分别比 NI、FS、FF 和 SF 处理显著提高了 1.04、1.78、1.85 和 1.22 g·kg-1,增幅为37.0%~92.5%。而 NI、FS、FF 和 SF 处理间无显著差异(图1a)。不同处理间的 K+ 含量均无显著差异(图1b);在 K+ /Na+ 中,SS 处理低于其他处理,但未达到显著水平(图1c)。

  • 2.2 不同处理对表层土壤理化性质的影响

  • 与其他处理相比,SS 和 FS 处理显著提高了表层土壤(0~10 cm)EC 值,增幅为 29.9%~52.4%,而二者间 EC 值没有显著性差异(表3)。与 NI 处理相比,灌溉处理(FS、FF、SS 和 SF)显著降低了表层土壤 NO3--N 含量,降幅为 52.7%~65.2% (表3),灌溉处理增加了表层土壤 SWC,增幅为 42.4%~56.2%;pH 值提高了 3.0%~5.2%,TN 含量降低了 2.9%~13.6%,NH4+-N 含量降低了 27.5%~43.2% 和 TC 含量降低了 3.2%~6.8%,但差异均不显著(表3)。

  • 图1 不同处理冬小麦地上部 Na+ 和 K+ 含量以及 K+ /Na+

  • 注:不同字母表示处理间差异显著(P<0.05),ns 表示处理间无显著差异。下同。

  • 表3 不同处理表层土壤(0~10 cm)理化性质

  • 注:表中数据为平均值 ± 标准差,同列不同字母表示处理间差异显著(P<0.05),ns 表示处理间无显著差异。下同。

  • 2.3 不同处理对根际微生物多样性和群落组成的影响

  • 与 NI 处理相比,灌溉处理下根际细菌 Alpha 多样性的香浓指数和辛普森指数显著提高,但灌溉处理组间无显著差异;对于真菌而言,各处理之间差异不显著(表4)。各处理细菌(图2a)和真菌(图2b)的主坐标分析(PCoA)分别表明,PCoA1 轴和 PCoA2 轴分别解释了各处理的细菌群落结构差异的 19.65% 和 14.46% 以及真菌群落结构差异的 13.64% 和 13.00%,灌溉处理的根际细菌和真菌群落结构与 NI 处理分异,灌溉处理之间群落结构相似度较高。

  • 表4 不同处理的根际细菌和真菌 Alpha 多样性指数

  • 图2 不同处理的根际细菌和真菌群落主坐标轴分析

  • 根际微生物群落组成在门水平的结果显示,细菌群落组成相对丰度的优势菌门为变形菌门 (Proteobacteria,39.6%~57.6%)、拟杆菌门(Bacteroidetes,16.9%~24.6%)和酸杆菌门(Acidobacteria,6.9%~12.7%)。其中变形菌门作为根际细菌的第一优势菌门,NI 处理中最高(57.5%), FS 处理中最低(39.5%)(图3a)。真菌群落组成相对丰度的优势菌门为子囊菌门(Ascomycota, 50.5%~61.8%)、担子菌门(Basidiomycota,7.9%~18.5%)和毛霉门(Mucoromycota,3.0%~13.3%)。其中子囊菌门(Ascomycota,50.5%~61.8%) 作为根际真菌的第一优势菌门,NI 处理中最高 (61.8%),FF 处理中最低(50.5%)(图3b)。

  • 2.4 根际微生物多样性和群落结构与植株离子和土壤理化性质的相关分析

  • 图4 表示根际细菌和真菌的 Alpha 多样性与土壤理化和植株离子的相关性。结果显示,细菌的 Alpha 多样性与土壤理化性质呈显著相关,但真菌不存在显著相关。细菌的香浓指数、辛普森指数与土壤 SWC 值呈显著正相关,与 NH4+-N 和 NO3--N 含量呈显著负相关。图5 表示根际细菌及真菌群落结构与土壤理化和植株离子的相关关系。结果显示,细菌的群落结构与土壤 pH 值、NH4+-N 含量、 NO3--N 含量和 SWC 值呈显著正相关;真菌的群落结构与土壤 pH 值和 NO3--N 含量呈显著正相关,其中,土壤 pH 值和 NO3--N 含量均与细菌和真菌群落结构呈显著正相关。

  • 图3 不同处理的根际细菌和真菌群落门水平相对丰度

  • 图4 根际细菌和真菌 Alpha 多样性与土壤理化性质和植株离子的相关分析

  • 注:W-K+:小麦植株 K+ 含量;W-Na+:小麦植株 Na+ 含量。*** 表示 P<0.001,** 表示 P<0.01,* 表示 P<0.05。下同。

  • 2.5 根际微生物的生物标记物及与土壤理化性质的相关分析

  • 图6 表示细菌属水平前 10 的生物标记物在不同处理中相对丰度及与土壤理化性质的相关分析。结果显示,按照基尼指数排序,依次为未命名 (Blyi10)、固氮螺菌属(Inquilinus)、类芽孢杆菌属(Paenibacillus)、噬冷菌属(Algoriphagus)、纤维弧菌属(Cellvibrio)、未命名(Thalassobaculum)、泛菌属(Pantoea)、未命名(Pelagibius)、未命名 (Pelagicoccus)和未命名(Emticicia)。其中未命名 (Blyi10)、噬冷菌属(Algoriphagus)和纤维弧菌属 (Cellvibrio)在灌溉处理中的相对丰度显著高于 NI 处理;泛菌属(Pantoea)表现出相反的变化趋势,因其与土壤 SWC 值呈显著负相关,与 NH4+-N 和 NO3--N 含量呈显著正相关。另外,噬冷菌属(Algoriphagus) 在灌溉处理中的相对丰度高于 NI 处理,并且在 SS 处理显著高于其他灌溉处理。

  • 图5 根际细菌及真菌群落结构与土壤理化性质和植株离子的相关分析

  • 图6 细菌属水平生物标记物相对丰度及与土壤理化性质相关分析

  • 图7表示真菌属水平全部的生物标记物在不同处理相对丰度及与土壤理化性质的相关分析。结果显示,按照基尼指数排序,依次为齿梗孢属 (Scolecobasidium)、未命名(Arachnomyces)、未命名 (Monocillium)、角菌根菌属(Ceratobasidium)、圆盘菌属(Orbilia)和壳球孢属(Macrophomina)。其中未命名(Arachnomyces)和未命名(Monocillium) 在灌溉处理中的相对丰度显著低于 NI 处理,因均与土壤 SWC 值呈显著负相关,而与 NH4+-N 和 NO3--N 含量呈显著正相关。角菌根菌属(Ceratobasidium) 在灌溉处理中相对丰度显著高于 NI 处理,并且 SS 处理显著高于其他灌溉处理,因其与土壤 SWC 值和EC 值呈显著正相关,和 NO3--N 含量呈显著负相关。壳球孢属(Macrophomina)在 SS 和 FS 处理中的相对丰度显著高于其他处理,因其与土壤 EC 值呈显著正相关。

  • 3 讨论

  • 3.1 微咸水灌溉对根际微生物多样性的影响

  • 较雨养而言,灌溉显著提高了根际细菌 Alpha 多样性。本研究结果显示,细菌的 Alpha 多样性与表层土壤 SWC 值呈显著正相关,与 NO3--N 和 NH4+-N 含量呈显著负相关。这是因为细菌对土壤水分胁迫比较敏感,随着土壤含水量的降低,细菌的丰度降低[18]。此外,当灌溉时,土壤水分导致有限的氧气扩散,降低了微生物的需氧活性,但可能增加厌氧菌的活性[4]。因此,灌溉处理显著增加了根际细菌多样性,与 Azarbad 等[19]探究的加拿大 Saskatchewan 自 1981 年至今的长期定位试验田和 Lüneberg 等[20] 探究的墨西哥 Mezquital 旱地农业和灌溉农业细菌多样性结果一致。但灌溉处理对真菌 Alpha 多样性无显著影响,与 Azarbad 等[19]探究结果不一致,这主要是由于真菌对水分胁迫的耐受性更强。与此同时,在水分不充足的情况下,真菌和细菌之间可能存在相互竞争[21],真菌具有强大的通过菌丝输送水的能力[22],在水分不足的情况下更有利于真菌群落的生长。因此,真菌 Alpha 多样性在灌溉处理没有发生显著变化。另外,本研究灌溉处理的表层土壤 NO3--N 含量显著低于雨养,可能是硝态氮易随灌溉水进入深层土壤或流失导致,因此,土壤 SWC 值成为影响根际细菌多样性的主要因素。

  • 图7 真菌属水平生物标记物相对丰度及与土壤理化性质相关分析

  • 微咸水灌溉(FS、SS 和 SF)没有对根际微生物多样性造成影响。本研究结果显示,土壤微生物多样性与土壤的 EC 值无显著相关,SS 和 FS 处理增加了表层土壤的 EC 值,但未高于 4000 dS·m-1,没有对土壤造成盐渍化[23]。本研究细菌多样性不受土壤 pH 值影响,与已有研究[2024]不一致的原因可能是本试验不同处理 pH 值变化不显著导致。微咸水灌溉未对冬小麦根际微生物多样性造成影响,与梁悦萍等[25]在河北省农林科学院旱作节水农业试验站对棉田土壤微生物的研究结果一致。但是 SS 处理对冬小麦造成了盐胁迫,本研究结果显示,导致冬小麦地上部 Na+ 含量显著增加,但 K+ 含量没有显著变化,与苏寒等[26]测定的小麦叶片结果一致。这是因为盐胁迫对植物的破坏作用主要是通过渗透胁迫和离子毒害,植物在盐胁迫下会合成渗透调节物质,积累和吸收无机离子,导致植物体高浓度的 Na+,会抑制植物生长;但植物本身盐胁迫也是建立在 K+ 稳态基础上的,具有保持 K+ 的能力[27]。本研究结果表明,冬小麦植株离子与根际细菌和真菌无显著相关,微咸水灌溉下冬小麦植株离子与非根际土壤和根内生微生物的相关性还需进一步探究。

  • 3.2 微咸水灌溉对根际微生物群落的影响

  • 与雨养处理相比,灌溉对根际细菌和真菌群落结构造成了影响,而灌溉处理组间的根际细菌和真菌群落结构无差异。本研究结果显示,细菌和真菌群落结构均受土壤 NO3--N 含量和 pH 值显著影响,本研究灌溉处理 pH 值高于 NI 处理,与已有研究一致[19]。pH 值可以通过引起细胞膜电荷变化,导致微生物细胞吸收营养物质能力改变,并且使蛋白质、核酸等生物大分子所带电荷发生变化,影响微生物活性[28]。Fierer 等[24]探究南美和北美的不同生态系统同样发现细菌群落与 pH 值显著相关,已有文献表明,当 pH 值 >8,细菌中的硝化细菌活性受到抑制[29],不利于硝化作用进行,这可能也是本研究灌溉处理的 NO3--N 含量显著低于 NI 处理的原因。因此,灌溉处理与 NI 处理的细菌和真菌群落结构存在差异,与已有研究一致[19]

  • 不同处理对细菌群落的优势菌门和属水平生物标记物相对丰度产生了影响。本试验结果表明,小麦根际细菌群落以变形菌门(Proteobacteria)为主,与已有研究一致[19]。其在灌溉处理中的丰度低于 NI 处理,这与 Chen 等[30] 在我国西北民勤试验站探究发现变形菌门(Proteobacteria)相对丰度随着灌溉量的增加而减少的结果一致。小麦根际细菌生物标记物中的未命名(Inquisitions)、泛菌属(Pantoea)、未命名(Thalassobaculum) 和纤维弧菌属(Cellvibrio)属于变形菌门,其大多为有益菌。其中泛菌属(Pageant)属于植物根际促生菌 (Plant Growth-Promoting Rhizobacteria,PGPR),可促进磷酸盐和钾盐等的溶解,促进铁载体和 IAA 的生成[31]。本试验结果显示,其与 SWC 值呈显著负相关,因此,在灌溉处理丰度显著低于 NI 处理,并且其具有产生有机酸[32]促进氮固定[33]的作用,这可能是导致 NI 处理 pH 值较低以及 NO3--N 和 NH4+-N 含量较高的原因之一。纤维弧菌属(Cellvibrio)是植物根际的主要群落[34],能够分解土壤中的纤维素[35],本试验结果显示,其在灌溉处理中相对丰度显著高于 NI 处理,可能由于低水分对其造成不利影响。未命名 (Inquilinus)属可产过氧化氢酶、IAA 和铁载体,同时具有溶磷、固氮功能[36]。细菌生物标记物中的未命名(Pelagicoccus)属于疣微菌门(Verrucomicrobia),该类细菌参与多种物质循环和全球甲烷循环等,影响着元素循环的动态平衡,具有十分重要的生态价值[37]。类芽孢杆菌属(Paenibacillus)属于厚壁菌门,也是一种植物根际促生菌[38]。噬冷菌属 (Algoriphagus)属于拟杆菌门(Bacteroidetes),首次报道是由 Bowman 等[39]从海洋环境分离出,在本研究中在 SS 处理相对丰度最高,可能因为其更适应较高的盐分环境。

  • 不同处理对真菌群落的优势菌门相对丰度、属水平生物标记物相对丰度造成了影响。本试验结果表明,小麦根际真菌群落以子囊菌门(Ascomycota) 为主,其在 NI 处理相对丰度最高,这与 Azarbad 等[19] 探究结果一致。圆盘菌属(Orbilia)和壳球孢属(Macrophomina)隶属于子囊菌门(Ascomycota),在 SS 和 FS 处理显著高于其他处理;壳球孢属(Macrophomina)可引起植物的土传真菌病害[40],本试验结果显示,这与 EC 值呈显著正相关,可能因为其更适应微咸水灌溉下的环境,与 Yin 等[41]研究结果不一致的原因可能是其试验添加了生物炭。这可能也与 SS 和 FS 处理与 FF 和 SF 处理相比降低小麦的生长和产量有关[42-44],值得进一步研究。角菌根菌属(Ceratobasidium)作为根际的主要优势类群[45],是重要的植物共生真菌,其具有促进种子萌发和幼苗发育[46]、生物碱积累[47]和分泌 IAA[48]的作用。本试验结果显示,在 NI 处理其相对丰度显著低于灌溉处理,与 SWC 值呈显著正相关,可能由于低水分对其造成了不利影响。齿梗孢属(Scolecobasidium) 是 Abbott 于 1927 年建属[49],是一类土壤广布菌,其在 SS 处理下相对丰度最高,可能其更能适应较高的 EC 值环境。

  • 4 结论

  • 持续 5 年的微咸水灌溉田间定位试验表明,SS 和 FS 处理显著提高了表层土壤 EC 值,并且 SS 处理对小麦造成了盐胁迫。但微咸水灌溉(FS、SF 和 SS)较淡水灌溉没有对根际微生物多样性和群落结构造成显著影响。相较于雨养而言,灌溉 (FS、SF、SS 和 FF)均显著提高了根际细菌多样性,但对真菌多样性没有造成显著影响。另外,灌溉处理对根际微生物群落结构造成了影响。因此,相较于淡水灌溉而言,3 g·L-1 微咸水灌溉未对冬小麦根际微生物多样性及群落结构造成显著影响,这些结果从微生物学角度提供了华北平原冬小麦微咸水灌溉利用的科学依据和理论基础。

  • 参考文献

    • [1] Saraiva M,Protas É,Salgado M,et al.Automatic mapping of center pivot irrigation systems from satellite images using deep learning[J].Remote Sensing,2020,12(3):558.

    • [2] Mu X,Yang J,Zhao D,et al.Effect of brackish water irrigation on soil water-salt distribution[C]//IOP Conference Series:Earth and Environmental Science.IOP Publishing,2018,208(1):012062.

    • [3] Peng J,Ma J,Wei X,et al.Accumulation of beneficial bacteria in the rhizosphere of maize(Zea mays L.)grown in a saline soil in responding to a consortium of plant growth promoting rhizobacteria[J]. Annals of Microbiology,2021,71(1):1-12.

    • [4] Yan N,Marschner P,Cao W,et al.Influence of salinity and water content on soil microorganisms[J].International Soil and Water Conservation Research,2015,3(4):316-323.

    • [5] Liu L P,Long X H,Shao H B,et al.Ameliorants improve saline-alkaline soils on a large scale in northern Jiangsu Province,China[J].Ecological Engineering,2015,81:328-334.

    • [6] 孙波,赵其国,张桃林,等.土壤质量与持续环境─Ⅲ.土壤质量评价的生物学指标[J].土壤,1997(5):225-234.

    • [7] Tang X,Xie G,Shao K,et al.Influence of salinity on the bacterial community composition in Lake Bosten,a large oligosaline lake in arid northwestern China[J].Applied and Environmental Microbiology,2012,78(13):4748-4751.

    • [8] Wang J,Yang D,Zhang Y,et al.Do patterns of bacterial diversity along salinity gradients differ from those observed for macroorganisms?[J].Plos One,2011,6(11):e27597.

    • [9] Yang J,Ma L,Jiang H,et al.Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan Lakes[J].Scientific Reports,2016,6(1):1-6.

    • [10] Ruhl I A,Grasby S E,Haupt E S,et al.Analysis of microbial communities in natural halite springs reveals a domain-dependent relationship of species diversity to osmotic stress[J].Environmental Microbiology Reports,2018,10(6):695-703.

    • [11] 陆雅海,张福锁.根际微生物研究进展[J].土壤,2006(2):113-121.

    • [12] Ibekwe A M,Ors S,Ferreira J F S,et al.Seasonal induced changes in spinach rhizosphere microbial community structure with varying salinity and drought[J].Science of the Total Environment,2017,579:1485-1495.

    • [13] Liu B,Wang S,Kong X,et al.Modeling and assessing feasibility of long-term brackish water irrigation in vertically homogeneous and heterogeneous cultivated lowland in the North China Plain[J]. Agricultural Water Management,2019,211:98-110.

    • [14] Cong X,Pang G B,Xu Z H.Physiological responses of winter wheat(triticum aestivum L.)to alternate irrigation with fresh and brackish water[J].Applied Ecology and Environmental Research,2021,19(4):3137-3152.

    • [15] Pang H C,Li Y Y,Yang J S,et al.Effect of brackish water irrigation and straw mulching on soil salinity and crop yields under monsoonal climatic conditions[J].Agricultural Water Management,2010,97(12):1971-1977.

    • [16] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.

    • [17] Liu C,Cui Y,Li X,et al.microeco:an R package for data mining in microbial community ecology[J].FEMS Microbiology Ecology,2021,97(2):fiaa255.

    • [18] Maestre F T,Delgado-Baquerizo M,Jeffries T C,et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands[J].Proceedings of the National Academy of Sciences,2015,112(51):15684-15689.

    • [19] Azarbad H,Tremblay J,Giard-LalibertéC,et al.Four decades of soil water stress history together with host genotype constrain the response of the wheat microbiome to soil moisture[J]. FEMS Microbiology Ecology,2020,96(7):fiaa098.

    • [20] Lüneberg K,Schneider D,Siebe C,et al.Drylands soil bacterial community is affected by land use change and different irrigation practices in the Mezquital Valley,Mexico[J]. Scientific Reports,2018,8(1):1-15.

    • [21] Azarbad H,Constant P,Giard-Laliberté C,et al.Water stress history and wheat genotype modulate rhizosphere microbial response to drought[J].Soil Biology and Biochemistry,2018,126:228-236.

    • [22] Khalvati M A,Hu Y,Mozafar A,et al.Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth,water relations,and gas exchange of barley subjected to drought stress[J].Plant Biology,2005,7(6):706-712.

    • [23] Guo H,Ma L,Liang Y,et al.Response of ammonia-oxidizing Bacteria and Archaea to long-term saline water irrigation in alluvial grey desert soils[J].Scientific reports,2020,10(1):1-11.

    • [24] Fierer N,Jackson R B.The diversity and biogeography of soil bacterial communities[J].Proceedings of the National Academy of Sciences,2006,103(3):626-631.

    • [25] 梁悦萍,李科江,张俊鹏,等.咸水灌溉棉田休耕期土壤胞外酶活性和微生物多样性研究[J].农业环境科学学报,2018,37(4):732-740.

    • [26] 苏寒,王金涛,董心亮,等.不同质量浓度咸水灌溉对冬小麦产量和生理生化特性的影响[J].灌溉排水学报,2021,40(8):1-9.

    • [27] 韩梦娴.Na+ 、K+ 、Ca2+ 对植物耐盐性影响的研究进展[J]. 广东农业科学,2009(10):81-83.

    • [28] 陈燕飞.pH 对微生物的影响[J].太原师范学院学报(自然科学版),2009,8(3):121-124,131.

    • [29] 杜杭涛,徐睿,徐慧,等.不同生境来源硝化细菌群对氨氮的去除性能[J].环境工程技术学报,2022,12(1):81-91.

    • [30] Chen L J,Li C S,Feng Q,et al.An integrative influence of saline water irrigation and fertilization on the structure of soil bacterial communities[J].The Journal of Agricultural Science,2019,157(9-10):693-700.

    • [31] Suman A,Shukla L,Marag P S,et al.Potential use of plant colonizing pantoea as generic plant growth promoting bacteria for cereal crops[J].Journal of Environmental Biology,2020,41(5):987-994.

    • [32] Tahir M,Naeem M A,Shahid M,et al.Inoculation of pqqe gene inhabiting pantoea and pseudomonas strains improves the growth and grain yield of wheat with a reduced amount of chemical fertilizer[J]. Journal of Applied Microbiology,2020,129(3):575-589.

    • [33] Loiret F G,Ortega E,Kleiner D,et al.A putative new endophytic nitrogen-fixing bacterium Pantoea sp.from sugarcane[J]. Journal of Applied Microbiology,2004,97(3):504-511.

    • [34] Xu J,Zhang Y,Zhang P,et al.The structure and function of the global citrus rhizosphere microbiome[J].Nature Communications,2018,9(1):1-10.

    • [35] 赵天涛,胡庆梅,张丽杰,等.一株从矿化垃圾中分离的纤维弧菌[J].重庆理工大学学报(自然科学版),2011,25(6):1-5.

    • [36] 汪颖,陈永静,孙庆业,等.Inquilinus sp.P6-4 菌株的生理生化特征及萘降解特性[J].生物技术通报,2021,37(6):117-126.

    • [37] 冯希.海洋疣微菌的分离、鉴定及疣微菌门分类体系整理[D]. 济南:山东大学,2021.

    • [38] Son H J,Park G T,Cha M S,et al.Solubilization of insoluble inorganic phosphates by a novel salt-and pH-tolerant pantoea agglomerans R-42 isolated from soybean rhizosphere[J]. Bioresource Technology,2006,97(2):204-210.

    • [39] Bowman J P,Nichols C M,Gibson J A E.Algoriphagus ratkowskyi gen.nov.,sp.nov.,Brumimicrobium glaciale gen.nov.,sp.nov.,Cryomorpha ignava gen.nov.,sp.nov.and Crocinitomix catalasitica gen.nov.,sp.nov.,novel flavobacteria isolated from various polar habitats[J].International Journal of Systematic and Evolutionary Microbiology,2003,53(5):1343-1355.

    • [40] Fuhlbohm M J,Ryley M J,Aitken E A B.Macrophomina phaseolina causing leaf spot of mungbean[J].Australasian Plant Pathology,1996,25(4):247-248.

    • [41] Yin X,Peñuelas J,Xu X,et al.Effects of addition of nitrogenenriched biochar on bacteria and fungi community structure and C,N,P,and Fe stoichiometry in subtropical paddy soils[J]. European Journal of Soil Biology,2021,106:103351.

    • [42] Soothar R K,Wang C,Li L,et al.Soil salt accumulation,physiological responses,and yield simulation of winter wheat to alternate saline and fresh water irrigation in the North China Plain[J]. Journal of Soil Science and Plant Nutrition,2021,21(3):2072-2082.

    • [43] Soothar R K,Zhang W,Zhang Y,et al.Evaluating the performance of SALTMED model under alternate irrigation using saline and fresh water strategies to winter wheat in the North ChinaPlain[J].Environmental Science and Pollution Research,2019,26(33):34499-34509.

    • [44] Soothar R K,Zhang W,Liu B,et al.Sustaining yield of winter wheat under alternate irrigation using saline water at different growth stages:a case study in the North China Plain[J]. Sustainability,2019,11(17):4564.

    • [45] Noor S O,Al-Zahrani D A,Hussein R M,et al.Assessment of fungal diversity in soil rhizosphere associated with rhazya stricta and some desert plants using metagenomics[J].Archives of Microbiology,2021,203(3):1211-1219.

    • [46] Otero J T,Bayman P,Ackerman J D.Variation in mycorrhizal performance in the epiphytic orchid tolumnia variegata in vitro:the potential for natural selection[J].Evolutionary Ecology,2005,19(1):29-43.

    • [47] 全妙华,佘朝文,陈东明,等.基于高通量测序的两种典型忽地笑栽培土壤根际真菌群落多样性[J].微生物学通报,2018,45(10):2105-2111.

    • [48] 陈贝贝,王敏,胡鸢雷,等.地黄内生真菌促生作用的初步研究[J].中国中药杂志,2011,36(9):1137-1140.

    • [49] Abbott E V.Scolecobasidium,a new genus of soil fungi[J]. Mycologia,1927,19(1):29-31.

  • 参考文献

    • [1] Saraiva M,Protas É,Salgado M,et al.Automatic mapping of center pivot irrigation systems from satellite images using deep learning[J].Remote Sensing,2020,12(3):558.

    • [2] Mu X,Yang J,Zhao D,et al.Effect of brackish water irrigation on soil water-salt distribution[C]//IOP Conference Series:Earth and Environmental Science.IOP Publishing,2018,208(1):012062.

    • [3] Peng J,Ma J,Wei X,et al.Accumulation of beneficial bacteria in the rhizosphere of maize(Zea mays L.)grown in a saline soil in responding to a consortium of plant growth promoting rhizobacteria[J]. Annals of Microbiology,2021,71(1):1-12.

    • [4] Yan N,Marschner P,Cao W,et al.Influence of salinity and water content on soil microorganisms[J].International Soil and Water Conservation Research,2015,3(4):316-323.

    • [5] Liu L P,Long X H,Shao H B,et al.Ameliorants improve saline-alkaline soils on a large scale in northern Jiangsu Province,China[J].Ecological Engineering,2015,81:328-334.

    • [6] 孙波,赵其国,张桃林,等.土壤质量与持续环境─Ⅲ.土壤质量评价的生物学指标[J].土壤,1997(5):225-234.

    • [7] Tang X,Xie G,Shao K,et al.Influence of salinity on the bacterial community composition in Lake Bosten,a large oligosaline lake in arid northwestern China[J].Applied and Environmental Microbiology,2012,78(13):4748-4751.

    • [8] Wang J,Yang D,Zhang Y,et al.Do patterns of bacterial diversity along salinity gradients differ from those observed for macroorganisms?[J].Plos One,2011,6(11):e27597.

    • [9] Yang J,Ma L,Jiang H,et al.Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan Lakes[J].Scientific Reports,2016,6(1):1-6.

    • [10] Ruhl I A,Grasby S E,Haupt E S,et al.Analysis of microbial communities in natural halite springs reveals a domain-dependent relationship of species diversity to osmotic stress[J].Environmental Microbiology Reports,2018,10(6):695-703.

    • [11] 陆雅海,张福锁.根际微生物研究进展[J].土壤,2006(2):113-121.

    • [12] Ibekwe A M,Ors S,Ferreira J F S,et al.Seasonal induced changes in spinach rhizosphere microbial community structure with varying salinity and drought[J].Science of the Total Environment,2017,579:1485-1495.

    • [13] Liu B,Wang S,Kong X,et al.Modeling and assessing feasibility of long-term brackish water irrigation in vertically homogeneous and heterogeneous cultivated lowland in the North China Plain[J]. Agricultural Water Management,2019,211:98-110.

    • [14] Cong X,Pang G B,Xu Z H.Physiological responses of winter wheat(triticum aestivum L.)to alternate irrigation with fresh and brackish water[J].Applied Ecology and Environmental Research,2021,19(4):3137-3152.

    • [15] Pang H C,Li Y Y,Yang J S,et al.Effect of brackish water irrigation and straw mulching on soil salinity and crop yields under monsoonal climatic conditions[J].Agricultural Water Management,2010,97(12):1971-1977.

    • [16] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.

    • [17] Liu C,Cui Y,Li X,et al.microeco:an R package for data mining in microbial community ecology[J].FEMS Microbiology Ecology,2021,97(2):fiaa255.

    • [18] Maestre F T,Delgado-Baquerizo M,Jeffries T C,et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands[J].Proceedings of the National Academy of Sciences,2015,112(51):15684-15689.

    • [19] Azarbad H,Tremblay J,Giard-LalibertéC,et al.Four decades of soil water stress history together with host genotype constrain the response of the wheat microbiome to soil moisture[J]. FEMS Microbiology Ecology,2020,96(7):fiaa098.

    • [20] Lüneberg K,Schneider D,Siebe C,et al.Drylands soil bacterial community is affected by land use change and different irrigation practices in the Mezquital Valley,Mexico[J]. Scientific Reports,2018,8(1):1-15.

    • [21] Azarbad H,Constant P,Giard-Laliberté C,et al.Water stress history and wheat genotype modulate rhizosphere microbial response to drought[J].Soil Biology and Biochemistry,2018,126:228-236.

    • [22] Khalvati M A,Hu Y,Mozafar A,et al.Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth,water relations,and gas exchange of barley subjected to drought stress[J].Plant Biology,2005,7(6):706-712.

    • [23] Guo H,Ma L,Liang Y,et al.Response of ammonia-oxidizing Bacteria and Archaea to long-term saline water irrigation in alluvial grey desert soils[J].Scientific reports,2020,10(1):1-11.

    • [24] Fierer N,Jackson R B.The diversity and biogeography of soil bacterial communities[J].Proceedings of the National Academy of Sciences,2006,103(3):626-631.

    • [25] 梁悦萍,李科江,张俊鹏,等.咸水灌溉棉田休耕期土壤胞外酶活性和微生物多样性研究[J].农业环境科学学报,2018,37(4):732-740.

    • [26] 苏寒,王金涛,董心亮,等.不同质量浓度咸水灌溉对冬小麦产量和生理生化特性的影响[J].灌溉排水学报,2021,40(8):1-9.

    • [27] 韩梦娴.Na+ 、K+ 、Ca2+ 对植物耐盐性影响的研究进展[J]. 广东农业科学,2009(10):81-83.

    • [28] 陈燕飞.pH 对微生物的影响[J].太原师范学院学报(自然科学版),2009,8(3):121-124,131.

    • [29] 杜杭涛,徐睿,徐慧,等.不同生境来源硝化细菌群对氨氮的去除性能[J].环境工程技术学报,2022,12(1):81-91.

    • [30] Chen L J,Li C S,Feng Q,et al.An integrative influence of saline water irrigation and fertilization on the structure of soil bacterial communities[J].The Journal of Agricultural Science,2019,157(9-10):693-700.

    • [31] Suman A,Shukla L,Marag P S,et al.Potential use of plant colonizing pantoea as generic plant growth promoting bacteria for cereal crops[J].Journal of Environmental Biology,2020,41(5):987-994.

    • [32] Tahir M,Naeem M A,Shahid M,et al.Inoculation of pqqe gene inhabiting pantoea and pseudomonas strains improves the growth and grain yield of wheat with a reduced amount of chemical fertilizer[J]. Journal of Applied Microbiology,2020,129(3):575-589.

    • [33] Loiret F G,Ortega E,Kleiner D,et al.A putative new endophytic nitrogen-fixing bacterium Pantoea sp.from sugarcane[J]. Journal of Applied Microbiology,2004,97(3):504-511.

    • [34] Xu J,Zhang Y,Zhang P,et al.The structure and function of the global citrus rhizosphere microbiome[J].Nature Communications,2018,9(1):1-10.

    • [35] 赵天涛,胡庆梅,张丽杰,等.一株从矿化垃圾中分离的纤维弧菌[J].重庆理工大学学报(自然科学版),2011,25(6):1-5.

    • [36] 汪颖,陈永静,孙庆业,等.Inquilinus sp.P6-4 菌株的生理生化特征及萘降解特性[J].生物技术通报,2021,37(6):117-126.

    • [37] 冯希.海洋疣微菌的分离、鉴定及疣微菌门分类体系整理[D]. 济南:山东大学,2021.

    • [38] Son H J,Park G T,Cha M S,et al.Solubilization of insoluble inorganic phosphates by a novel salt-and pH-tolerant pantoea agglomerans R-42 isolated from soybean rhizosphere[J]. Bioresource Technology,2006,97(2):204-210.

    • [39] Bowman J P,Nichols C M,Gibson J A E.Algoriphagus ratkowskyi gen.nov.,sp.nov.,Brumimicrobium glaciale gen.nov.,sp.nov.,Cryomorpha ignava gen.nov.,sp.nov.and Crocinitomix catalasitica gen.nov.,sp.nov.,novel flavobacteria isolated from various polar habitats[J].International Journal of Systematic and Evolutionary Microbiology,2003,53(5):1343-1355.

    • [40] Fuhlbohm M J,Ryley M J,Aitken E A B.Macrophomina phaseolina causing leaf spot of mungbean[J].Australasian Plant Pathology,1996,25(4):247-248.

    • [41] Yin X,Peñuelas J,Xu X,et al.Effects of addition of nitrogenenriched biochar on bacteria and fungi community structure and C,N,P,and Fe stoichiometry in subtropical paddy soils[J]. European Journal of Soil Biology,2021,106:103351.

    • [42] Soothar R K,Wang C,Li L,et al.Soil salt accumulation,physiological responses,and yield simulation of winter wheat to alternate saline and fresh water irrigation in the North China Plain[J]. Journal of Soil Science and Plant Nutrition,2021,21(3):2072-2082.

    • [43] Soothar R K,Zhang W,Zhang Y,et al.Evaluating the performance of SALTMED model under alternate irrigation using saline and fresh water strategies to winter wheat in the North ChinaPlain[J].Environmental Science and Pollution Research,2019,26(33):34499-34509.

    • [44] Soothar R K,Zhang W,Liu B,et al.Sustaining yield of winter wheat under alternate irrigation using saline water at different growth stages:a case study in the North China Plain[J]. Sustainability,2019,11(17):4564.

    • [45] Noor S O,Al-Zahrani D A,Hussein R M,et al.Assessment of fungal diversity in soil rhizosphere associated with rhazya stricta and some desert plants using metagenomics[J].Archives of Microbiology,2021,203(3):1211-1219.

    • [46] Otero J T,Bayman P,Ackerman J D.Variation in mycorrhizal performance in the epiphytic orchid tolumnia variegata in vitro:the potential for natural selection[J].Evolutionary Ecology,2005,19(1):29-43.

    • [47] 全妙华,佘朝文,陈东明,等.基于高通量测序的两种典型忽地笑栽培土壤根际真菌群落多样性[J].微生物学通报,2018,45(10):2105-2111.

    • [48] 陈贝贝,王敏,胡鸢雷,等.地黄内生真菌促生作用的初步研究[J].中国中药杂志,2011,36(9):1137-1140.

    • [49] Abbott E V.Scolecobasidium,a new genus of soil fungi[J]. Mycologia,1927,19(1):29-31.

  • 《中国土壤与肥料》招聘启事
    关闭