en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张勇勇(1986-),讲师,博士,主要从事设施资源高效利用研究。E-mail:yongyongzhang@syau.edu.cn。

通讯作者:

杨丽娟,E-mail:lijuanyangsyau@126.com;

赵凤艳,E-mail:zfysyau@163.com。

参考文献 1
Hou E Q,Chen C R,Luo Y Q,et al.Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems [J].Global Change Biology,2018,24:3344-3356.
参考文献 2
Desmidt E,Ghyselbrecht K,Zhang Y,et al.Global phosphorus scarcity and full-scale P-recovery techniques:a review[J]. Biocontrol Science and Technology,2015,45(4):336-384.
参考文献 3
张藤丽,焉莉,韦大明.基于全国耕地消纳的畜禽粪便特征分布与环境承载力预警分析[J].中国生态农业学报(中英文),2020,28(5):745-755.
参考文献 4
Pedizzi C,Noya I,Sarli J,et al.Environmental assessment of alternative treatment schemes for energy and nutrient recovery from livestock manure[J].Waste Management,2018,77:276-286.
参考文献 5
Bhat S A,Singh J,Vig A P.Potential utilization of bagasse as feed material for earthworm Eisenia fetida and production of vermicompost[J].Springer Plus,2015,4:11.
参考文献 6
Lalander C H,Komakech A J,Vinnerås B.Vermicomposting as manure management strategy for urban small-holder animal farmsKampala case study[J].Waste Management,2015,39:96-103.
参考文献 7
Kharrazi S M,Younesi H,Abedini-Torghabeh J.Microbial biodegradation of waste materials for nutrients enrichment and heavy metals removal:an integrated composting-vermicomposting process[J].International Biodeterioration and Biodegradation,2014,92:41-48.
参考文献 8
Lim S L,Wu TY,Lim P N,et al.The use of vermicompost in organic farming:overview,effects on soil and economics[J].Journal of the Science of Food and Agriculture,2015,95:1143-1156.
参考文献 9
AgullóE,Martínez-Fernández M,Bustamante M Á,et al. Vermicomposting as an added-value post-treatment for livestock waste composts[J].Communications in Soil Science and Plant Analysis,2015,46:208-218.
参考文献 10
Galba B J,Papa G,Pasqualoto C L,et al.Phosphatase activities and its relationship with physical and chemical parameters during vermicomposting of filter cake and cattle manure [J].Journal of the Science of Food and Agriculture,2016,96(4):1223-1230.
参考文献 11
Alavi N,Daneshpajou M,Shirmardi M,et al.Investigating the efficiency of co-composting and vermicomposting of vinasse with the mixture of cow manure wastes,bagasse,and natural zeolite [J].Waste Management,2017,69:117-126.
参考文献 12
Mupambwa H A,Ravindran B,Mnkeni P N S.Potential of effective micro-organisms and Eisenia fetida in enhancing vermidegradation and nutrient release of fly ash incorporated into cow dung-paper waste mixture[J].Waste Management,2016,48:165-173.
参考文献 13
Ghosh S,Goswami A J,Ghosh G K,et al.Quantifying the relative role of phytase and phosphatase enzymes in phosphorus mineralization during vermicomposting of fibrous tea factory waste [J].Ecological Engineering,2018,116:97-103.
参考文献 14
Fraser T,Lynch D H,Entz M H,et al.Linking alkaline phosphatase activity with bacterial phoD gene abundance in soil from a long-term management trial[J].Geoderma,2015,257-258:115-122.
参考文献 15
Jiang Y J,Liu M Q,Zhang J B,et al.Nematode grazing promotes bacterial community dynamics in soil at the aggregate level[J].The ISME Journal,2017,11:2705-2717.
参考文献 16
Oliveira C A,Alves V M C,Marriel I E,et al.Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome[J].Soil Biology and Biochemistry,2009,41(9):1782-1787.
参考文献 17
Vinci G,Cozzolino V,Mazzei P,et al.Effects of Bacillus amyloliquefaciens,and different phosphorus sources on maize plants as revealed by NMR and GC-MS based metabolomics[J]. Plant and Soil,2018,429(1):437-450.
参考文献 18
Huang K,Xia H.Role of earthworms’ mucus in vermicomposting system:biodegradation tests based on humification and microbial activity[J].Science of the Total Environment,2018,610:703-708.
参考文献 19
Hussain N,Singh A,Saha S,et al.Excellent N-fixing and P-solubilizing traits in earthworm gut-isolated bacteria:a vermicompost based assessment with vegetable market waste and rice straw feed mixtures[J].Bioresource Technology,2016,222:165-174.
参考文献 20
Xiao Z G,Liu M Q,Jiang L H,et al.Vermicompost increases defense against root-knot nematode(Meloidogyne incognita)in tomato plants[J].Applied Soil Ecology,2016,105:177-186.
参考文献 21
陈学民,雷旭阳,伏小勇,等.温度对蚯蚓处理颗粒污泥稳定化过程的影响[J].环境科学学报,2016,36(6):2079-2084.
参考文献 22
鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
参考文献 23
Gregorich E G,Carter M R.Soil sampling and methods of analysis[M].Boca Raton:CRC Press,2007.
参考文献 24
Tabatabai M,Bremner J.Use of p-nitrophenyl phosphate for assay of soil phosphatase activity[J].Soil Biology and Biochemistry,1969,1:301-307.
参考文献 25
Balajee S A,Sigler L,Brandt M E.DNA and the classical way:identification of medically important molds in the 21st century[J]. Medical Mycology,2007,45:475.
参考文献 26
Sun W,Qian X,Gu J,et al.Mechanisms and effects of arsanilic acid on antibiotic resistance genes and microbial communities during pig manure digestion[J].Bioresource Technology,2017,234:217-223.
参考文献 27
Sinsabaugh R L,Lauber C L,Weintraub M N,et al. Stoichiometry of soil enzyme activity at global scale[J].Ecology Letters,2010,11(11):1252-1264.
参考文献 28
Mouginot C,Kawamura R,Matulich K L,et al.Elemental stoichiometry of fungi and bacteria strains from grassland leaf litter [J].Soil Biology and Biochemistry,2014,76:278-285.
参考文献 29
Zhang J,Elser J J.Carbon:nitrogen:phosphorus stoichiometry in fungi:a Meta-analysis[J].Frontiers in Microbiology,2017,8:9.
参考文献 30
Spohn M,Chodak M.Microbial respiration per unit biomass increases with carbon-to-nutrient ratios in forest soils[J].Soil Biology and Biochemistry,2015,81:128-133.
参考文献 31
Spohn M.Microbial respiration per unit microbial biomass depends on litter layer carbon-to-nitrogen ratio[J]. Biogeosciences,2015,12:817-823.
参考文献 32
Xu X,Thornton P E,Post W M.A global analysis of soil microbial biomass carbon,nitrogen and phosphorus in terrestrial ecosystems[J].Global Ecology and Biogeography,2013,22:737-749.
参考文献 33
Nassal D,Spohn M,Eltlbany N,et al.Effects of phosphorusmobilizing bacteria on tomato growth and soil microbial activity[J]. Plant and Soil,2017,8:1-21.
参考文献 34
Nannipieri P,Giagnoni L,Landi L,et al.Role of phosphatase enzymes in soil[M]//Bünemann E K,Oberson A,Frossard E.Phosphorus in action.Berlin:Springer verlag,2011:215-243.
参考文献 35
Aira M,Monroy F,Domínguez J.Changes in bacterial numbers and microbial activity of pig slurry during gut transit of epigeic and anecic earthworms[J].Journal of Hazardous Materials,2009,162:1404-1407.
参考文献 36
Mupambwa H A,Mnkeni P N S.Optimizing the vermicomposting of organic wastes amended with inorganic materials for production of nutrient-rich organic fertilizers:a review[J].Environmental Science and Pollution Research,2018,25(11):10577-10595.
参考文献 37
Zhou X,Guo Z,Chen C,et al.Soil microbial community structure and diversity are largely influenced by soil pH and nutrient quality in 78-year-old tree plantations[J]. Biogeosciences,2017,14(8):2101-2111.
参考文献 38
Turner B L,Haygarth P M.Phosphatase activity in temperate pasture soils:potential regulation of labile organic phosphorus turnover by phosphodiesterase activity[J].Science of the Total Environment,2005,344:27-36.
参考文献 39
Castillo J M,Romero E,Nogales R.Dynamics of microbial communities related to biochemical parameters during vermicomposting and maturation of agroindustrial lignocellulose wastes[J].Bioresource Technology,2013,146:345-354.
参考文献 40
Gómez-B randón M,Aira M,Lores M,et al.Changes in microbial community structure and function during vermicomposting of pig slurry[J].Bioresource Technology,2011,102:4171-4178.
参考文献 41
Moody S,Briones M,Piearce T,et al.Selective consumption of decomposing wheat straw by earthworms[J].Soil Biology and Biochemistry,1995,27:1209-1213.
目录contents

    摘要

    评估牛粪及其蚓粪磷素生物化学特性,为合理利用牛粪及其蚓粪,提高畜禽粪便磷利用效率提供理论依据。利用扩增子测序技术,研究腐熟牛粪及其蚓粪中磷含量、磷酸酶活性和解磷微生物的差异。与牛粪相比,蚓粪 pH、电导率、有效磷含量、全碳含量、全氮含量、碳磷比和氮磷比均显著降低,其中 pH 降低 0.46 个单位,电导率、有效磷含量、全碳含量、全氮含量分别降低 63.86%、20.99%、28.51%、45.57%,牛粪的碳磷比和氮磷比分别为蚓粪的 4.20 和 5.52 倍;但蚓粪全磷含量和碳氮比显著提高,全磷含量提高 196.40%,碳氮比为牛粪的 1.31 倍。蚓粪中碱性磷酸酶活性较牛粪低,而酸性磷酸酶二者间无显著差异。蚓粪的细菌和真菌 α- 多样性均显著高于牛粪。蚓粪中解磷细菌节细菌属(Arthrobacter)和芽孢杆菌属(Bacillus)的相对丰度较牛粪显著降低;相反,其他解磷细菌和大多数解磷真菌丰度较牛粪均呈升高趋势。蚯蚓堆肥对有效磷含量的衰减作用主要取决于牛粪的化学性质和解磷微生物的丰度。

    Abstract

    In order to provide theoretical basis for rational utilization of cow manure compost and vermicompost,improve phosphorus utilization efficiency of livestock manure and reduce phosphorus pollution,biochemical characteristics of phosphorus in cow manure compost and vermicompost were evaluated. In this study,amplicon sequencing technology was used to study the differences in phosphorus content,phosphatase activity and P-solubilizing microorganisms in cow manure compost and vermicompost. Compared with cow manure compost,pH,electrical conductivity,the contents of available P,total carbon and total nitrogen,C/P and N/P in vermicompost decreased significantly,and pH decreased by 0.46, and electrical conductivity,the contents of available P,total carbon and total nitrogen decreased by 63.86%,20.99%, 28.51% and 45.57%,respectively. The C/P and N/P of cow manure compost were 4.20 and 5.52 times that of vermicompost, respectively. However,the total P content and C/N of vermicompost increased significantly,the total P content increased by 196.40%,and the C/N ratio was 1.31 times that of cow manure compost. Alkaline phosphatase activity in vermicompost was lower than that in cow manure compost,while there was no significant difference in acid phosphatase between them. The α-diversity of bacteria and fungi in vermicompost was significantly higher than that in cow manure compost. The relative abundance of Arthrobacter and Bacillus in vermicompost was significantly lower than that in cow manure compost;on the contrary,the abundances of other P-solubilizing bacteria and most P-solubilizing fungi were higher than those in cow manure compost. The attenuation effect of vermicomposting on available P content mainly depends on the chemical properties of cow manure compost and the abundance of P-solubilizing microorganisms.

    关键词

    牛粪蚓粪有效磷磷酸酶解磷微生物

  • 磷是植物生长发育必需的大量营养元素之一,然而中国 74% 的耕地土壤处于缺磷状态,且当季化学磷肥的利用率仅达 10%~25%,是限制植物生长的主要养分[1-2]。为了追求高产,往往过量施用磷肥,这一行为加速了磷矿资源的耗竭。畜禽粪便是农业生产中磷的重要来源。随着中国对畜产品需求的增长,畜禽粪便年产生量迅速增加,2016 年畜禽粪便产生量约为 24.68 亿 t(产磷量约 483 万 t),其中牛粪产量最多[3-4]。通过堆肥将新鲜牛粪转变为有机肥应用于农田,即可避免畜禽粪便带来的环境污染,又可满足作物生长对磷的需求,缓解了磷肥供需矛盾,是一种双赢的管理方式。

  • 蚯蚓堆肥被认为是管理畜禽粪便有效措施之一[5-6]。蚓粪作为最终产品,比畜禽粪便含有更多的有益菌、植物激素和元素循环酶,且蚯蚓堆肥可以显著降低畜禽粪便的盐分和水溶性磷含量[7-9]。 Galba 等[10]报道了在蚯蚓堆肥导致有机物降解的过程中,水溶性磷含量由于磷酸酶活性的降低而降低。但也有研究发现,蚯蚓堆肥显著提高了磷有效性[11-12]。Ghosh 等[13]表明,水溶性磷含量的增加主要是由于蚯蚓堆肥的前 50 d 磷酸酶活性增强,后期植酸酶活性增强所致。总的来说,磷酸酶在堆肥过程中对磷的有效性起着重要的作用,而微生物,包括细菌和真菌,是磷酸酶的主要来源[14-15],而解磷微生物是微生物的重要组成部分,它们作为一个整体参与调节有机物质中难溶性磷的溶解[16-17]。研究表明,蚯蚓肠道中含有多种解磷微生物,如 Bacillus cereus[18-19],通过蚯蚓排泄进而提高蚓粪中磷的有效性。磷酸酶和解磷微生物在蚯蚓堆肥过程中对磷溶解起着重要的作用。但前人针对蚯蚓堆肥前后磷有效性影响的研究多集中在单因素方面,而关于蚯蚓堆肥对磷有效性影响的综合效应还鲜有报道。因此,探明蚯蚓堆肥前后牛粪和蚓粪中有效磷含量、磷酸酶活性和解磷微生物丰度的变化可以综合反应蚯蚓堆肥后磷有效性,以此来衡量蚓粪的供磷能力,为畜禽粪便资源化及畜禽粪便蚯蚓堆肥后的应用提供理论参考。

  • 1 材料与方法

  • 1.1 试验设计

  • 本研究于 2015 年 10—12 月在沈阳农业大学基地进行蚯蚓堆肥试验。以辽宁沈阳某奶牛场采集的腐熟牛粪为原始材料,其化学性质如表1 所示。将 110 kg 腐熟牛粪置于 1 m × 0.5 m × 0.5 m(长 × 宽 × 高)的堆肥容器内,共 5 个重复,在腐熟牛粪中接种蚯蚓,蚯蚓初始接种密度(品种:Eisenia fetida;120~150 mg/ 条,明显带成熟环带的成蚓) 为 1.5 kg/m3[20],同时采集腐熟牛粪存储于-80℃ 下供指标测定分析。使用 SPECTRUM TDR300 便携式水分速测仪监测蚯蚓堆肥过程含水量,采用灭菌的蒸馏水补充水分使其含水量保持在 70%,并控制堆肥容器内温度为(25±1)℃[21],每 7 d 人工翻动一次,保证容器内处于有氧条件。当堆肥容器内上中下腐熟牛粪均全部转化为颗粒状蚯蚓粪,堆肥结束,共 65 d。

  • 表1 供试牛粪的化学特性

  • 1.2 样本采集

  • 收集腐熟牛粪和蚓粪样品,分别从上、中、下位置均收集样本,混合后过 2 mm 筛,且蚯蚓堆肥后的样本挑除可见幼蚓及蚓卵,混合样品均匀分为 3 份子样品,一部分子样品风干以进行进一步的化学分析,一部分子样品储存在 4℃下用于分析酶活性,最后一部分子样品储存在-80℃下用于分析微生物群落组成。

  • 1.3 化学性质和磷酸酶活性分析

  • 牛粪和蚓粪的全碳和全氮含量通过元素分析仪 (Vario MACRO Cube,Elementar Ⅲ,Germany) 测定。全磷含量根据鲁如坤[22]的方法测定。使用 13 mL H2SO4(8 mL)和 HNO3(5 mL)混合液对风干样品进行消煮,消煮液中的全磷使用钒钼黄比色法测定。根据 Gregorich 等[23]的研究方法分析了牛粪和蚓粪中的有效磷含量。称取 2.5 g 样品,至于 50 mL 0.5 mol/L 的 NaHCO3(pH 8.5)中,常温 180 r/ min 震荡 1 h,过滤且滤液中磷含量用钼蓝分光光度法测定。使用对硝基苯磷酸二钠(pNPP)(pH 6.5) 分析酸性磷酸酶活性,并将其表达为 p-nitropheny mg/(g·h)[24]。碱性磷酸酶活性(pNPP pH 8.0)使用与酸性磷酸酶相同的方法测定。

  • 1.4 DNA 提取及微生物丰度的测定

  • 牛粪和蚓粪 DNA 提取:使用 Fast DNAR SPIN Kit for Soil(MP Biomedicals,Illkirch,France) 试剂盒提取样品(0.50 g)总 DNA,然后用 Nanodrop 2000 紫外微量分光光度计进行质检,质检合格的样品存于-20℃冰箱中备用。

  • 通过上海锐翌生物科技有限公司提供的 Illumina HiSeq2500 PE250 技术平台对牛粪和蚓粪细菌 16S 和真菌 ITS 群落进行测序。16S rDNA 扩增区域为 V3-V4 区,使用引物为 F341/R806(F341: 5′-ACTCCTACGGGRSGCAGCAG-3′,R806: 5′-GGACTACVVGGGTATCTAATC-3′),ITS rDNA 扩增区域为 ITS2 区,使用引物为 ITS3/ITS4(F2045: 5′-GCATCGATGAAGAACGCAGC-3′,R2390: 5′-TCCTCCGCTTATTGATATGC-3′)[25-26]。在引物的 5′ 端加上索引序列和接头序列用来完成特异性引物的设计。

  • 1.5 统计分析

  • 运用 SPSS 11.0 中 t 检验确定牛粪和蚓粪间化学性质的差异显著性。使用 R 语言(3.4.2)中 ggpubr 包的 wilcoxon 检验确定牛粪和蚓粪中解磷微生物的差异显著性。采用 QIIME(1.7.0)使用默认参数对微生物序列进行聚合,使用 RDP 方法以 97% 的相似性对物种进行聚类。

  • 2 结果与分析

  • 2.1 化学性质

  • 由图1 可知,与牛粪相比,蚓粪的 pH、电导率、有效磷含量、全碳含量、全氮含量、碳磷比和氮磷比均显著降低(P <0.05),其中 pH 由 6.98 显著降低至 6.52,电导率、有效磷含量、全碳含量、全氮含量分别降低 63.86%、20.99%、28.51%、 45.57%,牛粪的碳磷比和氮磷比分别为蚓粪的 4.20 和 5.52 倍;而蚓粪的全磷含量和碳氮比显著升高 (P <0.05),其中全磷含量升高 196.40%,碳氮比为牛粪的 1.31 倍。

  • 图1 牛粪和蚓粪化学性质

  • 注:柱上不同小写字母表示差异显著(P<0.05)。

  • 2.2 磷酸酶活性

  • 如图2 所示,牛粪中碱性磷酸酶活性为 0.27 PNP mg/(g·h),显著高于蚓粪[0.24 PNP mg/(g·h),P <0.05]。牛粪和蚓粪间酸性磷酸酶活性无显著差异。

  • 图2 牛粪和蚓粪磷酸酶活性

  • 注:柱上不同小写字母表示差异显著(P<0.05)。

  • 2.3 微生物多样性

  • 与牛粪相比,无论是细菌还是真菌,蚓粪的微生物多样性均显著升高,包括 Chao1、Observed species、PD whole tree、Shannon 和 Simpson 指数( 图3 和图4,P <0.05)。

  • 2.4 微生物群落组成

  • 在细菌门水平上(图5a),主要包括厚壁菌门(Firmicutes)、变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、拟杆菌门(Bacteroidetes)和广古菌门(Euryarchaeota),共占细菌总量的 88.1%~96.0%,其中牛粪中各相对丰度分别为 56.0%、11.3%、21.6%、3.0% 和 4.1%,蚓粪中各相对丰度分别为 13.1%、35.0%、16.7%、19.8% 和 3.5%。蚯蚓堆肥增加了变形菌门和拟杆菌门的相对丰度,降低了厚壁菌门和放线菌门的相对丰度。

  • 图3 蚯蚓堆肥对牛粪和蚓粪细菌 α-多样性的影响

  • 注:* 表示 P<0.05,●为离群值。下同。

  • 图4 牛粪和蚓粪真菌 α-多样性

  • 在真菌门水平上(图5b),主要包括子囊菌门(Ascomycota)、担子菌门(Basidiomycota)、未知真菌门(Fungi_unidentified)和接合菌门(Zygomycota)。牛粪中担子菌门是绝对优势菌群,相对丰度为 68.4%,其次是子囊菌门(23.7%),接合菌门和未知真菌门丰度共占整体的 7.9%;蚓粪中绝对优势菌群为子囊菌门,相对丰度为 83.8%,其次是接合菌门(9.1%),而担子菌门、未知真菌门和壶菌门(Chytridiomycota)的丰度共占整体的 7.1%。

  • 图5 牛粪和蚓粪细菌(a)和真菌(b)群落组成

  • 2.5 解磷微生物相对丰度

  • 在细菌属水平,解磷细菌以节杆菌属(Arthrobacter)最多,其相对丰度大于 0.05%(图6a)。牛粪中不动杆菌属(Acinetobacter)、节杆菌属(Arthrobacter)和芽孢杆菌属(Bacillus)的相对丰度均显著高于蚓粪( 图6a、6b 和 6c,P <0.05),而戈登氏菌属(Gordonia)、微细菌属(Microbacterium)、类芽孢杆菌属(Paenibacillus)、泛生菌属(Pantoea)、假单胞菌属(Pseudomonas)、根瘤菌属(Rhizobium)和弧菌属(Vibrio)的相对丰度均显著低于蚓粪(图6e、6f、6h、6i、6j、6k、 6n,P <0.05)。牛粪和蚓粪中金黄杆菌属(Chryseobacterium)、中慢生根瘤菌属(Mesorhizobium)、红球菌属(Rhodococcus)和链霉菌属(Streptomyces) 的相对丰度无显著差异( 图6d、6g、6i 和 6m)。

  • 在真菌属水平上,解磷真菌丰度最高的菌群为被孢霉属(Mortierella),其次是枝顶孢霉属 (Acremonium),其相对丰度均大于 0.05%、(图7c 和 7b)。牛粪中曲霉属(Aspergillus)、枝顶孢霉属 (Acremonium)、被孢霉属(Mortierella)和篮状菌属(Talaromyces)的相对丰度均显著低于蚓粪(图7a、7b、7c 和 7e,P <0.05)。牛粪和蚓粪中青霉菌属(Penicillium)的相对丰度无显著差异(图7d)。

  • 2.6 化学性质与解磷菌间的相关性

  • 两种最丰富的解磷细菌,节细菌属(Arthrobacter)和芽孢杆菌属(Bacillus),与牛粪和蚓粪的 pH 呈正相关,而与碳氮比和全磷含量呈负相关 (表2,P <0.01)。芽孢杆菌属的相对丰度与有效磷含量呈正相关(P <0.05)。与节细菌属和芽孢杆菌属相比,其他大部分解磷微生物与粪肥的化学性质呈负相关。碱性磷酸酶活性与 pH 呈显著正相关,与全磷含量呈显著负相关;酸性磷酸酶与粪肥化学性质无相关性。

  • 图6 牛粪和蚓粪中解磷细菌相对丰度

  • 注:* 表示不同处理之间在 0.05 水平上有显著差异,ns 表示在 0.05 水平上无显著差异。下同。

  • 图7 牛粪和蚓粪中解磷真菌相对丰度

  • 表2 粪肥化学性质与解磷微生物和磷酸酶活性之间的关系

  • 注:* 和 ** 分别表示在 0.05 和 0.01 水平上显著相关。

  • 3 讨论

  • 3.1 蚯蚓堆肥对有效磷含量和磷酸酶活性的影响

  • 有效磷含量的降低是蚯蚓堆肥的综合效应。首先,有效磷含量的降低归因于在蚯蚓体内磷酸酶活性较低的情况下,总磷矿化程度较低(图1d 和图2)。微生物选择性地分泌胞外酶以满足自身营养需求的化学计量[27]。参与蚯蚓堆肥过程的微生物可能来自不同的环境,如牛粪或蚯蚓肠道,它们通常需要碳、氮和磷的平衡供应[28-29]。它们通过调节自身的新陈代谢来调整食源有机物以满足化学计量方面的营养需求[30]。虽然各个系统分类群的化学计量比可能不同,但全球范围内废弃物和土壤中微生物生物量的碳氮比趋近于 8[31-32]。本研究中牛粪碳氮比为 5.89(图1g),低于微生物平均碳氮比。可以推断,牛粪中的有机氮在蚯蚓堆肥过程中为了满足微生物的营养需求而优先矿化,从而导致了碳氮比升高。由于牛粪中碳氮比相对较低,而碳是微生物种群增长的能量因素,这说明生态系统中的微生物受能量限制,无法提供更多的能量来分泌磷酸酶。因此,微生物可以在群落水平上减少磷酸酶的分泌,以满足氮相关酶分泌的能量需求。此外,微生物群落数据显示,氮循环微生物的相对丰度(比如硝化螺旋菌门 Nitrospirae)在蚓粪中增加,而磷循环微生物(如节细菌属 Arthrobacter)丰度下降(图3 和图6)。这也支持牛粪中的有机氮在蚯蚓堆肥过程中优先矿化的假设。

  • 3.2 蚯蚓堆肥对解磷微生物丰度的影响

  • 相关性分析表明,解磷细菌丰度最高的节细菌属(Arthrobacter)和芽孢杆菌属(Bacillus)与全磷含量呈负相关,与有效磷含量呈正相关(表2)。解磷细菌分别通过分泌磷酸酶和有机酸来激活有机磷和无机磷[33]。据报道,细菌是碱性磷酸酶的主要微生物来源[1434],因此,解磷细菌的减少可能会导致碱性磷酸酶活性的降低,且解磷细菌如芽孢杆菌属(Bacillus)在有机磷矿化过程中起主要作用[17]。因此,本研究中有效磷的减少可能部分归因于解磷细菌的减少。Mupambwa 等[12]和 Hussain 等[19]报道,由于解磷细菌与蚯蚓之间存在共生增效关系,蚯蚓堆肥导致解磷细菌的数量大幅增加。Hussain 等[19]从蚯蚓(Eisenia fetida)肠道中分离出 34 种解磷细菌菌株。然而,蚯蚓堆肥对解磷细菌丰度的正效应在很大程度上取决于蚯蚓种类与饲料成分的亲和性[35]。Mupambwa 等[36]研究表明,有机废弃物的初始化学性质能够显著影响蚓粪的微生物群落组成。在本研究中,牛粪较低的碳氮比可能有利于微生物群落集中于氮矿化,而不是对磷的溶解。此外,细菌群落结构在很大程度上受环境 pH 的影响[37]。本研究发现,pH 与节细菌属(Arthrobacter) 和芽孢杆菌属(Bacillus)的丰度均呈显著正相关。蚯蚓堆肥后 pH 显著下降(图1a),因此,节细菌属(Arthrobacter)和芽孢杆菌属(Bacillus)丰度的降低可能是由于蚓粪的 pH 降低所致。

  • 与解磷细菌不同,解磷真菌经过堆肥后相对丰度显著增加(图7)。然而,本研究发现主要由真菌产生的酸性磷酸酶无显著增加[38]。这可能是由于在蚯蚓堆肥过程中真菌生物量的减少。前人研究表明,蚯蚓堆肥过程中真菌生物量的减少是由于:(1)蚯蚓堆肥过程中易分解化合物的有效性降低,本研究中电导率的降低可以证明这一点; (2)细菌与真菌之间的资源和空间竞争会抑制真菌的生长[39-40];(3)真菌被证明是蚯蚓重要的食物来源[20],与未接种真菌的有机物质相比,蚯蚓优选接种真菌的有机物质进食[41]。因此,利用 33P 来确定蚯蚓和微生物在蚯蚓堆肥过程中对有效磷的吸收程度可能是未来的研究重点。

  • 4 结论

  • 与牛粪相比,蚓粪 pH、电导率、有效磷含量、全碳含量、全氮含量、碳磷比和氮磷比均显著降低,但蚓粪全磷含量和碳氮比显著提高。蚓粪中碱性磷酸酶活性较牛粪低。蚓粪的细菌和真菌多样性显著高于牛粪。蚓粪中解磷细菌节细菌属(Arthrobacter)和芽孢杆菌属(Bacillus)的相对丰度较牛粪显著降低;相反,其他解磷细菌和大多数解磷真菌丰度较牛粪均呈升高趋势。蚯蚓堆肥对有效磷的衰减作用主要取决于原始有机物料的化学性质和解磷微生物的丰度。

  • 参考文献

    • [1] Hou E Q,Chen C R,Luo Y Q,et al.Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems [J].Global Change Biology,2018,24:3344-3356.

    • [2] Desmidt E,Ghyselbrecht K,Zhang Y,et al.Global phosphorus scarcity and full-scale P-recovery techniques:a review[J]. Biocontrol Science and Technology,2015,45(4):336-384.

    • [3] 张藤丽,焉莉,韦大明.基于全国耕地消纳的畜禽粪便特征分布与环境承载力预警分析[J].中国生态农业学报(中英文),2020,28(5):745-755.

    • [4] Pedizzi C,Noya I,Sarli J,et al.Environmental assessment of alternative treatment schemes for energy and nutrient recovery from livestock manure[J].Waste Management,2018,77:276-286.

    • [5] Bhat S A,Singh J,Vig A P.Potential utilization of bagasse as feed material for earthworm Eisenia fetida and production of vermicompost[J].Springer Plus,2015,4:11.

    • [6] Lalander C H,Komakech A J,Vinnerås B.Vermicomposting as manure management strategy for urban small-holder animal farmsKampala case study[J].Waste Management,2015,39:96-103.

    • [7] Kharrazi S M,Younesi H,Abedini-Torghabeh J.Microbial biodegradation of waste materials for nutrients enrichment and heavy metals removal:an integrated composting-vermicomposting process[J].International Biodeterioration and Biodegradation,2014,92:41-48.

    • [8] Lim S L,Wu TY,Lim P N,et al.The use of vermicompost in organic farming:overview,effects on soil and economics[J].Journal of the Science of Food and Agriculture,2015,95:1143-1156.

    • [9] AgullóE,Martínez-Fernández M,Bustamante M Á,et al. Vermicomposting as an added-value post-treatment for livestock waste composts[J].Communications in Soil Science and Plant Analysis,2015,46:208-218.

    • [10] Galba B J,Papa G,Pasqualoto C L,et al.Phosphatase activities and its relationship with physical and chemical parameters during vermicomposting of filter cake and cattle manure [J].Journal of the Science of Food and Agriculture,2016,96(4):1223-1230.

    • [11] Alavi N,Daneshpajou M,Shirmardi M,et al.Investigating the efficiency of co-composting and vermicomposting of vinasse with the mixture of cow manure wastes,bagasse,and natural zeolite [J].Waste Management,2017,69:117-126.

    • [12] Mupambwa H A,Ravindran B,Mnkeni P N S.Potential of effective micro-organisms and Eisenia fetida in enhancing vermidegradation and nutrient release of fly ash incorporated into cow dung-paper waste mixture[J].Waste Management,2016,48:165-173.

    • [13] Ghosh S,Goswami A J,Ghosh G K,et al.Quantifying the relative role of phytase and phosphatase enzymes in phosphorus mineralization during vermicomposting of fibrous tea factory waste [J].Ecological Engineering,2018,116:97-103.

    • [14] Fraser T,Lynch D H,Entz M H,et al.Linking alkaline phosphatase activity with bacterial phoD gene abundance in soil from a long-term management trial[J].Geoderma,2015,257-258:115-122.

    • [15] Jiang Y J,Liu M Q,Zhang J B,et al.Nematode grazing promotes bacterial community dynamics in soil at the aggregate level[J].The ISME Journal,2017,11:2705-2717.

    • [16] Oliveira C A,Alves V M C,Marriel I E,et al.Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome[J].Soil Biology and Biochemistry,2009,41(9):1782-1787.

    • [17] Vinci G,Cozzolino V,Mazzei P,et al.Effects of Bacillus amyloliquefaciens,and different phosphorus sources on maize plants as revealed by NMR and GC-MS based metabolomics[J]. Plant and Soil,2018,429(1):437-450.

    • [18] Huang K,Xia H.Role of earthworms’ mucus in vermicomposting system:biodegradation tests based on humification and microbial activity[J].Science of the Total Environment,2018,610:703-708.

    • [19] Hussain N,Singh A,Saha S,et al.Excellent N-fixing and P-solubilizing traits in earthworm gut-isolated bacteria:a vermicompost based assessment with vegetable market waste and rice straw feed mixtures[J].Bioresource Technology,2016,222:165-174.

    • [20] Xiao Z G,Liu M Q,Jiang L H,et al.Vermicompost increases defense against root-knot nematode(Meloidogyne incognita)in tomato plants[J].Applied Soil Ecology,2016,105:177-186.

    • [21] 陈学民,雷旭阳,伏小勇,等.温度对蚯蚓处理颗粒污泥稳定化过程的影响[J].环境科学学报,2016,36(6):2079-2084.

    • [22] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.

    • [23] Gregorich E G,Carter M R.Soil sampling and methods of analysis[M].Boca Raton:CRC Press,2007.

    • [24] Tabatabai M,Bremner J.Use of p-nitrophenyl phosphate for assay of soil phosphatase activity[J].Soil Biology and Biochemistry,1969,1:301-307.

    • [25] Balajee S A,Sigler L,Brandt M E.DNA and the classical way:identification of medically important molds in the 21st century[J]. Medical Mycology,2007,45:475.

    • [26] Sun W,Qian X,Gu J,et al.Mechanisms and effects of arsanilic acid on antibiotic resistance genes and microbial communities during pig manure digestion[J].Bioresource Technology,2017,234:217-223.

    • [27] Sinsabaugh R L,Lauber C L,Weintraub M N,et al. Stoichiometry of soil enzyme activity at global scale[J].Ecology Letters,2010,11(11):1252-1264.

    • [28] Mouginot C,Kawamura R,Matulich K L,et al.Elemental stoichiometry of fungi and bacteria strains from grassland leaf litter [J].Soil Biology and Biochemistry,2014,76:278-285.

    • [29] Zhang J,Elser J J.Carbon:nitrogen:phosphorus stoichiometry in fungi:a Meta-analysis[J].Frontiers in Microbiology,2017,8:9.

    • [30] Spohn M,Chodak M.Microbial respiration per unit biomass increases with carbon-to-nutrient ratios in forest soils[J].Soil Biology and Biochemistry,2015,81:128-133.

    • [31] Spohn M.Microbial respiration per unit microbial biomass depends on litter layer carbon-to-nitrogen ratio[J]. Biogeosciences,2015,12:817-823.

    • [32] Xu X,Thornton P E,Post W M.A global analysis of soil microbial biomass carbon,nitrogen and phosphorus in terrestrial ecosystems[J].Global Ecology and Biogeography,2013,22:737-749.

    • [33] Nassal D,Spohn M,Eltlbany N,et al.Effects of phosphorusmobilizing bacteria on tomato growth and soil microbial activity[J]. Plant and Soil,2017,8:1-21.

    • [34] Nannipieri P,Giagnoni L,Landi L,et al.Role of phosphatase enzymes in soil[M]//Bünemann E K,Oberson A,Frossard E.Phosphorus in action.Berlin:Springer verlag,2011:215-243.

    • [35] Aira M,Monroy F,Domínguez J.Changes in bacterial numbers and microbial activity of pig slurry during gut transit of epigeic and anecic earthworms[J].Journal of Hazardous Materials,2009,162:1404-1407.

    • [36] Mupambwa H A,Mnkeni P N S.Optimizing the vermicomposting of organic wastes amended with inorganic materials for production of nutrient-rich organic fertilizers:a review[J].Environmental Science and Pollution Research,2018,25(11):10577-10595.

    • [37] Zhou X,Guo Z,Chen C,et al.Soil microbial community structure and diversity are largely influenced by soil pH and nutrient quality in 78-year-old tree plantations[J]. Biogeosciences,2017,14(8):2101-2111.

    • [38] Turner B L,Haygarth P M.Phosphatase activity in temperate pasture soils:potential regulation of labile organic phosphorus turnover by phosphodiesterase activity[J].Science of the Total Environment,2005,344:27-36.

    • [39] Castillo J M,Romero E,Nogales R.Dynamics of microbial communities related to biochemical parameters during vermicomposting and maturation of agroindustrial lignocellulose wastes[J].Bioresource Technology,2013,146:345-354.

    • [40] Gómez-B randón M,Aira M,Lores M,et al.Changes in microbial community structure and function during vermicomposting of pig slurry[J].Bioresource Technology,2011,102:4171-4178.

    • [41] Moody S,Briones M,Piearce T,et al.Selective consumption of decomposing wheat straw by earthworms[J].Soil Biology and Biochemistry,1995,27:1209-1213.

  • 参考文献

    • [1] Hou E Q,Chen C R,Luo Y Q,et al.Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems [J].Global Change Biology,2018,24:3344-3356.

    • [2] Desmidt E,Ghyselbrecht K,Zhang Y,et al.Global phosphorus scarcity and full-scale P-recovery techniques:a review[J]. Biocontrol Science and Technology,2015,45(4):336-384.

    • [3] 张藤丽,焉莉,韦大明.基于全国耕地消纳的畜禽粪便特征分布与环境承载力预警分析[J].中国生态农业学报(中英文),2020,28(5):745-755.

    • [4] Pedizzi C,Noya I,Sarli J,et al.Environmental assessment of alternative treatment schemes for energy and nutrient recovery from livestock manure[J].Waste Management,2018,77:276-286.

    • [5] Bhat S A,Singh J,Vig A P.Potential utilization of bagasse as feed material for earthworm Eisenia fetida and production of vermicompost[J].Springer Plus,2015,4:11.

    • [6] Lalander C H,Komakech A J,Vinnerås B.Vermicomposting as manure management strategy for urban small-holder animal farmsKampala case study[J].Waste Management,2015,39:96-103.

    • [7] Kharrazi S M,Younesi H,Abedini-Torghabeh J.Microbial biodegradation of waste materials for nutrients enrichment and heavy metals removal:an integrated composting-vermicomposting process[J].International Biodeterioration and Biodegradation,2014,92:41-48.

    • [8] Lim S L,Wu TY,Lim P N,et al.The use of vermicompost in organic farming:overview,effects on soil and economics[J].Journal of the Science of Food and Agriculture,2015,95:1143-1156.

    • [9] AgullóE,Martínez-Fernández M,Bustamante M Á,et al. Vermicomposting as an added-value post-treatment for livestock waste composts[J].Communications in Soil Science and Plant Analysis,2015,46:208-218.

    • [10] Galba B J,Papa G,Pasqualoto C L,et al.Phosphatase activities and its relationship with physical and chemical parameters during vermicomposting of filter cake and cattle manure [J].Journal of the Science of Food and Agriculture,2016,96(4):1223-1230.

    • [11] Alavi N,Daneshpajou M,Shirmardi M,et al.Investigating the efficiency of co-composting and vermicomposting of vinasse with the mixture of cow manure wastes,bagasse,and natural zeolite [J].Waste Management,2017,69:117-126.

    • [12] Mupambwa H A,Ravindran B,Mnkeni P N S.Potential of effective micro-organisms and Eisenia fetida in enhancing vermidegradation and nutrient release of fly ash incorporated into cow dung-paper waste mixture[J].Waste Management,2016,48:165-173.

    • [13] Ghosh S,Goswami A J,Ghosh G K,et al.Quantifying the relative role of phytase and phosphatase enzymes in phosphorus mineralization during vermicomposting of fibrous tea factory waste [J].Ecological Engineering,2018,116:97-103.

    • [14] Fraser T,Lynch D H,Entz M H,et al.Linking alkaline phosphatase activity with bacterial phoD gene abundance in soil from a long-term management trial[J].Geoderma,2015,257-258:115-122.

    • [15] Jiang Y J,Liu M Q,Zhang J B,et al.Nematode grazing promotes bacterial community dynamics in soil at the aggregate level[J].The ISME Journal,2017,11:2705-2717.

    • [16] Oliveira C A,Alves V M C,Marriel I E,et al.Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome[J].Soil Biology and Biochemistry,2009,41(9):1782-1787.

    • [17] Vinci G,Cozzolino V,Mazzei P,et al.Effects of Bacillus amyloliquefaciens,and different phosphorus sources on maize plants as revealed by NMR and GC-MS based metabolomics[J]. Plant and Soil,2018,429(1):437-450.

    • [18] Huang K,Xia H.Role of earthworms’ mucus in vermicomposting system:biodegradation tests based on humification and microbial activity[J].Science of the Total Environment,2018,610:703-708.

    • [19] Hussain N,Singh A,Saha S,et al.Excellent N-fixing and P-solubilizing traits in earthworm gut-isolated bacteria:a vermicompost based assessment with vegetable market waste and rice straw feed mixtures[J].Bioresource Technology,2016,222:165-174.

    • [20] Xiao Z G,Liu M Q,Jiang L H,et al.Vermicompost increases defense against root-knot nematode(Meloidogyne incognita)in tomato plants[J].Applied Soil Ecology,2016,105:177-186.

    • [21] 陈学民,雷旭阳,伏小勇,等.温度对蚯蚓处理颗粒污泥稳定化过程的影响[J].环境科学学报,2016,36(6):2079-2084.

    • [22] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.

    • [23] Gregorich E G,Carter M R.Soil sampling and methods of analysis[M].Boca Raton:CRC Press,2007.

    • [24] Tabatabai M,Bremner J.Use of p-nitrophenyl phosphate for assay of soil phosphatase activity[J].Soil Biology and Biochemistry,1969,1:301-307.

    • [25] Balajee S A,Sigler L,Brandt M E.DNA and the classical way:identification of medically important molds in the 21st century[J]. Medical Mycology,2007,45:475.

    • [26] Sun W,Qian X,Gu J,et al.Mechanisms and effects of arsanilic acid on antibiotic resistance genes and microbial communities during pig manure digestion[J].Bioresource Technology,2017,234:217-223.

    • [27] Sinsabaugh R L,Lauber C L,Weintraub M N,et al. Stoichiometry of soil enzyme activity at global scale[J].Ecology Letters,2010,11(11):1252-1264.

    • [28] Mouginot C,Kawamura R,Matulich K L,et al.Elemental stoichiometry of fungi and bacteria strains from grassland leaf litter [J].Soil Biology and Biochemistry,2014,76:278-285.

    • [29] Zhang J,Elser J J.Carbon:nitrogen:phosphorus stoichiometry in fungi:a Meta-analysis[J].Frontiers in Microbiology,2017,8:9.

    • [30] Spohn M,Chodak M.Microbial respiration per unit biomass increases with carbon-to-nutrient ratios in forest soils[J].Soil Biology and Biochemistry,2015,81:128-133.

    • [31] Spohn M.Microbial respiration per unit microbial biomass depends on litter layer carbon-to-nitrogen ratio[J]. Biogeosciences,2015,12:817-823.

    • [32] Xu X,Thornton P E,Post W M.A global analysis of soil microbial biomass carbon,nitrogen and phosphorus in terrestrial ecosystems[J].Global Ecology and Biogeography,2013,22:737-749.

    • [33] Nassal D,Spohn M,Eltlbany N,et al.Effects of phosphorusmobilizing bacteria on tomato growth and soil microbial activity[J]. Plant and Soil,2017,8:1-21.

    • [34] Nannipieri P,Giagnoni L,Landi L,et al.Role of phosphatase enzymes in soil[M]//Bünemann E K,Oberson A,Frossard E.Phosphorus in action.Berlin:Springer verlag,2011:215-243.

    • [35] Aira M,Monroy F,Domínguez J.Changes in bacterial numbers and microbial activity of pig slurry during gut transit of epigeic and anecic earthworms[J].Journal of Hazardous Materials,2009,162:1404-1407.

    • [36] Mupambwa H A,Mnkeni P N S.Optimizing the vermicomposting of organic wastes amended with inorganic materials for production of nutrient-rich organic fertilizers:a review[J].Environmental Science and Pollution Research,2018,25(11):10577-10595.

    • [37] Zhou X,Guo Z,Chen C,et al.Soil microbial community structure and diversity are largely influenced by soil pH and nutrient quality in 78-year-old tree plantations[J]. Biogeosciences,2017,14(8):2101-2111.

    • [38] Turner B L,Haygarth P M.Phosphatase activity in temperate pasture soils:potential regulation of labile organic phosphorus turnover by phosphodiesterase activity[J].Science of the Total Environment,2005,344:27-36.

    • [39] Castillo J M,Romero E,Nogales R.Dynamics of microbial communities related to biochemical parameters during vermicomposting and maturation of agroindustrial lignocellulose wastes[J].Bioresource Technology,2013,146:345-354.

    • [40] Gómez-B randón M,Aira M,Lores M,et al.Changes in microbial community structure and function during vermicomposting of pig slurry[J].Bioresource Technology,2011,102:4171-4178.

    • [41] Moody S,Briones M,Piearce T,et al.Selective consumption of decomposing wheat straw by earthworms[J].Soil Biology and Biochemistry,1995,27:1209-1213.

  • 《中国土壤与肥料》招聘启事
    关闭