en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

肖广敏(1989-),助理研究员,博士,主要从事农田碳氮循环等方面的研究。E-mail:xgm8945491@163.com。

通讯作者:

孙世友,E-mail:sunshiyou@126.com。

参考文献 1
Lal R.Carbon management in agricultural soils[J].Mitigation and Adaptation Strategies for Global Change,2007,12(2):303-322.
参考文献 2
徐明岗,张旭博,孙楠,等.农田土壤固碳与增产协同效应研究进展[J].植物营养与肥料学报,2017,23(6):1441-1449.
参考文献 3
Franzluebbers A J.Soil organic carbon sequestration and agricultural greenhouse gas emissions in the southeastern USA[J].Soil and Tillage Research,2005,83(1):120-147.
参考文献 4
Powlson D S,Whitmore A P,Gouldin K W T.Soil carbon sequestration to mitigate climate change:a critical re-examination to identify the true and the false[J].European Journal of Soil Science,2011,62(1):42-55.
参考文献 5
Kelliher F M,Condron L M,Cook F J,et al.Sixty years of seasonal irrigation affects carbon storage in soils beneath pasture grazed by sheep[J].Agriculture,Ecosystems and Environment,2012,148(4):29-36.
参考文献 6
Chai Y,Ma S,Zeng X,et al.Long-term fertilization effects on soil organic carbon stocks in the irrigated desert soil of NW China [J].Journal of Plant Nutrition and Soil Science,2015,178(4):622-630.
参考文献 7
梁尧,苑亚茹,韩晓增,等.化肥配施不同剂量有机肥对黑土团聚体中有机碳与腐殖酸分布的影响[J].植物营养与肥料学报,2016,22(6):1586-1594.
参考文献 8
Ji Q,Wang Y,Chen X N,et al.Tillage effects on soil aggregation,organic carbon fractions and grain yield in EumOrthic Anthrosol of a winter wheat-maize double-cropping system,Northwest China[J].Soil Use Manage,2016,31(4):504-514.
参考文献 9
Wiesmeier M,Lützow M V,Spörlein P,et al.Land use effects on organic carbon storage in soils of Bavaria:the importance of soil types[J].Soil and Tillage Research,2015,146(3):296-302.
参考文献 10
张维理,Kolbe H,张认连,等.农田土壤有机碳管理与有机质平衡算法[J].中国农业科学,2020,53(2):332-345.
参考文献 11
张秀芝,高洪军,彭畅,等.长期有机培肥黑土有机碳、全氮及玉米产量稳定性的变化特征[J].植物营养与肥料学报,2019,25(9):1473-1481.
参考文献 12
陈洁,梁国庆,周卫,等.长期施用有机肥对稻麦轮作体系土壤有机碳氮组分的影响[J].植物营养与肥料学报,2019,25(1):36-44.
参考文献 13
Liao Y,Wu W L,Meng F Q,et al.Increase in soil organic carbon by agricultural intensification in northern China[J]. Biogeosciences,2015,12(5):1403-1413.
参考文献 14
Zhang W J,Wang X J,Xu M G,et al.Soil organic carbon dynamics under long-term fertilizations in arable land of northern China[J].Biogeosciences,2010,7(2):409-425.
参考文献 15
Bajgai Y,Kristiansen P,Hulugalle N,et al.Changes in soil carbon fractions due to incorporating corn residues in organic and conventional vegetable farming systems[J].Soil Research,2014,52(3):244-252.
参考文献 16
Tao B,Tian H,Chen G,et al.Terrestrial carbon balance in tropical Asia:contribution from cropland expansion and land management[J].Global Planet Change,2015,100(3):85-98.
参考文献 17
Li B Z,Song H,Cao W C,et al.Responses of soil organic carbon stock to animal manure application:a new global synthesis integrating the impacts of agricultural managements and environmental conditions[J].Global Change Biology,2021,27(20):5356-5367.
参考文献 18
Don A,Schumacher J,Freibauer A.Impact of tropical landuse change on soil organic carbon stocks-a meta-analysis[J]. Global Change Biology,2011,17(4):1658-1670.
参考文献 19
全国土壤普查办公室.中国土壤[M].北京:中国农业出版社,1998:356.
参考文献 20
方晓,蔡冰,郑石.我国年平均气温和冬季气温研究进展 [J].安徽农业科学,2016,12(5):153-154.
参考文献 21
尚宗波,高琼,杨奠安.利用中国气候信息系统研究年降水量空间分布规律[J].生态学报,2001,21(5):689-693.
参考文献 22
Hedges L V,Gurevitch J,Curtis P S.The meta-analysis of response ratios in experimental ecology[J].Ecology,1999,80(4):1150-1156.
参考文献 23
Pallmann P.Applied meta-analysis with R[J].Journal of Applied Statistics,2015,42(4):914-915.
参考文献 24
何寒青,陈坤.Meta 分析中的异质性检验方法[J].中国卫生统计,2006,23(6):486-487.
参考文献 25
Fragkos K C,Tsagris M,Frangos C C.Publication bias in metaanalysis:confidence intervals for Rosenthal’s fail-safe number[J]. International Scholarly Research Notices,2014,2014(3):1-17.
参考文献 26
Viechtbauer W.Conducting meta-analyses in R with the meta for package[J].Journal of Statistical Software,2010,36(3):1-48.
参考文献 27
任科宇,徐明岗,张露,等.我国不同区域粮食作物产量对有机肥施用的响应差异[J].农业资源与环境学报,2021,38(1):143-150.
参考文献 28
Rodriguez V F,Ghimire B,Rogan J,et al.An assessment of the effectiveness of a random forest classifier for land-cover classification[J].ISPRS Journal of Photogrammetry and Remote Sensing,2012,67(1):93-104.
参考文献 29
Chenu C,Angers D A,Barre P,et al.Increasing organic stocks in agricultural soils:knowledge gaps and potential innovations[J]. Soil and Tillage Research,2019,188(3):41-52.
参考文献 30
Xia L L,Lam S K,Yan X Y,et al.How does recycling of livestock manure in agroecosystems affect crop productivity,reactive nitrogen losses,and soil carbon balance[J]. Environmental Science and Technology,2017,51(13):7450-7457.
参考文献 31
Liu S,Wang J,Pu S,et al.Impact of manure on soil biochemical properties:a global synthesis[J].The Science of the Total Environment,2020,745(1):141003.
参考文献 32
Maillard E,Angers D A.Animal manure application and soil organic carbon stocks:a meta-analysis[J].Global Change Biology,2014,20(4):666-679.
参考文献 33
贾伟.我国粪肥养分资源现状及其合理利用分析[D].北京:中国农业大学,2014.
参考文献 34
Choudhury S G,Yaduvanshi N P S,Chaudhari S K,et al. Effect of nutrient management on soil organic carbon sequestration,fertility,and productivity under rice-wheat cropping system in semi-reclaimed sodic soils of North India[J].Environmental Monitoring and Assessment,2018,190(3):117-124.
参考文献 35
Chen D M,Yuan L,Liu Y,et al.Long-term application of manures plus chemical fertilizers sustained high rice yield and improved soil chemical and bacterial properties[J].European Journal of Agronomy,2017,90(4):34-42.
参考文献 36
Guo Z,Zhang Z,Zhou H,et al.The effect of 34-year continuous fertilization on the SOC physical fractions and its chemical composition in a Vertisol[J].Scientific Report,2019,9(1):2505-2512.
参考文献 37
李昊昱,孟兆良,庞党伟,等.周年秸秆还田对农田土壤固碳及冬小麦-夏玉米产量的影响[J].作物学报,2019,45(6):893-903.
参考文献 38
Liu C,Lu M,Cui J,et al.Effects of straw carbon input on carbon dynamics in agricultural soils:a meta-analysis[J]. Global Change Biology,2014,20(5):1366-1381.
参考文献 39
蔡岸冬,张文菊,杨品品,等.基于 Meta-Analysis 研究施肥对中国农田土壤有机碳及其组分的影响[J].中国农业科学,2015,48(15):2995-3004.
参考文献 40
Chen Y S,Camps M,Shen Q H,et al.The long-term role of organic amendments in building soil nutrient fertility:a metaanalysis and review[J].Nutrient Cycling in Agroecosystems,2018,111(2):103-125.
参考文献 41
Chen D M,Li J J,Lan Z C,et al.Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment[J]. Functional Ecology,2015,30(4):658-669.
参考文献 42
董林林.宁夏灌淤时间序列的土壤碳库量演变研究[D]. 南京:南京师范大学,2012.
参考文献 43
Wang Y D,Hu N,Xu M G,et al.23-year manure and fertilizer application increase soil organic carbon sequestration of a rice-barley cropping system[J].Biology and Fertility Soils,2015,51(3):583-591.
参考文献 44
Yan X,Zhou H,Zhu Q H,et al.Carbon sequestration efficiency in paddy soil and upland soil under long-term fertilization in southern China[J].Soil and Tillage Research,2013,130(1):42-51.
参考文献 45
Zuijdeest A,Baumgarther S,Wehrli B.Hysteresis effects in organic matter turnover in a tropical floodplain during a flood cycle [J].Biogeochemistry,2016,131(1):49-63.
参考文献 46
Zhao Y,Wu S X,Bol R,et al.Intensive organic vegetable production increases soil organic carbon but with a lower carbon conversion efficiency than integrated management[J].Journal of Plant Nutrition and Soil Science,2020,183(2):155-168.
参考文献 47
Mao D H,Wang Z M,Li L,et al.Soil organic carbon in the Sanjiang Plain of China:storage,distribution and controlling factors[J].Biogeosciences,2015,12(6):1635-1645.
参考文献 48
Ren F L,Zhang X B,Liu J,et al.A synthetic analysis of livestock manure substitution effects on organic carbon changes in China’s arable topsoil[J].Catena,2018,171(4):1-10.
参考文献 49
Song G H,Li L Q,Pan G X,et al.Topsoil organic carbon storage of China and its loss by cultivation[J].Biogeochemistry,2005,74(1):47-62.
参考文献 50
Han P F,Zhang W,Wang G C,et al.Changes in soil organic carbon in croplands subjected to fertilizer management:a global meta-analysis[J].Scientific Reports,2016,6(1):1-12.
参考文献 51
Luo G W,Li L,Friman V P,et al.Organic amendments increase crop yields by improving microbe-mediated soil functioning of agroecosystems:a meta-analysis[J].Soil Biology and Biochemistry,2018,124(1):105-115.
参考文献 52
Han X,Xu C,Dungait J A J,et al.Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China:a system analysis[J].Biogeosciences,2018,15(7):1933-1946.
参考文献 53
Guo L,Lin E.Carbon sink in cropland soils and the emission of greenhouse gases from paddy soils:a review of work in China[J]. Global Change Science,2001,3(4):413-418.
参考文献 54
Zhao G M,Miao Y X,Wang H Y,et al.A preliminary precision rice management system for increasing both grain yield and nitrogen use efficiency[J].Field Crop Research,2013,154(1):23-30.
参考文献 55
Cui J,Zhang R,Bu N,et al.Changes in soil carbon sequestration and soil respiration following afforestation on paddy fields in north subtropical China[J].Journal of Plant Ecology,2013,6(1):240-252.
参考文献 56
Ding X L,Yuan Y R,Liang Y,et al.Impact of long-term application of manure,crop residue,and mineral fertilizer on organic carbon pools and crop yields in a Mollisol[J].Journal of Soils and Sediments,2014,14(5):854-859.
参考文献 57
Zhao Y C,Wang M Y,Hu S J,et al.Economics-and policydriven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands[J].Proceedings of the National Academy of Sciences,2018,115(16):4045-4050.
目录contents

    摘要

    土壤有机碳含量是土壤肥力的重要标志,有机物料添加对于提升土壤有机碳含量具有重要作用。但是不同自然条件和农艺措施下有机物料添加对土壤有机碳含量的系统性影响尚不明确。研究搜集了国内外公开发表的相关文献数据,并建立了有机物料投入下农田土壤有机碳变化的数据库。运用整合(Meta)分析方法定量分析有机物料投入对表层土壤有机碳含量影响的综合效应,进而量化分析自然因素和人为因素对表层土壤有机碳含量的影响。研究结果表明,与不施肥相比,施用有机物料可以显著增加表层土壤有机碳 41.9%。不同区域、土壤质地、土壤 pH、初始有机碳含量、碳投入量、有机物料类型、施用有机物料时间和种植制度条件下,施用有机物料对表层土壤有机碳含量的影响均存在显著差异。在华北地区有机碳的增加率最大(58.3%),且显著高于东北地区(31.5%)和西北地区(32.1%);黏土(48.2%)和壤土(41.7%)有机碳增加率均显著高于砂土(25.0%); 碱性土壤(50.9%)有机碳增加率显著高于酸性土壤(29.4%);土壤初始有机碳含量 <6 g/kg 的土壤有机碳增加率(90.3%)显著高于土壤初始有机碳含量 6 ~ 12 和 >12 g/kg 的土壤有机碳增加率(37.5% 和 38.2%);累计碳投入量 >100 Mg/hm2 时土壤有机碳增加率(87.8%)显著大于累计碳投入量 <50 和 50 ~ 100 Mg/hm2 (15.6% 和 36.7%);施用粪肥土壤有机碳增加率(46.5%)显著高于施用秸秆(33.6%);施用有机物料时间 <10 年的土壤有机碳增加率(16.6%)显著低于施用有机物料 10 ~ 20 和 >20 年(47.0% 和 52.2%);种植制度为一年两熟时施用有机物料土壤有机碳增加率(47.8%)显著高于种植制度为一年一熟(32.4%)。综上,施用有机物料对提升土壤有机碳含量具有重要意义。提升土壤有机碳含量需要考虑不同区域特点,加大单季有机物料用量,坚持长期施用有机物料以及秸秆还田和施用粪肥相结合是提升土壤有机碳的最重要措施。

    Abstract

    Soil organic carbon content is an important index reflecting soil fertility,and the addition of organic materials plays an important role in improving soil organic carbon content. However,the systematic effect of organic material addition on soil organic carbon content under different natural conditions and agronomic practices is still unclear. By using the data collected from published literatures,a data set with the same soil organic carbon fractionation method from independent research was built up. Meta-analysis method was used to quantify the effect degree of applying organic materials on soil organic carbon content,and then the effects of natural factors and human factors on soil organic carbon content were quantitatively analyzed. The result showed that,compared with no fertilizer treatment,organic materials application significantly increased soil organic carbon content by 41.9%. The effects of applying organic materials on soil organic carbon content under different experiment region,soil texture,soil pH,initial soil organic carbon content,organic materials type,experiment duration and planting system were significantly different. The increase rate of soil organic carbon in North China(58.3%)was the highest and significantly higher than that in Northeast China(31.5%)and Northwest China(32.1%). The increase rate of organic carbon in clay and loam soil(48.2% and 41.7%)was significantly higher than that in sandy soil(25.0%),and that in acid soil(29.4%)was significantly lower than that in alkaline soil(50.9%). The increase rate of soil organic carbon content(90.3%)with low initial soil organic carbon content(<6 g/kg)was significantly higher than those(37.7% and 38.2%)with high initial soil organic carbon content(6-12 g/kg and > 12 g/kg). The increase rate of soil organic carbon (87.8%)was significantly higher when the cumulative carbon inpute was >100 Mg/hm2 than those(15.6% and 36.7%) when the cumulative carbon input was <50 and 50-100 Mg/hm2 . The increase rate of soil organic carbon by applying manure (46.5%)was significantly higher than that by applying straw(33.6%). The increase rate of soil organic carbon content (16.6%)in short time(<10 years)was significantly lower than that(47.0% and 52.2%)in long time(10-20 years and >20 years). The increase rate of soil organic carbon(47.8%)was significantly higher in double cropping system than that (32.4%)in single cropping system. Application of organic materials is of great significance to increase soil organic carbon content. From these results we concluded that to improve soil organic carbon content,soil characteristics of different regions should be considered. The most important measures to improve soil organic carbon content are to increase the amounts of organic materials per season,adhere to long-term application of organic materials and combine straw returning with manure application.

  • 土壤碳库是地球表层系统中最大的碳库[1],土壤有机碳是衡量土壤肥力的重要指标,有机碳固存对提升农田土壤肥力、维持作物生产力有重要作用[2]。研究证明土壤有机碳是大气中二氧化碳主要的源和汇[3],在温室气体的动态变化过程中起着重要作用,增加农田土壤有机碳被认为是减缓全球气候变暖的重要措施[4]。我国农田耕层土壤有机碳的平均含量为 10~30 g/kg,远低于欧美等发达国家水平(25~40 g/kg)[2],因此提高农业生态系统的土壤有机碳水平对于改善土壤质量、减缓全球气候变化、实现碳中和具有重要意义。农业土壤固碳一直受到科学界的广泛关注,近年来已开展了大量针对灌溉[5]、施肥[6-7]、耕作[8]、土地利用变化[9]等因素对农田土壤有机碳影响的研究工作。外源有机物料的投入(有机肥施用和秸秆还田)是增加土壤有机碳最直接的方式[10]。张秀芝等[11] 在东北黑土区经过 38 年的定位试验发现,与不施肥相比,单施有机肥和有机无机配施可以显著提高土壤有机碳含量的 30%~70%。在南方稻麦轮作体系中,与不施肥相比,单施有机肥和有机、无机配施可以显著提高土壤有机碳含量 20%~40%[12]。在华北平原地区秸秆还田条件下土壤有机碳增加了 41%[13]。不同区域的气候条件、土壤性质及人为因素对土壤有机碳变化都具有重要影响。Zhang 等[14] 通过对中国 6 个长期试验站的研究发现,西北地区土壤固碳速率是华北地区的 2~4 倍,Bajgai 等[15]研究表明,在黏土区中玉米根茬还田对土壤有机碳的增加量显著高于砂土区。由于土壤有机碳变化受自然因素和人为因素影响较大,不同时空条件下土壤有机碳对施用有机肥的响应差异很大,导致难以评估施用有机肥对农田土壤有机碳变化的贡献[16]。不同因素对施用有机物料后土壤有机碳变化的影响程度及不同因素的相对重要性缺乏有效的评估,限制了通过制定合理的肥料管理策略提高土壤有机碳以及完善温室气体清单中由施肥引起的有机碳变化因子的能力[17]。基于一个或多个长期定位试验无法准确反映有机物料投入对土壤有机碳的影响。为了研究不同条件下有机物料投入对土壤有机碳的影响程度,须利用这些相对独立的研究进行大样本数据的综合分析。整合(Meta)分析是一种常用的统计方法,通常用于量化多个独立研究的结果,并以此为基础在大范围内得出定量结果[18]。本文通过对已发表文献数据的收集,采用 Meta 分析的办法,定量分析全国范围内有机物料投入对农田土壤有机碳含量的影响,并进一步量化分析不同自然因素和人为因素对农田土壤有机碳含量的影响,为提高农田土壤有机碳含量、进而提升土壤肥力以及减缓气候变化提供科学依据。

  • 1 研究方法

  • 1.1 数据来源

  • 本研究通过对中国知网数据库(CNKI)和 Web of Science 核心合集英文数据库(WOS)1990 年至 2021 年以来公开发表的文献进行检索并从中获取分析所需数据。以“秸秆还田”“有机肥”“土壤有机碳”和“土壤有机质”为关键词在 CNKI 数据库进行检索,以“straw return”“organic manure”“soil organic carbon” 和“soil organic matter” 为关键词在 WOS 数据库进行检索。按以下条件对文献进行筛选:(1)试验地点需在中国境内,必须包含配对的处理组和对照组,对照为不施肥处理 (不施任何肥料),处理组为施有机肥处理(单施有机肥和有机无机配施,其中有机、无机配施,无机肥需同时包含氮磷钾肥);(2)采样层次为表层土壤(0~20 cm);(3)试验必须为田间试验(不包括室内模拟试验和模型模拟试验)且至少持续 3 年以上,以主要粮食作物(小麦、玉米、水稻)为研究对象;(4)试验至少设置 3 个重复,试验结果包含平均值和标准差(SD)或标准误差(SE);(5)对于同一试验设计不同时间发表的数据同一时间段内(<10 年,10~20 年,>20 年)只统计试验时间最长的数据。最终筛选出 74 篇文献 190 组数据建立数据库,提取文献中的土壤有机碳或土壤有机质平均含量、SD 或 SE 及其他相关信息(试验区域、土壤质地、土壤 pH、土壤初始有机碳、利用方式、有机肥类型、轮作制度等)。在进行文献数据提取时,以文字、表格形式出现的数据直接提取,若文献中数据以图的形式出现则用 Get⁃Data Graph Digitizer 2.24 进行提取。文献中只提供 SE 则通过公式(1)转化为 SD,文献中只提供有机质含量则通过公式(2)转化为有机碳含量。

  • SD=SE×N
    (1)
  • SOC=SOM×0.58
    (2)
  • 式中,N 为试验重复数,0.58 是土壤有机质转化为土壤有机碳的转化系数。

  • 1.2 数据分类

  • 考虑到有机物料投入对土壤有机碳的影响受多方面因素影响,对不同影响因素进行分组分级。依据地理区域划分将试验区域分为西北、东北、华北、华东和南方,不同区域的具体划分及基本信息见表1;土壤质地分为黏土、壤土和砂土;土壤 pH 分为酸性(<6.5)、中性(6.5~7.5)和碱性 (>7.5);初始有机碳按照第二次土壤普查分类标准分为高、中、低 3 级[19]。年均温度(MAT)和年均降水量(MAP)分为高、中、低 3 级[20-21];试验时间分为短、中、长 3 级;有机物料类型分为两类:粪便类(粪便直接堆腐还田和施用以粪便为原料的有机肥)、秸秆类(秸秆直接还田和施用以秸秆为原料的有机肥);土地利用方式分为旱田、水田和水旱轮作;种植制度分为一年一熟和一年两熟。

  • 1.3 Meta 分析过程

  • 1.3.1 效应值计算

  • 选取生态学领域常用的反应比(R)的自然对数 lnR 作为效应值,评价有机物料投入对土壤有机碳含量的影响[22]。具体计算公式如下:

  • lnR=lnxt/xc=lnxt-lnxc
    (3)
  • 式中,lnR 为效应值,xtxc 分别表示不施肥处理与有机物料投入处理下土壤有机碳均值,单位为 g/kg。

  • Meta 分析是对每项独立研究的效应值进行加权计算,得到总体平均效应值 lnR++。计算时,需要确定每项独立研究的方差 Vi、权重 Wi,具体的公式如下:

  • 表1 研究区域基础信息

  • 注:表中省(自治区)仅包含检索到数据的地区,括号中数字为数据范围。

  • Vi=SDt2NtCt2+SDc2NcCc2
    (4)
  • Wi=1Vi
    (5)
  • lnR++=lnRi×Wi/Wi
    (6)
  • 式中,SDtSDc 分别表示不施肥处理与有机物料投入处理的土壤有机碳含量的标准差,NtNc 为重复数。

  • 为了便于对结果进行解释,将结果转化为 R++,有机物料投入相对不施肥的土壤有机碳增长率(Z) 根据公式(6)进行计算:

  • Z=R++-1×100%
    (7)
  • 若平均效应值的 95% 置信区间(CI)全部大于 0 则表明对土壤有机碳的增长具有正效应,全部 <0 则表明对土壤有机碳的增长具有负效应,包含 0 则表明对土壤有机碳影响不显著。若亚组分析内同组不同级别效应值 95%CI 重叠则表明没有显著差异[23]

  • 1.3.2 异质性检验

  • 在合并每一项独立研究效应值计算平均效应值前,需采用卡方检验对数据进行异质性检验,若检验结果 P>0.05,则表示无异质性,选择固定效应模型,否则选择随机效应模型,在进行亚组分析时同样需要进行组间异质性分析,当组间异质性 P<0.05 达到显著差异表明该分组对土壤有机碳含量有显著影响[24]。异质性检验结果见表2。

  • 表2 异质性检验结果

  • 注:P 表示异质性检验的显著程度。

  • 1.3.3 发表偏倚检验

  • Meta 分析是基于各项独立研究基础进行的系统性研究,因此 Meta 分析的使用需要注重发表偏倚性的问题[25]。在本研究中采用失安全系数法对收集到的数据进行发表偏倚检验。失安全系数的阈值为(5n+10),其中 n 为 Meta 分析中收集到的数据量,当 Meta 分析数据失安全系数低于阈值时表明研究存在发表偏倚性问题,无法通过 Meta 分析得到准确结果[26]。经计算本研究的失安全系数为 28358,该数值远大于本研究的失安全系数阈值 960,因此不存在发表偏倚。

  • 1.4 统计分析

  • 本研究使用 Excel 2013 记录文献数据、建立数据库,并进行基本的统计计算。Meta 分析过程使用 Meta win 2.1 进行,平均效应值的计算采用随机效应模型自举法,各因素影响有机物料固碳效果的重要度用 R 语言中的软件包 Random Forest 进行计算[27],作图为 Origin 9.1。

  • 2 结果与分析

  • 2.1 土壤有机碳含量分布及施用有机物料对有机碳影响的平均效应值

  • 收集的文献资料中不同区域不施肥处理和施有机物料处理的土壤有机碳含量见图1。不施肥处理在西北、东北、华北、华东和南方地区的土壤有机碳含量范围分别为 7.30~15.91、11.50~26.00、 2.73~10.00、2.00~16.43 和 4.86~20.14 g/kg。施肥处理各区域土壤有机碳含量范围分别为 7.79~25.00、12.00~33.40、4.10~16.67、 2.80~27.00 和 6.44~33.57 g/kg。不施肥处理的平均土壤有机碳含量表现为东北(17.31 g/kg)>南方(15.18 g/kg)>西北(10.63 g/kg)>华东(10.53 g/ kg)>华北(6.87 g/kg),东北地区不施肥处理土壤有机碳含量分别比南方、西北、华东和华北地区高 14.03%、62.84%、64.49% 和 151.97%。施有机物料处理平均土壤有机碳含量表现为东北(22.61 g/kg)>南方(21.13 g/kg)>华东(15.36 g/kg)>西北(14.41 g/kg)>华北(10.84 g/kg),东北地区施有机物料处理土壤有机碳含量分别比南方、西北、华东和华北地区高 7.00%、47.20%、56.9% 和 108.58%。

  • 图1 不同区域不同处理土壤有机碳含量

  • 采用随机效应模型计算了全国范围内有机物料投入对土壤有机碳含量影响的平均效应值(表3)。结果表明,全国范围内与不施肥相比施用有机物料可以显著增加土壤有机碳的含量达 41.91%(95%CI 37.22%~47.02%)。

  • 表3 施用有机物料对土壤有机碳含量影响的平均效应值

  • 2.2 有机物料投入对土壤有机碳影响的 Meta 亚组分析

  • 通过异质性检验发现在影响土壤有机碳含量的自然因素中除平均温度和平均降水量外,其他因素(区域、土壤质地、土壤 pH 和土壤初始有机碳含量)均存在组间异质性,对土壤有机碳含量有显著影响(图2)。与不施肥相比,有机物料投入在所处区域、土壤质地、土壤 pH 和初始土壤有机碳含量条件下的 95%CI 均大于 0,表明在上述条件下施用有机物料可以显著提高土壤有机碳含量。华北地区有机物料投入后土壤有机碳的增长率为 58.20%(95%CI 45.19%~71.7%),显著高于西北地区(32.12%,95%CI 24.16%~42.13%)和东北地区(31.54%,95%CI 22.08%~41.53%),高出约 25 个百分点,但是与南方地区(40%,95%CI 32.05%~47.85%) 和华东地区(48.53%,95%CI 36.39%~65.26%)无显著差异。砂土区土壤有机碳增长率为 25.01%(95%CI 18.58%~34.45%),显著低于壤土区(48.20%,95%CI 41.35%~55.92%) 和黏土区(41.65%,95%CI 36.19%~50.27%),低出 17~23 个百分点,但壤土区与黏土区相比没有显著差异。土壤呈酸性时土壤有机碳增长率 29.43%(95%CI 23.86%~34.00%),显著低于中性土壤(50.93%,95%CI 35.03%~79.93%) 和碱性土壤(49.81%,95%CI 41.97%~56.83%) 的土壤有机碳增长率,低约 22 个百分点,但中性土壤和碱性土壤间没有显著差异。土壤初始有机碳含量水平低时土壤有机碳的增长率为 90.26%(95%CI 67.38%~118.36%),显著高于中等水平(37.46%, 95%CI 31.51%~45.37%)和高水平(38.17%, 95%CI 32.55%~43.94%),高约 50 个百分点,但初始有机碳中等水平和高水平之间没有显著差异。

  • 图2 自然因素对土壤有机碳增长率的影响

  • 注:括号内数值为数据量。下同。

  • 人为因素中除土地利用方式外,试验时间和种植制度均存在组间异质性,对土壤有机碳含量有显著影响(图3)。施用粪肥的土壤有机碳增长率为 46.46%(95%CI 40.60%~52.64%),显著高于施用秸秆的土壤有机碳增长率(33.56%,95%CI 26.24%~41.43%),高约 13 个百分点。有机物料投入低于 10 年的试验土壤有机碳的增长率为 16.62%(95%CI 13.59%~19.88%),显著低于持续时间 10~20 年的试验(47.00%, 95%CI 39.06%~55.82%)和持续时间大于 20 年的试验土壤有机碳的增长率(52.20%,95%CI 44.74%~60.00%),低 30~36 个百分点。一年两熟条件下土壤有机碳增长率为 47.81% (95%CI 41.93%~54.77%),显著高于一年一熟条件下土壤有机碳增长率(32.37%,95%CI 25.53%~40.45%),高约 15 个百分点。

  • 图3 人为因素对土壤有机碳增长率的影响

  • 2.3 各因素对土壤有机碳含量影响的重要性

  • 采用随机森林模型对亚组分析中显著影响土壤有机碳含量的因素进行重要性排序,结果见图4。IncNodePurity 即 increase in node purity,通过残差平方和来度量,代表了每个变量对分类树每个节点上观测值的异质性的影响,从而比较变量的重要性。该值越大表示该变量的重要性越大[28]。分析结果表明,试验时间和土壤初始有机碳含量是对土壤有机碳含量变化影响最显著的两个因素,其 IncNodePurity 值均大于 1,其他因素的 IncNodePurity 均低于 0.6,对土壤有机碳含量影响的重要程度较低。

  • 图4 影响有机碳含量的主要因素重要性

  • 3 讨论

  • 3.1 施用有机物料对土壤有机碳含量的影响

  • 大量研究表明,长期施用有机物料可明显提升土壤有机碳含量。施用有机物料后土壤有机碳水平的变化取决于微生物分解过程中有机碳输入和碳损失之间的平衡[29]。本研究运用 Meta 分析的方法,发现施用有机物料可以显著提升土壤有机碳含量,此结论与前人研究一致[30-31]。施用外源有机物料增加土壤有机碳主要有两方面的原因,首先施用外源有机物料可以增加直接碳输入和间接碳输入[32]。一方面,有机物料中含有大量碳元素[33],施用有机物料直接向农田土壤中输入大量外源碳。另一方面,有机物料中包含多种植物生长所需的营养元素,增加土壤养分的供应能力[34],提高作物生物量,促进更多的根系分泌物和作物残留物进入土壤,间接增加了碳输入[35-36];其次,施用有机物料改善土壤结构,促进土壤微团聚体转化为大团聚体,减缓土壤本身有机碳分解,增加土壤的固碳能力[37-38]。本研究结果表明,与不施肥相比,施用有机物料后土壤有机碳的增长率为 41.91%,低于前人的研究结果(58.4%)[39],这可能是由于本研究中砂土、壤土和黏土未施肥处理的土壤有机碳含量分别为 9.78、10.13 和 15.07 g/kg,均高于前人的研究结果(砂土 6.7 g/kg,壤土 9.9 g/kg,黏土 13.2 g/kg),不施肥的对照处理有机碳含量偏高是造成土壤有机碳增长率低的主要原因。

  • 3.2 自然因素对土壤有机碳含量的影响

  • 土壤理化性质如土壤 pH、粘粒含量、初始有机碳含量等在一定程度上影响着土壤有机碳含量的变化。本研究中酸性土壤上有机碳的增加率显著低于中性和碱性土壤,此研究结果与 Chen 等[40]的研究结果一致。这是由于土壤 pH 降低会抑制微生物活性,减少对外源有机质的分解,进而降低了外源有机碳的输入[41]。本研究发现在黏土和壤土等黏粒含量高的土壤中添加有机物料后土壤有机碳的增加量高于砂土。这是由于黏土颗粒具有较高的比表面积,吸附能力较强,可以在其表面吸附一部分有机碳,增强了有机碳的物理保护机制[42]。土壤中粘粒含量越高,越能够促进土壤团聚体的数量增加,而团聚体内部的土壤有机碳更稳定、不易分解[43]。初始有机碳含量较低的土壤离饱和水平较远,通常具有较高的土壤固碳潜力和效率[44]。由于土壤有机碳存在饱和效应,当土壤有机碳含量达到一定的水平时,即使向土壤中输入大量的外源碳也无法进一步增加土壤有机碳的含量[45-46]。本研究发现,当土壤初始有机碳水平低于 6 g/kg 时施用有机物料土壤有机碳的增加率约为 90%,其增长率为土壤初始有机碳水平大于 6 g/kg 的 2 倍以上。

  • 气候条件被认为是影响土壤有机碳在全球尺度分布和变化的重要因素[47]。Chen 等[40]研究表明土壤有机碳含量与 MAP 和 MAT 之间分别呈显著正相关关系,但也有研究表明 MAT 和 MAP 对土壤有机碳变化没有显著影响[48]。农田是一个人工生态系统,受自然因素和人为因素的影响,气温与降水只能通过影响土壤有机碳分解和作物产量高低而间接影响碳输入,而有机物料投入量(外源碳直接输入量)是土壤有机碳变化的主要驱动因素[49]。本研究在进行亚组分析时发现 MAT 和 MAP 的分组间不存在异质性,即在施用外源有机物料条件下不同水平的 MAT 和 MAP 对土壤有机碳变化没有显著影响,这一研究结果与 Liu 等[38]MAT 和 MAP 对秸秆还田后土壤有机碳增加量没有显著影响的研究结果相一致。

  • 3.3 农艺措施和区域对土壤有机碳含量的影响

  • 农艺措施如施肥、种植制度等均对土壤有机碳含量变化有较大影响。外源碳的输入量取决于有机物料输入量、有机物料碳含量及有机物料输入时间,本研究表明累计碳投入量越高,土壤有机碳增加率越高。这一研究结果与 Ren 等[48]的研究结果相同。本研究表明施用粪肥土壤有机碳增加率高于施用秸秆,这与前人研究结果一致。Meta 分析结果表明,与不施肥相比,秸秆还田和施用粪肥土壤有机碳含量可以分别提高 19% 和 36%[50]。这一方面是由于本研究收集的文献中粪肥的平均施用量高于 10 t/hm2,而秸秆的施用大部分来源于上一季作物的秸秆还田,即粪肥的施用量远高于秸秆的施用量,施用粪肥的直接碳输入高于施用秸秆。另一方面作物产量对施用粪肥的响应(49%)远大于施用秸秆(8%)[51],由于粪肥增产效果显著,导致更多的作物根系残留在土壤中,增加了外源碳的间接投入。本研究在进行亚组分析时发现土地利用方式分组间不存在异质性,对土壤有机碳含量变化没有显著影响,这与前人[52]研究结果一致。造成这一现象的原因可能是虽然在厌氧条件不利于土壤有机碳的分解和矿化[53],但是目前水田种植过程中都采取中期晒田的管理模式[54],干湿交替会增加微生物活性,刺激土壤有机碳分解[55]。有研究表明,作物熟制增加后,施用有机物料土壤有机碳含量显著增加[56],这是因为在相同时间内多熟制的种植模式比单熟制投入更多外源碳,同时由于种植两季作物,作物残茬还田后间接碳输入也高于单熟制,增加了外源碳的直接输入和间接输入。本研究结果也表明一年两熟条件下施用有机物料后土壤有机碳的增加量高于一年一熟。本研究发现,随着有机物料施用时间的增长,土壤有机碳的增长率也在增加,与 Han 等[50]的研究结论一致。这是由于随着试验时间的增长,更多的外源碳投入到土壤中,试验持续时间越长,土壤有机碳的增加量越大。但是也有研究表明随着试验时间的增长施用有机物料的固碳效率下降[48]。这是由于当有机碳含量较低时,土壤往往具有更高的固碳效率,随着有机物料投入时间延长,土壤有机碳含量不断增加,当达到一定值后再持续施用有机物料,土壤固碳效率将降低[44]

  • 不同区域因自然环境和农业管理措施等因素不同,导致施用有机物料对土壤有机碳的影响差异较大。本研究发现华北地区施用有机物料后土壤有机碳的增长显著高于东北和西北地区。Zhao 等[57]通过大范围取样调查结果表明,华北地区土壤有机碳的增加量显著高于东北地区和西北地区,该结论与本研究结果一致。这可能是由于东北地区土壤初始有机碳含量(15.5 g/kg)为华北地区土壤初始有机碳含量(7.7 g/kg)的 2 倍,而初始有机碳含量是影响施用有机物料后土壤有机碳增长的主要因素之一。西北地区虽然土壤初始有机碳含量较低(9.5 g/kg),但是土壤质地以砂土为主,土壤有机碳固定能力弱,且有机物料施用试验持续时间较短,大部分试验持续时间低于 10 年,而华北地区土壤质地以壤土为主,且试验持续时间大于 10 年。通过分析不同区域自然环境和农业管理措施等因素的差异,本研究认为有机物料施用时间短、外源碳输入量低且难于固定是造成西北地区施用有机物料后有机碳增长量低于华北地区的主要原因。

  • 4 结论

  • 与不施肥相比,全国范围内施用有机物料可以显著增加土壤有机碳 41.91%。不同地区施用有机物料后土壤有机碳的增长率有明显差异,华北地区施用有机物料后土壤有机碳的增长率显著高于西北和东北地区。

  • 施用有机物料后土壤有机碳的增长率与碳输入量(除直接的碳投入量因素外还包括试验时间、有机物料类型、作物熟制等间接因素),土壤初始有机碳含量,土壤 pH 和土壤质地等因素密切相关。碳投入量越大,土壤有机碳增加率越高。试验时间短,只施用作物秸秆和一年一熟的熟制由于减少了有机碳投入量,降低了土壤有机碳增长率。酸性砂土和土壤初始有机碳含量大于 6 g/kg 的土壤施用有机物料有机碳的增长率较低。

  • 加大单季有机物料投入,坚持长期施用有机物料,秸秆还田和施用粪肥相结合是提升土壤有机碳的最重要措施。结合实际情况因地制宜合理投入有机物料对增加土壤有机碳含量、培肥土壤具有重要作用。

  • 参考文献

    • [1] Lal R.Carbon management in agricultural soils[J].Mitigation and Adaptation Strategies for Global Change,2007,12(2):303-322.

    • [2] 徐明岗,张旭博,孙楠,等.农田土壤固碳与增产协同效应研究进展[J].植物营养与肥料学报,2017,23(6):1441-1449.

    • [3] Franzluebbers A J.Soil organic carbon sequestration and agricultural greenhouse gas emissions in the southeastern USA[J].Soil and Tillage Research,2005,83(1):120-147.

    • [4] Powlson D S,Whitmore A P,Gouldin K W T.Soil carbon sequestration to mitigate climate change:a critical re-examination to identify the true and the false[J].European Journal of Soil Science,2011,62(1):42-55.

    • [5] Kelliher F M,Condron L M,Cook F J,et al.Sixty years of seasonal irrigation affects carbon storage in soils beneath pasture grazed by sheep[J].Agriculture,Ecosystems and Environment,2012,148(4):29-36.

    • [6] Chai Y,Ma S,Zeng X,et al.Long-term fertilization effects on soil organic carbon stocks in the irrigated desert soil of NW China [J].Journal of Plant Nutrition and Soil Science,2015,178(4):622-630.

    • [7] 梁尧,苑亚茹,韩晓增,等.化肥配施不同剂量有机肥对黑土团聚体中有机碳与腐殖酸分布的影响[J].植物营养与肥料学报,2016,22(6):1586-1594.

    • [8] Ji Q,Wang Y,Chen X N,et al.Tillage effects on soil aggregation,organic carbon fractions and grain yield in EumOrthic Anthrosol of a winter wheat-maize double-cropping system,Northwest China[J].Soil Use Manage,2016,31(4):504-514.

    • [9] Wiesmeier M,Lützow M V,Spörlein P,et al.Land use effects on organic carbon storage in soils of Bavaria:the importance of soil types[J].Soil and Tillage Research,2015,146(3):296-302.

    • [10] 张维理,Kolbe H,张认连,等.农田土壤有机碳管理与有机质平衡算法[J].中国农业科学,2020,53(2):332-345.

    • [11] 张秀芝,高洪军,彭畅,等.长期有机培肥黑土有机碳、全氮及玉米产量稳定性的变化特征[J].植物营养与肥料学报,2019,25(9):1473-1481.

    • [12] 陈洁,梁国庆,周卫,等.长期施用有机肥对稻麦轮作体系土壤有机碳氮组分的影响[J].植物营养与肥料学报,2019,25(1):36-44.

    • [13] Liao Y,Wu W L,Meng F Q,et al.Increase in soil organic carbon by agricultural intensification in northern China[J]. Biogeosciences,2015,12(5):1403-1413.

    • [14] Zhang W J,Wang X J,Xu M G,et al.Soil organic carbon dynamics under long-term fertilizations in arable land of northern China[J].Biogeosciences,2010,7(2):409-425.

    • [15] Bajgai Y,Kristiansen P,Hulugalle N,et al.Changes in soil carbon fractions due to incorporating corn residues in organic and conventional vegetable farming systems[J].Soil Research,2014,52(3):244-252.

    • [16] Tao B,Tian H,Chen G,et al.Terrestrial carbon balance in tropical Asia:contribution from cropland expansion and land management[J].Global Planet Change,2015,100(3):85-98.

    • [17] Li B Z,Song H,Cao W C,et al.Responses of soil organic carbon stock to animal manure application:a new global synthesis integrating the impacts of agricultural managements and environmental conditions[J].Global Change Biology,2021,27(20):5356-5367.

    • [18] Don A,Schumacher J,Freibauer A.Impact of tropical landuse change on soil organic carbon stocks-a meta-analysis[J]. Global Change Biology,2011,17(4):1658-1670.

    • [19] 全国土壤普查办公室.中国土壤[M].北京:中国农业出版社,1998:356.

    • [20] 方晓,蔡冰,郑石.我国年平均气温和冬季气温研究进展 [J].安徽农业科学,2016,12(5):153-154.

    • [21] 尚宗波,高琼,杨奠安.利用中国气候信息系统研究年降水量空间分布规律[J].生态学报,2001,21(5):689-693.

    • [22] Hedges L V,Gurevitch J,Curtis P S.The meta-analysis of response ratios in experimental ecology[J].Ecology,1999,80(4):1150-1156.

    • [23] Pallmann P.Applied meta-analysis with R[J].Journal of Applied Statistics,2015,42(4):914-915.

    • [24] 何寒青,陈坤.Meta 分析中的异质性检验方法[J].中国卫生统计,2006,23(6):486-487.

    • [25] Fragkos K C,Tsagris M,Frangos C C.Publication bias in metaanalysis:confidence intervals for Rosenthal’s fail-safe number[J]. International Scholarly Research Notices,2014,2014(3):1-17.

    • [26] Viechtbauer W.Conducting meta-analyses in R with the meta for package[J].Journal of Statistical Software,2010,36(3):1-48.

    • [27] 任科宇,徐明岗,张露,等.我国不同区域粮食作物产量对有机肥施用的响应差异[J].农业资源与环境学报,2021,38(1):143-150.

    • [28] Rodriguez V F,Ghimire B,Rogan J,et al.An assessment of the effectiveness of a random forest classifier for land-cover classification[J].ISPRS Journal of Photogrammetry and Remote Sensing,2012,67(1):93-104.

    • [29] Chenu C,Angers D A,Barre P,et al.Increasing organic stocks in agricultural soils:knowledge gaps and potential innovations[J]. Soil and Tillage Research,2019,188(3):41-52.

    • [30] Xia L L,Lam S K,Yan X Y,et al.How does recycling of livestock manure in agroecosystems affect crop productivity,reactive nitrogen losses,and soil carbon balance[J]. Environmental Science and Technology,2017,51(13):7450-7457.

    • [31] Liu S,Wang J,Pu S,et al.Impact of manure on soil biochemical properties:a global synthesis[J].The Science of the Total Environment,2020,745(1):141003.

    • [32] Maillard E,Angers D A.Animal manure application and soil organic carbon stocks:a meta-analysis[J].Global Change Biology,2014,20(4):666-679.

    • [33] 贾伟.我国粪肥养分资源现状及其合理利用分析[D].北京:中国农业大学,2014.

    • [34] Choudhury S G,Yaduvanshi N P S,Chaudhari S K,et al. Effect of nutrient management on soil organic carbon sequestration,fertility,and productivity under rice-wheat cropping system in semi-reclaimed sodic soils of North India[J].Environmental Monitoring and Assessment,2018,190(3):117-124.

    • [35] Chen D M,Yuan L,Liu Y,et al.Long-term application of manures plus chemical fertilizers sustained high rice yield and improved soil chemical and bacterial properties[J].European Journal of Agronomy,2017,90(4):34-42.

    • [36] Guo Z,Zhang Z,Zhou H,et al.The effect of 34-year continuous fertilization on the SOC physical fractions and its chemical composition in a Vertisol[J].Scientific Report,2019,9(1):2505-2512.

    • [37] 李昊昱,孟兆良,庞党伟,等.周年秸秆还田对农田土壤固碳及冬小麦-夏玉米产量的影响[J].作物学报,2019,45(6):893-903.

    • [38] Liu C,Lu M,Cui J,et al.Effects of straw carbon input on carbon dynamics in agricultural soils:a meta-analysis[J]. Global Change Biology,2014,20(5):1366-1381.

    • [39] 蔡岸冬,张文菊,杨品品,等.基于 Meta-Analysis 研究施肥对中国农田土壤有机碳及其组分的影响[J].中国农业科学,2015,48(15):2995-3004.

    • [40] Chen Y S,Camps M,Shen Q H,et al.The long-term role of organic amendments in building soil nutrient fertility:a metaanalysis and review[J].Nutrient Cycling in Agroecosystems,2018,111(2):103-125.

    • [41] Chen D M,Li J J,Lan Z C,et al.Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment[J]. Functional Ecology,2015,30(4):658-669.

    • [42] 董林林.宁夏灌淤时间序列的土壤碳库量演变研究[D]. 南京:南京师范大学,2012.

    • [43] Wang Y D,Hu N,Xu M G,et al.23-year manure and fertilizer application increase soil organic carbon sequestration of a rice-barley cropping system[J].Biology and Fertility Soils,2015,51(3):583-591.

    • [44] Yan X,Zhou H,Zhu Q H,et al.Carbon sequestration efficiency in paddy soil and upland soil under long-term fertilization in southern China[J].Soil and Tillage Research,2013,130(1):42-51.

    • [45] Zuijdeest A,Baumgarther S,Wehrli B.Hysteresis effects in organic matter turnover in a tropical floodplain during a flood cycle [J].Biogeochemistry,2016,131(1):49-63.

    • [46] Zhao Y,Wu S X,Bol R,et al.Intensive organic vegetable production increases soil organic carbon but with a lower carbon conversion efficiency than integrated management[J].Journal of Plant Nutrition and Soil Science,2020,183(2):155-168.

    • [47] Mao D H,Wang Z M,Li L,et al.Soil organic carbon in the Sanjiang Plain of China:storage,distribution and controlling factors[J].Biogeosciences,2015,12(6):1635-1645.

    • [48] Ren F L,Zhang X B,Liu J,et al.A synthetic analysis of livestock manure substitution effects on organic carbon changes in China’s arable topsoil[J].Catena,2018,171(4):1-10.

    • [49] Song G H,Li L Q,Pan G X,et al.Topsoil organic carbon storage of China and its loss by cultivation[J].Biogeochemistry,2005,74(1):47-62.

    • [50] Han P F,Zhang W,Wang G C,et al.Changes in soil organic carbon in croplands subjected to fertilizer management:a global meta-analysis[J].Scientific Reports,2016,6(1):1-12.

    • [51] Luo G W,Li L,Friman V P,et al.Organic amendments increase crop yields by improving microbe-mediated soil functioning of agroecosystems:a meta-analysis[J].Soil Biology and Biochemistry,2018,124(1):105-115.

    • [52] Han X,Xu C,Dungait J A J,et al.Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China:a system analysis[J].Biogeosciences,2018,15(7):1933-1946.

    • [53] Guo L,Lin E.Carbon sink in cropland soils and the emission of greenhouse gases from paddy soils:a review of work in China[J]. Global Change Science,2001,3(4):413-418.

    • [54] Zhao G M,Miao Y X,Wang H Y,et al.A preliminary precision rice management system for increasing both grain yield and nitrogen use efficiency[J].Field Crop Research,2013,154(1):23-30.

    • [55] Cui J,Zhang R,Bu N,et al.Changes in soil carbon sequestration and soil respiration following afforestation on paddy fields in north subtropical China[J].Journal of Plant Ecology,2013,6(1):240-252.

    • [56] Ding X L,Yuan Y R,Liang Y,et al.Impact of long-term application of manure,crop residue,and mineral fertilizer on organic carbon pools and crop yields in a Mollisol[J].Journal of Soils and Sediments,2014,14(5):854-859.

    • [57] Zhao Y C,Wang M Y,Hu S J,et al.Economics-and policydriven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands[J].Proceedings of the National Academy of Sciences,2018,115(16):4045-4050.

  • 参考文献

    • [1] Lal R.Carbon management in agricultural soils[J].Mitigation and Adaptation Strategies for Global Change,2007,12(2):303-322.

    • [2] 徐明岗,张旭博,孙楠,等.农田土壤固碳与增产协同效应研究进展[J].植物营养与肥料学报,2017,23(6):1441-1449.

    • [3] Franzluebbers A J.Soil organic carbon sequestration and agricultural greenhouse gas emissions in the southeastern USA[J].Soil and Tillage Research,2005,83(1):120-147.

    • [4] Powlson D S,Whitmore A P,Gouldin K W T.Soil carbon sequestration to mitigate climate change:a critical re-examination to identify the true and the false[J].European Journal of Soil Science,2011,62(1):42-55.

    • [5] Kelliher F M,Condron L M,Cook F J,et al.Sixty years of seasonal irrigation affects carbon storage in soils beneath pasture grazed by sheep[J].Agriculture,Ecosystems and Environment,2012,148(4):29-36.

    • [6] Chai Y,Ma S,Zeng X,et al.Long-term fertilization effects on soil organic carbon stocks in the irrigated desert soil of NW China [J].Journal of Plant Nutrition and Soil Science,2015,178(4):622-630.

    • [7] 梁尧,苑亚茹,韩晓增,等.化肥配施不同剂量有机肥对黑土团聚体中有机碳与腐殖酸分布的影响[J].植物营养与肥料学报,2016,22(6):1586-1594.

    • [8] Ji Q,Wang Y,Chen X N,et al.Tillage effects on soil aggregation,organic carbon fractions and grain yield in EumOrthic Anthrosol of a winter wheat-maize double-cropping system,Northwest China[J].Soil Use Manage,2016,31(4):504-514.

    • [9] Wiesmeier M,Lützow M V,Spörlein P,et al.Land use effects on organic carbon storage in soils of Bavaria:the importance of soil types[J].Soil and Tillage Research,2015,146(3):296-302.

    • [10] 张维理,Kolbe H,张认连,等.农田土壤有机碳管理与有机质平衡算法[J].中国农业科学,2020,53(2):332-345.

    • [11] 张秀芝,高洪军,彭畅,等.长期有机培肥黑土有机碳、全氮及玉米产量稳定性的变化特征[J].植物营养与肥料学报,2019,25(9):1473-1481.

    • [12] 陈洁,梁国庆,周卫,等.长期施用有机肥对稻麦轮作体系土壤有机碳氮组分的影响[J].植物营养与肥料学报,2019,25(1):36-44.

    • [13] Liao Y,Wu W L,Meng F Q,et al.Increase in soil organic carbon by agricultural intensification in northern China[J]. Biogeosciences,2015,12(5):1403-1413.

    • [14] Zhang W J,Wang X J,Xu M G,et al.Soil organic carbon dynamics under long-term fertilizations in arable land of northern China[J].Biogeosciences,2010,7(2):409-425.

    • [15] Bajgai Y,Kristiansen P,Hulugalle N,et al.Changes in soil carbon fractions due to incorporating corn residues in organic and conventional vegetable farming systems[J].Soil Research,2014,52(3):244-252.

    • [16] Tao B,Tian H,Chen G,et al.Terrestrial carbon balance in tropical Asia:contribution from cropland expansion and land management[J].Global Planet Change,2015,100(3):85-98.

    • [17] Li B Z,Song H,Cao W C,et al.Responses of soil organic carbon stock to animal manure application:a new global synthesis integrating the impacts of agricultural managements and environmental conditions[J].Global Change Biology,2021,27(20):5356-5367.

    • [18] Don A,Schumacher J,Freibauer A.Impact of tropical landuse change on soil organic carbon stocks-a meta-analysis[J]. Global Change Biology,2011,17(4):1658-1670.

    • [19] 全国土壤普查办公室.中国土壤[M].北京:中国农业出版社,1998:356.

    • [20] 方晓,蔡冰,郑石.我国年平均气温和冬季气温研究进展 [J].安徽农业科学,2016,12(5):153-154.

    • [21] 尚宗波,高琼,杨奠安.利用中国气候信息系统研究年降水量空间分布规律[J].生态学报,2001,21(5):689-693.

    • [22] Hedges L V,Gurevitch J,Curtis P S.The meta-analysis of response ratios in experimental ecology[J].Ecology,1999,80(4):1150-1156.

    • [23] Pallmann P.Applied meta-analysis with R[J].Journal of Applied Statistics,2015,42(4):914-915.

    • [24] 何寒青,陈坤.Meta 分析中的异质性检验方法[J].中国卫生统计,2006,23(6):486-487.

    • [25] Fragkos K C,Tsagris M,Frangos C C.Publication bias in metaanalysis:confidence intervals for Rosenthal’s fail-safe number[J]. International Scholarly Research Notices,2014,2014(3):1-17.

    • [26] Viechtbauer W.Conducting meta-analyses in R with the meta for package[J].Journal of Statistical Software,2010,36(3):1-48.

    • [27] 任科宇,徐明岗,张露,等.我国不同区域粮食作物产量对有机肥施用的响应差异[J].农业资源与环境学报,2021,38(1):143-150.

    • [28] Rodriguez V F,Ghimire B,Rogan J,et al.An assessment of the effectiveness of a random forest classifier for land-cover classification[J].ISPRS Journal of Photogrammetry and Remote Sensing,2012,67(1):93-104.

    • [29] Chenu C,Angers D A,Barre P,et al.Increasing organic stocks in agricultural soils:knowledge gaps and potential innovations[J]. Soil and Tillage Research,2019,188(3):41-52.

    • [30] Xia L L,Lam S K,Yan X Y,et al.How does recycling of livestock manure in agroecosystems affect crop productivity,reactive nitrogen losses,and soil carbon balance[J]. Environmental Science and Technology,2017,51(13):7450-7457.

    • [31] Liu S,Wang J,Pu S,et al.Impact of manure on soil biochemical properties:a global synthesis[J].The Science of the Total Environment,2020,745(1):141003.

    • [32] Maillard E,Angers D A.Animal manure application and soil organic carbon stocks:a meta-analysis[J].Global Change Biology,2014,20(4):666-679.

    • [33] 贾伟.我国粪肥养分资源现状及其合理利用分析[D].北京:中国农业大学,2014.

    • [34] Choudhury S G,Yaduvanshi N P S,Chaudhari S K,et al. Effect of nutrient management on soil organic carbon sequestration,fertility,and productivity under rice-wheat cropping system in semi-reclaimed sodic soils of North India[J].Environmental Monitoring and Assessment,2018,190(3):117-124.

    • [35] Chen D M,Yuan L,Liu Y,et al.Long-term application of manures plus chemical fertilizers sustained high rice yield and improved soil chemical and bacterial properties[J].European Journal of Agronomy,2017,90(4):34-42.

    • [36] Guo Z,Zhang Z,Zhou H,et al.The effect of 34-year continuous fertilization on the SOC physical fractions and its chemical composition in a Vertisol[J].Scientific Report,2019,9(1):2505-2512.

    • [37] 李昊昱,孟兆良,庞党伟,等.周年秸秆还田对农田土壤固碳及冬小麦-夏玉米产量的影响[J].作物学报,2019,45(6):893-903.

    • [38] Liu C,Lu M,Cui J,et al.Effects of straw carbon input on carbon dynamics in agricultural soils:a meta-analysis[J]. Global Change Biology,2014,20(5):1366-1381.

    • [39] 蔡岸冬,张文菊,杨品品,等.基于 Meta-Analysis 研究施肥对中国农田土壤有机碳及其组分的影响[J].中国农业科学,2015,48(15):2995-3004.

    • [40] Chen Y S,Camps M,Shen Q H,et al.The long-term role of organic amendments in building soil nutrient fertility:a metaanalysis and review[J].Nutrient Cycling in Agroecosystems,2018,111(2):103-125.

    • [41] Chen D M,Li J J,Lan Z C,et al.Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment[J]. Functional Ecology,2015,30(4):658-669.

    • [42] 董林林.宁夏灌淤时间序列的土壤碳库量演变研究[D]. 南京:南京师范大学,2012.

    • [43] Wang Y D,Hu N,Xu M G,et al.23-year manure and fertilizer application increase soil organic carbon sequestration of a rice-barley cropping system[J].Biology and Fertility Soils,2015,51(3):583-591.

    • [44] Yan X,Zhou H,Zhu Q H,et al.Carbon sequestration efficiency in paddy soil and upland soil under long-term fertilization in southern China[J].Soil and Tillage Research,2013,130(1):42-51.

    • [45] Zuijdeest A,Baumgarther S,Wehrli B.Hysteresis effects in organic matter turnover in a tropical floodplain during a flood cycle [J].Biogeochemistry,2016,131(1):49-63.

    • [46] Zhao Y,Wu S X,Bol R,et al.Intensive organic vegetable production increases soil organic carbon but with a lower carbon conversion efficiency than integrated management[J].Journal of Plant Nutrition and Soil Science,2020,183(2):155-168.

    • [47] Mao D H,Wang Z M,Li L,et al.Soil organic carbon in the Sanjiang Plain of China:storage,distribution and controlling factors[J].Biogeosciences,2015,12(6):1635-1645.

    • [48] Ren F L,Zhang X B,Liu J,et al.A synthetic analysis of livestock manure substitution effects on organic carbon changes in China’s arable topsoil[J].Catena,2018,171(4):1-10.

    • [49] Song G H,Li L Q,Pan G X,et al.Topsoil organic carbon storage of China and its loss by cultivation[J].Biogeochemistry,2005,74(1):47-62.

    • [50] Han P F,Zhang W,Wang G C,et al.Changes in soil organic carbon in croplands subjected to fertilizer management:a global meta-analysis[J].Scientific Reports,2016,6(1):1-12.

    • [51] Luo G W,Li L,Friman V P,et al.Organic amendments increase crop yields by improving microbe-mediated soil functioning of agroecosystems:a meta-analysis[J].Soil Biology and Biochemistry,2018,124(1):105-115.

    • [52] Han X,Xu C,Dungait J A J,et al.Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China:a system analysis[J].Biogeosciences,2018,15(7):1933-1946.

    • [53] Guo L,Lin E.Carbon sink in cropland soils and the emission of greenhouse gases from paddy soils:a review of work in China[J]. Global Change Science,2001,3(4):413-418.

    • [54] Zhao G M,Miao Y X,Wang H Y,et al.A preliminary precision rice management system for increasing both grain yield and nitrogen use efficiency[J].Field Crop Research,2013,154(1):23-30.

    • [55] Cui J,Zhang R,Bu N,et al.Changes in soil carbon sequestration and soil respiration following afforestation on paddy fields in north subtropical China[J].Journal of Plant Ecology,2013,6(1):240-252.

    • [56] Ding X L,Yuan Y R,Liang Y,et al.Impact of long-term application of manure,crop residue,and mineral fertilizer on organic carbon pools and crop yields in a Mollisol[J].Journal of Soils and Sediments,2014,14(5):854-859.

    • [57] Zhao Y C,Wang M Y,Hu S J,et al.Economics-and policydriven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands[J].Proceedings of the National Academy of Sciences,2018,115(16):4045-4050.

  • 《中国土壤与肥料》招聘启事
    关闭