en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张庚金(1996-),硕士研究生,主要从事土壤养分循环方面研究。E-mail:zgj5951@163.com。

通讯作者:

颜晓,E-mail:yx198499@126.com。

参考文献 1
Cai Z,Wang B,Xu M,et al.Intensified soil acidification from chemical N fertilization and prevention by manure in an 18-year field experiment in the red soil of southern China[J].Journal of Soils and Sediments,2015,15(2):260-270.
参考文献 2
Guo J H,Liu X J,Zhang Y,et al.Significant acidification in major Chinese croplands[J].Science,2010,327(5968):1008-1010.
参考文献 3
Haynes R J,Zhou Y F.Competitive and noncompetitive adsorption of silicate and phosphate by two acid Si-deficient soils and their effects on P and Si extractability[J].Soil Science and Plant Nutrition,2018,64(4):535-541.
参考文献 4
胡克伟,颜丽,关连珠.土壤硅磷元素交互作用研究进展 [J].土壤通报,2004(2):230-233.
参考文献 5
郑小妹.红壤性水稻土硅有效性及水稻生长对土壤酸化和磷添加的响应[D].南昌:江西农业大学,2021.
参考文献 6
Hömberg A,Obst M,Knorr K H,et al.Increased silicon concentration in fen peat leads to a release of iron and phosphate and changes in the composition of dissolved organic matter[J]. Geoderma,2020,374:114422.
参考文献 7
Schaller J,Faucherre S,Joss H,et al.Silicon increases the phosphorus availability of Arctic soils[J].Scientific Reports,2019,9(1):1-11.
参考文献 8
胡克伟,关连珠,颜丽,等施硅对水稻土磷素吸附与解吸特性的影响研究[J].植物营养与肥料学报,2002(2):214-218.
参考文献 9
Haynes R J.A contemporary overview of silicon availability in agricultural soils[J].Journal of Plant Nutrition and Soil Science,2014,177(6):831-844.
参考文献 10
Tavakkoli E,Lyons G,English P,et al.Silicon nutrition of rice is affected by soil pH,weathering and silicon fertilisation [J].Journal of Plant Nutrition and Soil Science,2011,174(3):437-446.
参考文献 11
Haynes R J,Zhou Y F.Silicate sorption and desorption by a Sideficient soil-Effects of pH and period of contact[J].Geoderma,2020,365:114204.
参考文献 12
Barrow N.Reaction of anions and cations with variable-charge soils[J].Advances in Agronomy,1986,38:183-230.
参考文献 13
Nguyen M N,Picardal F,Dultz S,et al.Silicic acid as a dispersibility enhancer in a Fe-oxide-rich kaolinitic soil clay [J].Geoderma,2017,286:8-14.
参考文献 14
田甜.外源硅对土壤吸附磷素特征及有效性的影响[D].沈阳:沈阳农业大学,2017.
参考文献 15
Bai J,Ye X,Jia J,et al.Phosphorus sorption-desorption and effects of temperature,pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions [J].Chemosphere,2017,188:677-688.
参考文献 16
Kostic L,Nikolic N,Bosnic D,et al.Silicon increases phosphorus(P)uptake by wheat under low P acid soil conditions [J].Plant and Soil,2017,419(1):447-455.
参考文献 17
Sandim A D S,Büll L T,Furim A R,et al.Phosphorus availability in oxidic soils treated with lime and silicate applications [J].Revista Brasileira de Ciência do Solo,2014,38:1215-1222.
参考文献 18
Ma J F,Takahashi E.Effect of silicate on phosphate availability for rice in a P-deficient soil[J].Plant and Soil,1991,133(2):151-155.
参考文献 19
胡克伟,肇雪松,关连珠,等.水稻土中硅磷元素的存在形态及其相互影响研究[J].土壤通报,2002(4):272-274.
参考文献 20
Li Z,Guo F,Cornelis J-T,et al.Combined silicon-phosphorus fertilization affects the biomass and phytolith stock of rice plants [J].Frontiers in Plant Science,2020,11:67.
参考文献 21
鲍士旦.土壤农化分析[M].3 版.北京:中国农业出版社,2000.
参考文献 22
Murphy J,Riley J P.A modified single solution method for the determination of phosphate in natural waters[J].Analytica Chimica Acta,1962,27:31-36.
参考文献 23
Sparks D L,Page A L,Helmke P A,et al.Methods of soil analysis,part 3:Chemical methods[M].Madison:American Society of Agronomy,2020.
参考文献 24
Barrow N.The description of sorption curves[J].European Journal of Soil Science,2008,59(5):900-910.
参考文献 25
Song Z,Wang H,Strong P J,et al.Increase of available soil silicon by Si-rich manure for sustainable rice production[J]. Agronomy for Sustainable Development,2014,34(4):813-819.
参考文献 26
Georgiadis A,Sauer D,Herrmann L,et al.Development of a method for sequential Si extraction from soils[J].Geoderma,2013,209:251-261.
参考文献 27
Brady N C,Weil R R.The nature and properties of soils[J]. Journal of Range Management,2002,5(6):333.
参考文献 28
Mcbride M.Chemisorption and precipitation reactions In handbook of Soil Science[M].Boca Raton:CRC Press,2000:265-302.
参考文献 29
Klotzbücher T,Treptow C,Kaiser K,et al.Sorption competition with natural organic matter as mechanism controlling silicon mobility in soil[J].Scientific Reports,2020,10(1):1-11.
参考文献 30
Haynes W M,Lide D R,Bruno T J.CRC handbook of chemistry and physics[M].Boca Raton:CRC press,2016.
参考文献 31
Bowden J,Posner A,Quirk J.Adsorption and charging phenomena in variable charge soils[J].Soils with Variable Charge,1980,9:147-166.
参考文献 32
Barrow N J.The four laws of soil chemistry:the Leeper lecture 1998[J].Soil Research,1999,37(5):787-830.
参考文献 33
Song Z,Wang H,Strong P J,et al.Plant impact on the coupled terrestrial biogeochemical cycles of silicon and carbon:implications for biogeochemical carbon sequestration[J].EarthScience Reviews,2012,115(4):319-331.
参考文献 34
宁东峰,刘战东,肖俊夫,等.水稻土施用钢渣硅钙肥对土壤硅素形态和水稻生长的影响[J].灌溉排水学报,2016,35(8):42-46.
参考文献 35
De Tombeur F,Turner B L,Laliberté E,et al.Silicon dynamics during 2 million years of soil development in a coastal dune chronosequence under a Mediterranean climate[J]. Ecosystems,2020,23(8):1614-1630.
参考文献 36
Haynes R J,Zhou Y F.Effect of pH and added slag on the extractability of Si in two Si-deficient sugarcane soils[J]. Chemosphere,2018,193:431-437.
参考文献 37
Zheng X,Yan X,Qin G,et al.Soil acidification and phosphorus enrichment enhanced silicon mobility in a Hydragric Anthrosol[J].Journal of Soils and Sediments,2021,21(9):3107-3116.
参考文献 38
Haynes R J.What effect does liming have on silicon availability in agricultural soils?[J].Geoderma,2019,337:375-383.
参考文献 39
Crusciol C A,Artigiani A C,Arf O,et al.Surface application of lime-silicate-phosphogypsum mixtures for improving tropical soil properties and irrigated common bean yield[J].Soil Science Society of America Journal,2016,80(4):930-942.
参考文献 40
Keller C,Guntzer F,Barboni D,et al.Impact of agriculture on the Si biogeochemical cycle:input from phytolith studies[J]. Comptes Rendus Geoscience,2012,344(11-12):739-746.
目录contents

    摘要

    硅是水稻等禾本科作物生长发育不可或缺的营养元素,pH 影响着土壤中硅的有效性和形态转化,而土壤磷与硅之间存在明显的竞争吸附效应。以常年水稻-瓜 / 菜轮作农田土壤为研究对象,进行等摩尔硅磷竞争吸附试验、土壤培养试验和硅分组试验,模拟探究土壤酸化和磷富集对土壤硅的有效性及移动性的影响,以期为农田硅、磷养分管理提供一定的理论依据。结果表明,在 pH 3.5 ~ 6.4 范围内,同时加入等摩尔浓度的硅和磷时,磷的存在会抑制土壤吸附硅,使土壤对硅的吸附量降低 78% ~ 350%。土壤对硅的吸附小于对磷的吸附,磷的添加导致了土壤中硅的解吸。土壤酸化和磷添加均降低了土壤对硅的吸附,且在 pH 较高时添加磷对降低土壤吸硅的效果更为显著。土壤酸化降低了可移动态硅、吸附态硅、有机结合态硅和铁铝锰(氢)氧化物结合态硅的含量,但增加无定形态硅含量。与 pH 6.4 相比,酸化使可移动态硅和吸附态硅含量分别降低了 22.47% ~ 54.32%、 10.72% ~ 33.40%;磷添加使可移动态硅含量增加了 4.07% ~ 9.40%,吸附态硅含量降低了 1.19% ~ 3.53%。pH 可调控土壤硅的溶解与吸附-解吸过程,从而影响土壤硅的移动性;磷富集促进土壤吸附态硅的解吸,进而增强土壤硅的移动性。

    Abstract

    Silicon(Si)was an essential nutrient element for the growth and development of cereal crops such as rice.Soil pH affected the transformation and availability of Si,and there was a significant competitive adsorption effect between soil phosphorus(P)and Si.To investigate the effects of soil acidification and P enrichment on the availability and mobility of soil Si, P and Si competitive adsorption experiment,soil incubation experiment and Si fraction experiment were conducted.The results showed that the presence of P reduced the amount of Si adsorbed by the soil by 78%-350% when equimolar concentrations of Si and P were added simultaneously in the pH range of 3.5 to 6.4.Si sorption was less than that of P,soil acidification and P addition reduced Si sorption,and the effect of P addition in reducing soil Si sorption was more significant at higher pH(in the pH range of 3.5 to 6.4).Soil acidification decreased the content of movable Si,adsorbed Si,organic Si and Fe/Al/Mnoxide Si,but increased the content of amorphous Si.The contents of movable Si and adsorbed Si were reduced by 22.47%- 54.32%,10.72%-33.40%,respectively.P addition increased the content of movable Si by 4.07%-9.40% and adsorbed Si decreased by 1.19%-3.53%.The dissolution and sorption-desorption processes of soil Si were regulated by pH,and thereby affected the mobility of soil Si.P enrichment promoted the desorption of soil adsorbed Si,which in turn enhanced the mobility of soil Si.

  • 水稻、玉米和小麦等都是喜硅作物,硅在其生长发育过程中起着至关重要的作用。农业生产过程中由于长期大量和不合理地施用化肥,导致农田土壤出现大面积酸化、氮磷等养分过量累积和养分利用率下降等问题[1-2]。有研究指出,土壤中硅与磷之间存在明显的交互作用,磷在土壤中富集后会对硅的有效性产生影响[3-4],土壤酸化也会对农田硅、磷等养分循环及其有效性产生重要影响[5],这加剧了农田硅、磷养分管理的复杂性,影响粮食作物的生长和粮食生产安全。

  • 土壤中硅、磷两种元素化学性质相似,在作物生长中均具有重要作用,两者间存在相互促进的关系,影响其生物有效性[6-8]。pH 是影响硅、磷化学行为的关键因素,土壤 pH 调控土壤中硅、磷的溶解及吸附-解吸过程[9-10],因此,硅、磷在土壤溶液中的浓度和有效性受 pH 影响,进而影响其有效性和移动性。土壤中硅、磷的吸附表面(Fe/Al 氧化物表面)电荷在 pH 升高时变得更负[11],进而抑制对磷的吸附;此外,带负电荷离子通常在电离平衡常数(pKa)附近容易被吸附[12],磷、硅的 pKa1 分别为 2 和 9.8,故 pH 升高,磷的吸附降低,而硅的吸附增加。土壤 pH 变化影响硅、磷之间的交互作用,从而影响硅、磷的有效性和移动性。

  • 硅和磷在土壤中都易被 Fe/Al 氧化物吸附,因此两者间存在强烈的竞争吸附,pH 变化会干扰硅、磷的竞争吸附效应[13-14]。有大量研究发现外源硅可提高土壤磷素有效性,添加外源硅提高土壤 pH,硅可能争夺磷的吸附位点,吸附态磷可被羟基或硅酸根离子置换下来,土壤对磷的吸附减弱,促进积累态磷的释放,进而土壤磷的移动性和有效性提高[14-17]。也有研究认为,pH<9.8 时硅酸解离能力弱,这限制了其与磷酸竞争的能力,因而在大多数土壤 pH 范围内硅不会对磷的吸附产生明显抑制作用[18]。关于施磷对硅的影响,有研究指出磷可以解吸土壤吸附态硅成为有效态[4],施磷可以降低无定形硅的含量,增加土壤中水溶性硅和活性硅的含量,这可能与磷的存在改变了土壤 pH 有关[19]。目前国内外的报导多为施磷可以提高有效硅含量、促进作物增产、改善作物吸收硅素等[41419-20],而在土壤酸化的背景下,土壤磷富集对硅有效性及移动性的影响还鲜有关注。本研究以常年水稻-瓜 / 菜轮作的农田土壤为对象,在人为酸化条件下,通过硅磷竞争吸附试验和土壤培养试验,探究磷添加对土壤硅吸附特性的影响;通过硅分组试验,进一步阐明 pH 与磷添加影响土壤硅移动性的主要机制,以期为农田硅、磷养分管理提供一定理论依据。

  • 1 材料与方法

  • 1.1 供试材料

  • 供试土壤采自海南省三亚市坝头村(18°23′24″N, 109°9′48″E),该地区属热带海洋性季风气候,年平均气温 25.7℃,年平均降水量约 1347.5 mm。土壤为常年水稻-瓜 / 菜轮作的农田土壤,质地为砂壤土。作物收获后采取 0~20 cm 耕层土壤,风干研磨并过 2 mm 筛备用。供试土壤的基本理化性质见表1。

  • 表1 土壤基本理化性质

  • 采用电位计法(土水比 1∶2.5)测定土壤 pH; 重铬酸钾-外加热法测定土壤有机质;全自动碳氮比元素分析仪(Vario MAX CN,Germany)测定全氮;灼烧-比色法测定土壤全磷;湿烧法(王水) 测定全硅;Bray 法测定土壤有效磷;乙酸铵浸提-火焰光度法测定速效钾;碱解扩散法测定碱解氮; 乙酸缓冲液浸提-硅钼蓝比色法测定有效硅;乙酸铵交换法测定阳离子交换量;酸性草酸铵浸提,ICP 测定非晶质氧化铁、铝;Mehlich 3 通用浸提剂浸提, ICP 测定交换性钙、镁;微吸管法测定土壤机械组成。具体方法参考《土壤农化分析》[21]

  • 1.2 试验设计

  • 1.2.1 等摩尔浓度硅磷竞争吸附试验

  • 酸化设置土壤 pH 分别为 3.5、4.5、5.5 和 6.4 (CK),各 pH 梯度下,分别加入 3.2 mmol/L Si (Na2SiO3·5H2O 溶液)、3.2 mmol/L Si(Na2SiO3·5H2O 溶液)+3.2 mmol/L P(NaH2PO4·2H2O 溶液)和 3.2 mmol/L P(NaH2PO4·2H2O 溶液)。即先称取 1.00 g 预先酸化且通过 2 mm 筛的风干土样置于 50 mL 的离心管中,每个 pH 处理的土样称取 3 等份,重复 3 次,分别加入 25 mL 由 0.01 mol/L NaCl 配置的硅酸盐或磷酸盐溶液。25°C 下恒温振荡 24 h,比色法测定上清液中的硅和磷含量[22-23]。通过计算初始溶液中加入的硅和磷浓度与平衡时溶液中硅和磷浓度的差值,推算土壤硅和磷的吸附量。

  • 1.2.2 土壤培养试验

  • 试验采用双因素设计,自变量设置为 pH 与磷添加量。设置 4 个 pH 梯度分别为 3.5、4.5、5.5 和 6.4;磷(以 P2O5 计)添加量设置为按 0、60、90、 120 mg/kg(约相当于 0、150、225、300 kg/hm2)4 个磷梯度添加 NaH2PO4·2H2O。即称取 200 g 土样置于容积为 500 mL 的塑料瓶中,分别添加 4 个不同梯度的磷,然后用稀盐酸调节土壤 pH 至 3.5、 4.5 及 5.5,并做对照处理(CK,即不调节土样酸度)。土样在 25 °C 下恒温培养 60 d,定期采用称重法进行补水保持恒定的水分含量(70% 的最大田间持水量),每个处理重复 3 次,共计 48 个样品。培养结束后,将土样风干并过 2 mm 筛。

  • 1.2.2.1 土壤硅吸附特征

  • 称取 1.00 g 经 1.2.2 培养后的土样置于 50 mL 的离心管中,加入 25 mL 的 0.01 mol/L NaCl 溶液与之平衡,0.01 mol/L NaCl 溶液中分别含有浓度为 0、5、10、20、40、 60、80 和 100 mg/L 的 SiO3 2-,重复 3 次,并预先用稀盐酸调节溶液 pH 保持与培养后土壤 pH 一致。在 25℃下恒温振荡 24 h,用比色法测定溶液中的硅含量。根据初始溶液中加入的硅浓度与平衡时溶液中硅浓度的差值推算土壤吸硅量。

  • 采用 Modified Freundlich 方程拟合等温吸附试验的吸附曲线,方程如下[24]

  • y=axb-C0b
    (1)
  • 其中,y 是通过溶液初始和最终硅浓度之差 (mg/kg)计算土壤吸附硅的量;x 是平衡溶液中的硅浓度(mg/L),ab 是系数;C0 是计算土壤硅吸附值为 0 时的溶液硅浓度(mg/L),即不发生吸附或解吸时土壤溶液的硅浓度。据 Barrow[24]的说法,认为在 C0 值较小时表明硅更容易被土壤吸附,因此,硅的移动性较小。

  • 1.2.2.2 土壤硅形态与移动性

  • 土壤硅组分采用改进的连续浸提法提取[25],具体浸提测定方法:称取 0.75 g 经 1.2.2 培养后的土样于 50 mL 的离心管中,重复 3 次,分别依次加入:

  • (1)7.5 mL 0.01 mol/L CaCl2 溶液,25℃下恒温振荡 24 h,提取可移动态硅;

  • (2)7.5 mL 0.01 mol/L 乙酸溶液,25℃下恒温振荡 24 h,提取吸附态硅;

  • (3)10 mL 30%H2O2 及 30 mL 1.0 mol/L 乙酸钠溶液,25℃下恒温振荡 16 h,提取有机结合态硅;

  • (4)30 mL 0.5 mol/L NH2OH·HCl 溶液,25℃ 下恒温振荡 16 h,提取铁铝锰(氢)氧化物结合态硅;

  • (5)30 mL 0.5 mol/L NaOH 溶液,25℃下恒温振荡 16 h,提取无定形态硅。

  • 各步骤振荡完成后,离心过滤,所得各组分溶液中的硅含量采用硅钼蓝法比色法[23]测定。其中土壤 0.01 mol/L CaCl2 提取态硅是一种活化态硅,具有移动性,植物可直接吸收利用,0.01 mol/L 乙酸溶液提取态硅主要是以阴离子交换机制吸附的硅[26],可通过这两种形态的硅评价土壤酸化和磷添加对硅移动性的影响。

  • 1.3 数据处理与分析

  • 采用 Excel 2019、Origin 2018 和 SPSS 26.0 软件进行数据处理和统计分析,并利用 Duncan 法进行显著性检验。

  • 2 结果与分析

  • 2.1 等摩尔浓度硅磷竞争吸附

  • 仅添加硅与同时添加硅 + 磷处理,土壤对硅的吸附量均随 pH 降低呈下降的趋势(图1a)。在仅添加硅处理中,土壤对硅的吸附量在 pH 6.4 时最大,为 2.22 mmol/kg,约为 pH 3.5 时的 2.4 倍。与仅添加硅相比,在相应 pH 条件下,同时添加硅 + 磷处理的硅吸附量显著降低,降幅达 78%~350%。此外,仅添加磷处理导致土壤中硅的解吸,解吸量为 0.78~1.22 mmol/kg。对于土壤吸磷量( 图1b),当 pH 从 6.4 降至 3.5 时,仅添加磷处理的磷吸附量有增加的趋势。在相应的 pH 水平下,磷处理的磷吸附量均高于硅处理的硅吸附量。研究结果显示,土壤对硅、磷的吸附及硅磷交互作用均受到 pH 的显著影响;外源磷添加可抑制土壤对硅的吸附,但硅对磷的吸附没有产生明显的抑制作用。

  • 图1 pH 对硅磷竞争吸附中土壤硅、磷吸附量的影响

  • 注:小写字母不同表示同一处理在不同 pH 条件下差异显著(P<0.05)。

  • 2.2 土壤硅的吸附特征

  • 土壤酸化和磷添加降低了土壤对硅的吸附 (图2);各磷添加量处理中,随 pH 降低,土壤对硅的吸附量降低,且在溶液硅浓度较高(大于 40 mg/L)时,土壤对硅的吸附量降幅逐渐减小,说明前期磷处理对土壤吸附硅的影响逐渐减弱。在 pH 3.5 时,土壤对硅的吸附量最低,磷添加对土壤吸硅量的影响较小。

  • 图2 pH 与磷添加量对土壤硅吸附特征的影响

  • 等温吸附测定的结果采用 Modified Freundlich 方程拟合,结果显示 R2 范围在 0.939~0.989,各处理均有良好的相关性(表2)。拟合得出的吸附参数 a( 吸附容量常数) 受土壤 pH 的影响显著(P=0.000),而磷添加量对其影响不明显 (P=0.054),土壤酸化和磷添加可以使 a 值降低; pH 和磷添加量对参数 b 均可产生显著影响(分别为 P=0.004 和 P=0.038),b 值随土壤酸化程度和磷添加量的增加而增大;pH 和磷添加量的交互作用对系数 ab 产生的影响均不显著(分别为 P=0.697 和 P=0.998)。由土壤 pH 引起的系数 ab 的方差分析 P 值小于磷处理引起的,说明土壤 pH 对土壤吸附硅的影响大于磷添加的影响。C0(不发生吸附或解吸时的溶液硅浓度)受土壤酸化与磷添加显著影响,其值随 pH 降低和磷添加量增加而逐渐升高,在 pH 从 6.4 下降至 3.5 时,C0 值由 33.87 mg/L 上升至 68.98 mg/L(P=0.000),添加磷从 0 mg/kg 上升至 120 mg/kg 时,C0 值则由 44.91 mg/L增加至 56.53 mg/L (P=0.000)(表2),因此在各 pH 处理中,pH 为 6.4 时,吸附曲线的斜率最大且截距最小(图2)。

  • 表2 pH 和磷添加量对 Modified Freundlich 方程中硅吸附参数的影响

  • 注:表中数值为平均值 ± 标准误差(n=3);不同小写字母表示在相同 pH 条件下不同磷添加量处理间差异显著(P<0.05)。

  • 2.3 土壤硅形态与移动性

  • 如表3 所示,pH 对土壤各形态硅含量均有显著影响(P<0.05),磷添加仅对可移动态硅 (P=0.027)和吸附态硅(P=0.018)含量产生显著影响,而 pH 和磷添加的交互作用仅对铁铝锰 (氢)氧化物结合态硅(P=0.022)含量的影响显著。在各磷添加量处理中,除无定形态硅含量呈现随 pH 降低而增加的趋势外,其他形态硅的含量均表现为随 pH 降低而减少;在不同 pH 处理中,随磷添加量的增加,可移动态硅含量增加,而吸附态硅含量则减少。

  • 可移动态硅的含量在 pH 为 6.4 时达最大(19.74 mg/kg),且随着土壤酸化程度增加而降低,与 pH 6.4 处理相比,酸化处理的含量降幅达 22.47%~54.32%,差异显著;在相应的 pH 处理中,各磷添加量处理的可移动态硅含量均随磷添加量的增加而升高,相较于未添加磷处理,增幅为 4.07%~9.40%。吸附态硅含量随着 pH 的降低而减少,较 pH 6.4 处理,pH 3.5、 4.5、5.5 处理的含量分别减少了 33.40%、19.43% 和 10.72%;在各土壤 pH 处理下,吸附态硅的含量则呈现随磷的添加量增加而降低的趋势,较未添加磷处理,添加磷 60、90、120 mg/kg 时吸附态硅含量平均值分别降低了 1.19%、2.30%、3.53%。通过对两种形态硅分别与 Modified Freundlich 方程拟合得出的 C0a 值进行相关性分析(图3),发现 CaCl2 提取的可移动态硅与 C0 值呈极显著负相关(R2 =0.77, P<0.001),乙酸溶液提取的吸附态硅与 a 值则呈极显著正相关(R2 =0.65,P<0.001)。

  • 表3 pH 和磷添加对土壤硅形态的影响

  • 注:表中数值为平均值 ± 标准误差(n=3);不同小写字母表示在相同磷添加量处理下不同 pH 处理间差异显著(P<0.05)。

  • 图3 可移动态硅、吸附态硅与 Modified Freundlich 方程中硅吸附参数 C0a 的关系

  • 3 讨论

  • 3.1 pH 和磷添加对土壤硅吸附的影响

  • 研究结果显示,在 pH 3.5~6.4 范围内,土壤对硅的吸附量随 pH 升高而增加。等摩尔浓度硅、磷同时添加,磷的存在抑制了土壤对硅的吸附,硅的吸附量显著降低,且土壤对硅的吸附量小于对磷的吸附量;等摩尔浓度磷的添加导致了土壤中硅的解吸。土壤对硅、磷的吸附受土壤 pH 的影响。pH 对硅、磷的吸附影响主要由土壤吸附表面(主要是 Fe/Al 氧化物表面)电荷及电离平衡常数 pKa 决定[11]。土壤中 Fe/Al 氧化物表面的电荷在 pH 升高时变得更负[27-28],抑制阴离子的吸附;通常带负电荷离子的比例在 pKa 附近会快速增加,所以阴离子在 pKa 附近最易被吸附[12]。因硅酸(H4SiO4) 的 pKa 为 9.8,所以硅在土壤溶液中主要以不带电荷的硅酸形式存在[11],故在 pH 3.5~6.4 范围内,土壤对硅的吸附不强[29],随着 pH 升高,H3SiO4- 存在比例及吸附量逐渐增加,直到 pH 约 9.8 时达到最大。而磷酸(H3PO4)的 pKa1 值和 pKa2 分别为 2 和 7[30],在 pH=2 时,磷以 H2PO4- 的形态被吸附且达到最大吸附。当 pH>7 时,磷在溶液中存在形式由 H2PO4- 逐渐转变为 HPO4 2-,而土壤中通常是 HPO4 2- 的形式吸附占主导地位而不是 H2PO4-[31-32],所以随着 pH 升高,磷的吸附量逐渐下降。因而在 pH 3.5~6.4 范围内,磷的吸附主要为 H2PO4- 的静电吸附,硅的吸附以 H4SiO4 分子的表面吸附为主。

  • 本研究结果显示,前期加磷培养后,进行土壤硅等温吸附的测定,土壤对硅的吸附显著降低。这是因为前期添加的磷会被土壤中 Fe/Al 的氧化物表面吸附并发生反应,传递给表面的负电荷增加,电位变得更负,抑制土壤对硅酸盐的吸附,这种效应被认为是在不影响吸附曲线的形状情况下使吸附曲线发生一定“位移”[32]。研究结果还显示,pH 和磷添加量可显著影响 Modified Freundlich 方程拟合吸附曲线各参数的值,而拟合曲线的形状就取决于吸附参数 ab 值的大小,特别是 b 值。即 pH 与磷添加不仅使土壤硅素吸附曲线发生“位移”,还显著影响曲线形状的变化。其机制可能在于,前期添加的磷达到吸附动态平衡后,游离于土壤溶液中的磷酸根阴离子与后加入的硅酸根之间发生强烈的竞争吸附效应,由于吸附位点对磷的亲和力更大,从而抑制土壤对硅酸盐的吸附,且这种竞争吸附受到土壤 pH 的显著影响。

  • 3.2 pH 和磷添加对土壤硅形态及硅移动性的影响

  • 本研究结果表明,随着 pH 的升高,无定形态硅含量降低,而其他形态硅的含量则增加,尤其是可移动态和吸附态硅的含量增加较明显;磷的添加会使吸附态硅含量减少,其他形态硅的含量增加,但效果不明显。这可能是由于土壤 pH 升高,促进了无定形态硅的溶解释放并转化为其他形态的硅[33-34]

  • 土壤中硅的吸附-解吸过程受到 pH 与磷添加显著影响,进而影响硅的有效性和移动性。乙酸溶液提取的吸附态硅含量随 pH 升高而增加,并且与由 Modified Freundlich 方程拟合得到的吸附参数 a 呈极显著正相关,可能是因为乙酸溶液提取的是被土壤吸持住的硅,而土壤吸附硅的能力随 pH 升高而增强[2635-36]。Barrow[24] 认为在 Modified Freundlich 方程拟合参数 C0 值较小时,硅更容易被土壤吸附,且土壤对硅的吸附量减少使硅的移动性增强,这个结论在相关研究中已得到验证[37]。而本研究结果显示,CaCl2 提取的可移动态硅含量随 pH 升高而升高,添加磷处理时其含量高于未添加磷时,与参数 C0 的相关性表现为极显著负相关,从土壤硅吸附-解吸动态平衡的角度难以解释。据前人研究,其原因一方面可能是由于生物源硅(主要为无定形二氧化硅 SiO2·nH2O)的溶解,其溶解速率在 pH 2~12 范围内随 pH 升高而增加[38],因而 pH 升高可能促进了生物源硅中的无定形硅部分的溶解并向土壤溶液中释放,增加土壤溶液中硅酸供应量[1039-40],进而使可移动态硅含量升高,硅的移动性增强。另一方面,硅、磷均易被 Fe/Al 氧化物吸附固定,磷的添加可能降低了 Fe/Al 氧化物对硅的吸附[37],进而促进土壤对吸附态硅的解吸,从而增强硅的移动性。

  • 4 结论

  • 在土壤 pH 3.5~6.4 范围内,等摩尔浓度硅、磷同时添加,磷的存在抑制了土壤对硅的吸附,土壤硅吸附量小于磷吸附量,且土壤硅磷竞争吸附受 pH 影响。土壤酸化与磷添加降低了土壤对硅的吸附,磷添加降低土壤吸附硅的效果在较高 pH 时更为显著。

  • pH 调控土壤硅的溶解与吸附-解吸过程,从而影响土壤硅的移动性。酸化不利于土壤无定形态硅的溶解转化,进而硅的移动性减弱;磷富集促进土壤吸附态硅的解吸,进而增强土壤硅的移动性。

  • 参考文献

    • [1] Cai Z,Wang B,Xu M,et al.Intensified soil acidification from chemical N fertilization and prevention by manure in an 18-year field experiment in the red soil of southern China[J].Journal of Soils and Sediments,2015,15(2):260-270.

    • [2] Guo J H,Liu X J,Zhang Y,et al.Significant acidification in major Chinese croplands[J].Science,2010,327(5968):1008-1010.

    • [3] Haynes R J,Zhou Y F.Competitive and noncompetitive adsorption of silicate and phosphate by two acid Si-deficient soils and their effects on P and Si extractability[J].Soil Science and Plant Nutrition,2018,64(4):535-541.

    • [4] 胡克伟,颜丽,关连珠.土壤硅磷元素交互作用研究进展 [J].土壤通报,2004(2):230-233.

    • [5] 郑小妹.红壤性水稻土硅有效性及水稻生长对土壤酸化和磷添加的响应[D].南昌:江西农业大学,2021.

    • [6] Hömberg A,Obst M,Knorr K H,et al.Increased silicon concentration in fen peat leads to a release of iron and phosphate and changes in the composition of dissolved organic matter[J]. Geoderma,2020,374:114422.

    • [7] Schaller J,Faucherre S,Joss H,et al.Silicon increases the phosphorus availability of Arctic soils[J].Scientific Reports,2019,9(1):1-11.

    • [8] 胡克伟,关连珠,颜丽,等施硅对水稻土磷素吸附与解吸特性的影响研究[J].植物营养与肥料学报,2002(2):214-218.

    • [9] Haynes R J.A contemporary overview of silicon availability in agricultural soils[J].Journal of Plant Nutrition and Soil Science,2014,177(6):831-844.

    • [10] Tavakkoli E,Lyons G,English P,et al.Silicon nutrition of rice is affected by soil pH,weathering and silicon fertilisation [J].Journal of Plant Nutrition and Soil Science,2011,174(3):437-446.

    • [11] Haynes R J,Zhou Y F.Silicate sorption and desorption by a Sideficient soil-Effects of pH and period of contact[J].Geoderma,2020,365:114204.

    • [12] Barrow N.Reaction of anions and cations with variable-charge soils[J].Advances in Agronomy,1986,38:183-230.

    • [13] Nguyen M N,Picardal F,Dultz S,et al.Silicic acid as a dispersibility enhancer in a Fe-oxide-rich kaolinitic soil clay [J].Geoderma,2017,286:8-14.

    • [14] 田甜.外源硅对土壤吸附磷素特征及有效性的影响[D].沈阳:沈阳农业大学,2017.

    • [15] Bai J,Ye X,Jia J,et al.Phosphorus sorption-desorption and effects of temperature,pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions [J].Chemosphere,2017,188:677-688.

    • [16] Kostic L,Nikolic N,Bosnic D,et al.Silicon increases phosphorus(P)uptake by wheat under low P acid soil conditions [J].Plant and Soil,2017,419(1):447-455.

    • [17] Sandim A D S,Büll L T,Furim A R,et al.Phosphorus availability in oxidic soils treated with lime and silicate applications [J].Revista Brasileira de Ciência do Solo,2014,38:1215-1222.

    • [18] Ma J F,Takahashi E.Effect of silicate on phosphate availability for rice in a P-deficient soil[J].Plant and Soil,1991,133(2):151-155.

    • [19] 胡克伟,肇雪松,关连珠,等.水稻土中硅磷元素的存在形态及其相互影响研究[J].土壤通报,2002(4):272-274.

    • [20] Li Z,Guo F,Cornelis J-T,et al.Combined silicon-phosphorus fertilization affects the biomass and phytolith stock of rice plants [J].Frontiers in Plant Science,2020,11:67.

    • [21] 鲍士旦.土壤农化分析[M].3 版.北京:中国农业出版社,2000.

    • [22] Murphy J,Riley J P.A modified single solution method for the determination of phosphate in natural waters[J].Analytica Chimica Acta,1962,27:31-36.

    • [23] Sparks D L,Page A L,Helmke P A,et al.Methods of soil analysis,part 3:Chemical methods[M].Madison:American Society of Agronomy,2020.

    • [24] Barrow N.The description of sorption curves[J].European Journal of Soil Science,2008,59(5):900-910.

    • [25] Song Z,Wang H,Strong P J,et al.Increase of available soil silicon by Si-rich manure for sustainable rice production[J]. Agronomy for Sustainable Development,2014,34(4):813-819.

    • [26] Georgiadis A,Sauer D,Herrmann L,et al.Development of a method for sequential Si extraction from soils[J].Geoderma,2013,209:251-261.

    • [27] Brady N C,Weil R R.The nature and properties of soils[J]. Journal of Range Management,2002,5(6):333.

    • [28] Mcbride M.Chemisorption and precipitation reactions In handbook of Soil Science[M].Boca Raton:CRC Press,2000:265-302.

    • [29] Klotzbücher T,Treptow C,Kaiser K,et al.Sorption competition with natural organic matter as mechanism controlling silicon mobility in soil[J].Scientific Reports,2020,10(1):1-11.

    • [30] Haynes W M,Lide D R,Bruno T J.CRC handbook of chemistry and physics[M].Boca Raton:CRC press,2016.

    • [31] Bowden J,Posner A,Quirk J.Adsorption and charging phenomena in variable charge soils[J].Soils with Variable Charge,1980,9:147-166.

    • [32] Barrow N J.The four laws of soil chemistry:the Leeper lecture 1998[J].Soil Research,1999,37(5):787-830.

    • [33] Song Z,Wang H,Strong P J,et al.Plant impact on the coupled terrestrial biogeochemical cycles of silicon and carbon:implications for biogeochemical carbon sequestration[J].EarthScience Reviews,2012,115(4):319-331.

    • [34] 宁东峰,刘战东,肖俊夫,等.水稻土施用钢渣硅钙肥对土壤硅素形态和水稻生长的影响[J].灌溉排水学报,2016,35(8):42-46.

    • [35] De Tombeur F,Turner B L,Laliberté E,et al.Silicon dynamics during 2 million years of soil development in a coastal dune chronosequence under a Mediterranean climate[J]. Ecosystems,2020,23(8):1614-1630.

    • [36] Haynes R J,Zhou Y F.Effect of pH and added slag on the extractability of Si in two Si-deficient sugarcane soils[J]. Chemosphere,2018,193:431-437.

    • [37] Zheng X,Yan X,Qin G,et al.Soil acidification and phosphorus enrichment enhanced silicon mobility in a Hydragric Anthrosol[J].Journal of Soils and Sediments,2021,21(9):3107-3116.

    • [38] Haynes R J.What effect does liming have on silicon availability in agricultural soils?[J].Geoderma,2019,337:375-383.

    • [39] Crusciol C A,Artigiani A C,Arf O,et al.Surface application of lime-silicate-phosphogypsum mixtures for improving tropical soil properties and irrigated common bean yield[J].Soil Science Society of America Journal,2016,80(4):930-942.

    • [40] Keller C,Guntzer F,Barboni D,et al.Impact of agriculture on the Si biogeochemical cycle:input from phytolith studies[J]. Comptes Rendus Geoscience,2012,344(11-12):739-746.

  • 参考文献

    • [1] Cai Z,Wang B,Xu M,et al.Intensified soil acidification from chemical N fertilization and prevention by manure in an 18-year field experiment in the red soil of southern China[J].Journal of Soils and Sediments,2015,15(2):260-270.

    • [2] Guo J H,Liu X J,Zhang Y,et al.Significant acidification in major Chinese croplands[J].Science,2010,327(5968):1008-1010.

    • [3] Haynes R J,Zhou Y F.Competitive and noncompetitive adsorption of silicate and phosphate by two acid Si-deficient soils and their effects on P and Si extractability[J].Soil Science and Plant Nutrition,2018,64(4):535-541.

    • [4] 胡克伟,颜丽,关连珠.土壤硅磷元素交互作用研究进展 [J].土壤通报,2004(2):230-233.

    • [5] 郑小妹.红壤性水稻土硅有效性及水稻生长对土壤酸化和磷添加的响应[D].南昌:江西农业大学,2021.

    • [6] Hömberg A,Obst M,Knorr K H,et al.Increased silicon concentration in fen peat leads to a release of iron and phosphate and changes in the composition of dissolved organic matter[J]. Geoderma,2020,374:114422.

    • [7] Schaller J,Faucherre S,Joss H,et al.Silicon increases the phosphorus availability of Arctic soils[J].Scientific Reports,2019,9(1):1-11.

    • [8] 胡克伟,关连珠,颜丽,等施硅对水稻土磷素吸附与解吸特性的影响研究[J].植物营养与肥料学报,2002(2):214-218.

    • [9] Haynes R J.A contemporary overview of silicon availability in agricultural soils[J].Journal of Plant Nutrition and Soil Science,2014,177(6):831-844.

    • [10] Tavakkoli E,Lyons G,English P,et al.Silicon nutrition of rice is affected by soil pH,weathering and silicon fertilisation [J].Journal of Plant Nutrition and Soil Science,2011,174(3):437-446.

    • [11] Haynes R J,Zhou Y F.Silicate sorption and desorption by a Sideficient soil-Effects of pH and period of contact[J].Geoderma,2020,365:114204.

    • [12] Barrow N.Reaction of anions and cations with variable-charge soils[J].Advances in Agronomy,1986,38:183-230.

    • [13] Nguyen M N,Picardal F,Dultz S,et al.Silicic acid as a dispersibility enhancer in a Fe-oxide-rich kaolinitic soil clay [J].Geoderma,2017,286:8-14.

    • [14] 田甜.外源硅对土壤吸附磷素特征及有效性的影响[D].沈阳:沈阳农业大学,2017.

    • [15] Bai J,Ye X,Jia J,et al.Phosphorus sorption-desorption and effects of temperature,pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions [J].Chemosphere,2017,188:677-688.

    • [16] Kostic L,Nikolic N,Bosnic D,et al.Silicon increases phosphorus(P)uptake by wheat under low P acid soil conditions [J].Plant and Soil,2017,419(1):447-455.

    • [17] Sandim A D S,Büll L T,Furim A R,et al.Phosphorus availability in oxidic soils treated with lime and silicate applications [J].Revista Brasileira de Ciência do Solo,2014,38:1215-1222.

    • [18] Ma J F,Takahashi E.Effect of silicate on phosphate availability for rice in a P-deficient soil[J].Plant and Soil,1991,133(2):151-155.

    • [19] 胡克伟,肇雪松,关连珠,等.水稻土中硅磷元素的存在形态及其相互影响研究[J].土壤通报,2002(4):272-274.

    • [20] Li Z,Guo F,Cornelis J-T,et al.Combined silicon-phosphorus fertilization affects the biomass and phytolith stock of rice plants [J].Frontiers in Plant Science,2020,11:67.

    • [21] 鲍士旦.土壤农化分析[M].3 版.北京:中国农业出版社,2000.

    • [22] Murphy J,Riley J P.A modified single solution method for the determination of phosphate in natural waters[J].Analytica Chimica Acta,1962,27:31-36.

    • [23] Sparks D L,Page A L,Helmke P A,et al.Methods of soil analysis,part 3:Chemical methods[M].Madison:American Society of Agronomy,2020.

    • [24] Barrow N.The description of sorption curves[J].European Journal of Soil Science,2008,59(5):900-910.

    • [25] Song Z,Wang H,Strong P J,et al.Increase of available soil silicon by Si-rich manure for sustainable rice production[J]. Agronomy for Sustainable Development,2014,34(4):813-819.

    • [26] Georgiadis A,Sauer D,Herrmann L,et al.Development of a method for sequential Si extraction from soils[J].Geoderma,2013,209:251-261.

    • [27] Brady N C,Weil R R.The nature and properties of soils[J]. Journal of Range Management,2002,5(6):333.

    • [28] Mcbride M.Chemisorption and precipitation reactions In handbook of Soil Science[M].Boca Raton:CRC Press,2000:265-302.

    • [29] Klotzbücher T,Treptow C,Kaiser K,et al.Sorption competition with natural organic matter as mechanism controlling silicon mobility in soil[J].Scientific Reports,2020,10(1):1-11.

    • [30] Haynes W M,Lide D R,Bruno T J.CRC handbook of chemistry and physics[M].Boca Raton:CRC press,2016.

    • [31] Bowden J,Posner A,Quirk J.Adsorption and charging phenomena in variable charge soils[J].Soils with Variable Charge,1980,9:147-166.

    • [32] Barrow N J.The four laws of soil chemistry:the Leeper lecture 1998[J].Soil Research,1999,37(5):787-830.

    • [33] Song Z,Wang H,Strong P J,et al.Plant impact on the coupled terrestrial biogeochemical cycles of silicon and carbon:implications for biogeochemical carbon sequestration[J].EarthScience Reviews,2012,115(4):319-331.

    • [34] 宁东峰,刘战东,肖俊夫,等.水稻土施用钢渣硅钙肥对土壤硅素形态和水稻生长的影响[J].灌溉排水学报,2016,35(8):42-46.

    • [35] De Tombeur F,Turner B L,Laliberté E,et al.Silicon dynamics during 2 million years of soil development in a coastal dune chronosequence under a Mediterranean climate[J]. Ecosystems,2020,23(8):1614-1630.

    • [36] Haynes R J,Zhou Y F.Effect of pH and added slag on the extractability of Si in two Si-deficient sugarcane soils[J]. Chemosphere,2018,193:431-437.

    • [37] Zheng X,Yan X,Qin G,et al.Soil acidification and phosphorus enrichment enhanced silicon mobility in a Hydragric Anthrosol[J].Journal of Soils and Sediments,2021,21(9):3107-3116.

    • [38] Haynes R J.What effect does liming have on silicon availability in agricultural soils?[J].Geoderma,2019,337:375-383.

    • [39] Crusciol C A,Artigiani A C,Arf O,et al.Surface application of lime-silicate-phosphogypsum mixtures for improving tropical soil properties and irrigated common bean yield[J].Soil Science Society of America Journal,2016,80(4):930-942.

    • [40] Keller C,Guntzer F,Barboni D,et al.Impact of agriculture on the Si biogeochemical cycle:input from phytolith studies[J]. Comptes Rendus Geoscience,2012,344(11-12):739-746.

  • 《中国土壤与肥料》招聘启事
    关闭