-
中国作为世界上最大的蔬菜生产和消费国,高生产高消费导致每年有大约 2.45 亿 t 蔬菜废弃物产生,其中 60% 以上高生物降解性和高含水量的蔬菜废弃物未经任何处理直接堆放在田间地头,不当处置导致渗滤液污染水和土壤,产生臭气,滋生致病菌等环境问题[1-3]。因此,迫切需要开发高效的蔬菜废弃物处理工艺。
-
好氧堆肥被认为是处理蔬菜废弃物的可行技术,可以减少蔬菜废弃物并将其转化为稳定且有价值的有机肥料,以改善土壤质量和植物生长[4-5]。然而,研究发现,叶菜类蔬菜废弃物水分含量高 (84.8%~93.6%),总有机碳含量低,如果不添加高碳辅料,很难单独将其转化为无害环保的产品[6]。同时,初始水分含量是堆肥过程中要考虑的重要因素之一,添加锯末、玉米秸秆、木屑等辅料调节初始含水量以改善堆肥腐熟效果成为当前众多学者研究的热点[7-10]。然而,添加辅料的成本在高含水量废弃物堆肥总成本中占比很大,Cao 等[11] 研究表明,锯末和稻草等传统改良剂购买价格很高,占总成本的 40%~50%。因此,有必要找到一种便宜且易得的辅料替代品来降低蔬菜废弃物的堆肥成本。堆肥产品被广泛用作堆肥过程中的辅料,因为其易得、多孔、表面积大、低水分含量和低成本效益等特点,同时可作为微生物接种剂的替代来源,从而提高堆肥效率并显著降低蔬菜废弃物的堆肥成本[12-14]。研究表明,在高水分废弃物堆肥中添加 50% 的堆肥产品可以减少 17.7% 的辅料,从而降低堆肥成本[15]。然而,关于利用自身堆肥物料作为辅料反添消纳蔬菜废弃物,对于堆肥系统顺畅度、稳定性以及经济效益的影响研究较少。
-
因此,本研究构建循环堆肥系统处理蔬菜废弃物,先采用最优的发酵条件,添加定量的高碳、低水分的辅料,快速实现尾菜脱水、发酵。以一个发酵周期处理出来的物料全部当做后续发酵的辅料,多次消纳蔬菜废弃物,通过监测堆肥过程中物料理化性质的动态变化,探究辅料的最大循环次数及堆肥性能,并结合工厂化的常规蔬菜废弃物堆肥模式,在堆肥周期及堆肥品质相近的条件下,评价两种不同蔬菜废弃物处理模式的经济效益,建立一套经济可行的好氧发酵技术体系,实现最小原始辅料投入,处理最大量蔬菜废弃物的目的。
-
1 材料与方法
-
1.1 试验材料
-
供试蔬菜废弃物(叶菜类废弃物)取自云南省昆明市晋宁县蔬菜冷库,供试辅料为鸡粪、锯末,均取自昆明市希星堆肥厂,蔬菜废弃物和辅料混合物经过预处理后粉碎成 2~3 cm 的原料,其基本理化性质见表1。
-
1.2 试验设计
-
本试验设置两组试验:
-
工厂化常规蔬菜废弃物堆肥:以蔬菜废弃物为原料,锯末、鸡粪为辅料,按 1∶1.5∶1 的比例调节堆体物料含水率为 60%,碳氮比(C/N)为 25∶1,充分混匀后进行工厂化条垛式好氧发酵,堆体为梯形,堆体底长约为 2.6 m,底宽约 1.5 m,高约 1 m,每隔 3 d 采用翻抛机翻堆 1 次。
-
工厂化蔬菜废弃物循环堆肥:以蔬菜废弃物为原料,锯末、鸡粪为辅料,调节堆体物料含水率为 60%,C/N 为 25∶1,充分混匀后进行工厂化条垛式好氧发酵,堆体为梯形,堆体底长约 2.6 m,底宽约 1.5 m,高约 1 m,堆至 12 d(一个发酵周期),将蔬菜废弃物(95%)以补充水分方式添加至堆体中,以调节堆体含水率达到 60%,混合后进行发酵,每隔 3 d 翻堆 1 次,当翻堆后堆体最高温度为 50℃左右且不再升温作为下一次添加蔬菜废弃物的参考点,如此循环,直到堆体无法正常升温,则堆至 12 d 时该试验终止。
-
在发酵过程中的第 0、3、6、9、12、15、18、 21、24、27、30、33、36、39、42、45、48 d 翻堆采样,五点采样法于堆体内部均匀取样,一部分样品风干粉碎后用于常规指标测定,另一部分保存于-20℃冰箱中备用。
-
1.3 测定指标与方法
-
温度:用水银温度计定时测定堆体上、中、下 3 个部位温度,取 3 次温度的平均值为实际温度;含水率采用 105℃烘箱干燥法测定;对新鲜样品的水提取物,用 pH 计和电导率仪测定其 pH 及电导率(EC)值[16],另取5 mL 滤液及 20 粒新鲜黄瓜种子放入培养皿中,28℃恒温培养 48 h 后,测定发芽数和根长,完成种子发芽指数(GI)测定[17];参照 NY/T525—2021 测定有机碳、全氮含量;物料降解率的测定(重复 3 次):将物料充分混匀后多点取样,混合成 3.0 kg 的物料装入长宽为 30 cm×20 cm、孔径为 0.149 mm 的尼龙网袋内,放入堆体中,翻堆时取出网袋并进行称重,根据每次取样时网袋中鲜样的重量(W1)和含水率 (A%),以及第 0 d 网袋中鲜样重量(W2)和含水率(B%),计算公式如下:
-
1.4 数据处理
-
试验中数据处理和作图均采用 Excel 2019 进行,使用 SPSS 26.0 进行单因素方差(ANOVA) 分析和 Duncan 法进行方差分析和多重比较 (P<0.05),所有数据均为 3 次重复的平均值,误差为标准偏差。
-
2 结果与分析
-
2.1 工厂化常规堆肥进程参数
-
2.1.1 一次发酵阶段理化指标
-
工厂常规堆肥发酵过程分为两个阶段[18-19]。如图1a 所示,在蔬菜废弃物一次发酵(12 d)堆肥过程中,堆体温度急剧升高,在第 3 d 进入高温期 (≥ 55℃),第 6 d 达到最高温度 71℃,且高温期持续了 10 d。水分含量呈整体下降趋势(图1b),在堆肥第 3 d 后,水分含量迅速下降,由最初的 60.0% 降至 51.4%,下降了 14.3%。pH 值的变化规律如图1c 所示,堆肥前 6 d,pH 不断降低,由最初的 5.50 降至 4.93(第 6 d),第 6~12 d,pH 迅速上升,一次发酵结束,pH 为 6.13。GI 值的变化如图1 d 所示,在堆肥第 9 d,GI 值迅速上升,一次发酵结束时,GI 值为 34.5%。结果表明,常规蔬菜废弃物堆肥可以正常升温发酵,在一次发酵阶段实现快速脱水,但一次发酵结束物料未达到无害化腐熟的要求(GI ≥ 60%)。
-
2.1.2 二次陈化阶段
-
如表2 所示,常规蔬菜废弃物堆肥经二次陈化达到腐熟(GI ≥ 70%),水分下降到 40% 以下的时间为 24 d。堆肥物料最终 GI ≥ 70%,含水率为 30.0%,pH 值为 8.01,EC 值为 3.80 mS·cm-1,全氮含量为 20.12 g·kg-1,有机质含量为 59.8%。结果表明,常规蔬菜堆肥可正常完成堆肥发酵过程,用时36 d,堆体物料即可达到腐熟的标准(GI ≥ 70%),且堆肥最终产物满足无害化标准(NY/T525— 2021)要求。为下一步锯末、鸡粪辅料循环利用消纳蔬菜废弃物工艺设计提供参考。
-
图1 常规堆肥过程中一次发酵进程技术参数
-
2.2 循环堆肥性能评价指标
-
2.2.1 温度变化和有机物料降解速率
-
温度是影响堆肥进程的关键参数,对有机物质的降解效率起着至关重要的作用[20]。如图2a 所示,第一次循环过程中,堆体升温迅速,在堆肥第 3 d 温度超过了 55℃,高温期(≥ 55℃)持续了 10 d,同时在第一次循环中出现了整个堆肥过程中的最高温度 71℃。第二次循环中堆肥高温期持续了 5 d,最高温度为 60℃。第三次循环中温度保持在 35~53℃,其中温度≥ 50℃有 5 d,温度随翻堆反复变化;而第四次循环堆肥中温度未超过 50℃,最高温度 46℃,无法满足无害化要求,堆肥循环系统恶化。4 次循环每一循环周期的累积温度分别为 751.0、647.0、550.0、430.0℃。随着循环次数的增加,堆肥温度大幅下降,在第 42 d 翻堆后,温度下降并保持在 40℃以下,终止堆肥循环过程,最大循环次数为 3 次。
-
温度也是影响有机废物降解速率的关键参数,高温会加速有机废弃物的分解,但过高的温度会抑制微生物及酶活性[21]。如图2b 所示,蔬菜废弃物在第一次和第二次循环中具有较高的降解效率,在第一次循环中,蔬菜废弃物降解率从最初的 67.8% 上升到 92.9%,平均降解率为 84.6%,降解量最大; 第二次循环中最高降解率为 88.6%,平均降解率 75.8%,比第一次循环下降了 10.4%。在后两次循环过程中,随着温度大幅下降和循环次数的增加,蔬菜废弃物降解效率也显著下降(P<0.05),第三次循环中蔬菜废弃物平均降解率为 50.8%,与第一次和第二次循环相比,分别下降了 39.8% 和 32.9%,第四次循环降解率仅有 17.3%。混合物料 4 次循环中累积降解率分别为 26.2%、21.5%、17.2% 和 7.8% (图2c)。以上结果表明,物料降解效率随着温度的降低而下降,两者变化保持高度一致,前两次循环堆肥中蔬菜废弃物几乎被完全分解,第四次循环中蔬菜废弃物降解效率极低,几乎不分解,随着温度和循环次数的增加,堆肥系统顺畅度变差。
-
图2 循环堆肥过程中温度和有机物料降解率
-
2.2.2 理化性质及植物毒性
-
堆肥过程的最佳水分含量为 50%~60%,可以维持微生物的代谢活性并加速有机物质的分解[22],为保持最优水分含量的发酵条件,每一次循环都以新鲜蔬菜废弃物代替水调节堆体含水率至 60%。水分含量的动态变化如图3a 所示,每一次循环水分大致都从 60% 开始下降,形成锯齿状周期循环,与每次循环初始含水率相比,4 次循环含水率分别下降了 14.4%、13.2%、9.0%、8.2%,在第三和第四次循环结束时,水分含量分别为 54.2% 和 54.3%,高于第一和第二次循环结束时的水分含量。pH 值是影响微生物活性从而影响有机物料生物降解速率的重要因素,是评价堆肥性能的重要指标[23]。在循环堆肥过程中,pH 值的变化(图3b) 受蔬菜废弃物添加的影响,每次添加蔬菜后,在发酵初期 pH 值都呈现下降的趋势,随着堆肥时间的推进堆体 pH 值上升,在第三和第四次循环中,pH 值分别处在 5.83~7.42 和 6.10~7.62,满足有机肥行业标准(NY/T525—2021)无害化对 pH 的要求。以上结果表明,循环堆肥具有自身独特的发酵优势,能保持最佳水分含量的发酵条件,有利于有机物质的降解,但随着发酵次数的增加,蔬菜废弃物的脱水能力下降。
-
EC 和 GI 值通常用作评估堆肥中植物毒性存在的指标[24]。图3c、d 所示为循环堆肥过程中 EC 和 GI 值的动态变化,在第一次循环中,EC 值迅速上升,第二、第三次循环中,每次添加蔬菜废弃物,EC 值均呈现先下降后增加的趋势,第四次循环中,EC 值迅速下降,从初始 3.48 降至 3.30 mS·cm-1,在整个堆肥过程中,EC 值低于安全施肥的阈值(4.00 mS·cm-1)[25]。GI 值整体呈上升趋势,在第一次循环中,在堆肥前 9 d GI 值都低于 10.0%,到第 12 d 上升至 34.8%,未达到腐熟标准(GI ≥ 50%)[26];在第二个循环周期内,GI 值迅速上升,第二次循环结束时,GI 值大于 70%,这表明堆肥没有植物毒性[27]。与第一次循环相比,后 3 次 GI 值更高,而且随着循环次数的增加,GI 值也在增加,说明循环堆肥有利于有毒物质的降解,第四次循环终止时(42 d),GI 值为 72.0%,满足技术规程(NY/T3441—2019)要求,表明堆肥产品已经腐熟,结束堆肥循环过程。
-
图3 循环堆肥过程中理化参数及植物毒性
-
2.2.3 总有机碳、C/N 的变化
-
有机碳和氮素是微生物在堆肥过程中必不可少的能源[28]。如图4a 所示,随着堆肥时间的推移,在每个循环中总有机碳含量均持续下降,随着循环次数的增加,下降速度变缓至趋于稳定状态,4 次循环有机碳下降幅度分别为 28.0%、13.2%、 8.3%、5.7%。C/N 变化如图4b 所示,在第一次循环过程中,C/N 呈下降的趋势,第二次循环由于蔬菜废弃物的添加、C/N 呈现先上升后下降的趋势,随着循环次数增加,温度及有机物质降解效率降低,在第三、四次循环过程中,C/N 整体呈上升的趋势,4 次循环结束时 C/N 分别为 20.16、23.00、 30.07、30.19。结果表明,第一、二次循环大量有机碳被降解,有机碳损失率高于氮,导致 C/N 降低。
-
图4 循环堆肥过程中碳、氮的变化特征
-
2.3 经济效益分析
-
根据无害化标准要求和前期堆肥试验可知,蔬菜废弃物常规堆肥周期为 36 d,循环堆肥达到腐熟终止发酵的时间为 42 d,与常规堆肥相比,循环堆肥腐熟时间延长 6 d。在 36 d 的常规堆肥当中,处理 100 t 蔬菜废弃物,需要锯末 150 t,鸡粪 100 t,总辅料成本为 75000.00 元,即每处理 1 t 蔬菜废弃物的辅料成本为 750.00 元。在循环堆肥第 1 次循环中,处理 100 t 蔬菜废弃物,需要锯末 150 t,鸡粪 100 t,总辅料为 75000.00 元,在此后的循环中都是以前一次循环结束时的堆肥物料为辅料,以调整堆肥达 60% 的最佳含水量为依据,加入新鲜的蔬菜废弃物参与堆肥的生产,所以在不需要加入新辅料的情况下,第二、三次循环中分别可处理蔬菜废弃物 52.49、42.95 t,综上所述,循环堆肥每处理 1 t蔬菜废弃物的辅料成本为 383.75 元。
-
如表3 所示,工厂化常规堆肥工艺处理 1 t 蔬菜废弃物可以生成 0.84 t 有机肥料,生产成本为 860.00 元,其中辅料 750.00 元、人工费 45.00 元、其他费用 65.00 元、收入为 876.72 元,肥料销售所得 756.72 元,政府补贴 120.00 元,则处理 1 t 蔬菜废弃物纯利润为 16.72 元。循环堆肥模式处理 1 t 蔬菜废弃物生成 0.55 t 有机肥,生产成本为 493.75 元,其中辅料 383.75 元、人工费 45.00 元、其他费用 65.00 元,收入为 613.20 元,肥料销售所得 495.00 元,政府补贴 120.00 元,则处理 1 t 蔬菜废弃物纯利润为 119.54 元。结果表明,与常规堆肥相比,年处理 21000 t 蔬菜废弃物,循环堆肥工艺节省辅料 2.56 万 t,节省辅料成本 769.10 万元,年收入纯利润达 251.00 万元,是传统堆肥的 7.15 倍。
-
3 讨论
-
根据蔬菜废弃物高温堆肥无害化处理技术规程 (NY/T3441—2019)的要求,主发酵(一次发酵) 周期为 10~15 d,堆体温度控制在 55~65℃,持续时间不少于 5 d。在本试验中,一次发酵周期为 12 d,温度范围在 30~71℃,高温期持续 10 d,达到技术规程要求。其他理化指标与大部分蔬菜废弃物好氧堆肥变化规律一致[29]。二次发酵(陈化) 阶段最终理化指标、植物毒性达到 NY 525—2021 标准要求,不会产生毒害作用。
-
在循环堆肥过程中,4 次循环的温度变化趋势一致,在添加蔬菜废弃物混合后温度升高,然后下降,直到下一次循环添加蔬菜废弃物,这可能是由于添加的蔬菜废弃物与剩余未分解基质成为微生物易利用的能源[30]。同时,温度随着循环次数的增加大幅下降,这可能由于初始辅料中的鸡粪在循环过程中被微生物大量分解,使前两次循环堆体保持较高温度[31],在第三和第四次循环中,易降解有机物耗尽,微生物的活动也相对减弱,导致产热量减少,也可能是由于添加蔬菜废弃物后导致有机物质过多,同时堆体体积变小,孔隙度降低,抑制了微生物活性[32-33]。蔬菜废弃物和混合物料的降解率与温度保持高度一致,在第一次和第二次循环过程中,初期堆体中含有大量的易降解有机物质供微生物活动,微生物活动旺盛,高温维持的时间也相对较长,第一、二次添加蔬菜废弃物后物料的降解速度相对较快,随着辅料的循环利用,可能由于脂肪酸累积,降解速率降低,堆体温度相应降低,自然微生物活动减弱。因此,第一、二次循环过程中有机物料保持较高的降解率[34]。此外,每次添加蔬菜废弃物以后 EC 值都迅速增加,这是由于堆肥早期有机物快速分解,产生大量的阴离子和阳离子,从而增加了 EC 值,之后呈现下降趋势的原因可能是辅料中的有机物质已经转化成稳定的腐殖质,腐殖质进一步形成络合的阴阳离子;温度相对较低,堆体物料无法正常发酵,矿物分子生成量大大降低,导致堆体中的离子浓度降低;前期累积在堆体中的部分 NH4 + 继续形成 NH3 挥发,进而降低了 EC 值[35-36]。
-
每次添加蔬菜废弃物初期 GI 值会有所下降,这可能是由于堆肥中挥发性脂肪酸及酚酸的累积,有研究表明,未腐熟堆肥的植物毒性主要来自于小分子的有机酸和多酚等物质,这些物质对 GI 值有着一定的影响[37]。堆肥结束,GI 值满足无害化腐熟要求,最终循环堆肥的理化参数均达到了蔬菜废弃物无害化处理技术规程及有机肥标准的要求。
-
在本试验中,与常规堆肥相比,循环堆肥辅料应用量较小,因此,对于辅料的收集、采购压力相对较小;同时以自身堆肥物料作为辅料,肥料及相关产品量较少,减轻了肥料及相关产品的市场推广的困难;顺畅的工艺最大量消纳了蔬菜尾菜,尾菜补贴是本项目最大的收入来源,并且保证了项目收益的可持续性。
-
4 结论
-
本试验研究论证了循环堆肥对高含水率蔬菜废弃物处理技术的可行性及发酵工艺的顺畅程度,循环堆肥中最大循环次数为 3 次,最终堆肥产品不会产生植物毒害,辅料用量及成本减少 48.8%,其利润是常规堆肥的 7.15 倍。通过循环堆肥实现了以最小量的辅料投入来最大量消纳蔬菜废弃物的目标,为工厂化蔬菜废弃物处理工艺的优化提供了依据。
-
参考文献
-
[1] Wang R,Min J,Kronzucker H J,et al.N and P runoff losses in China’s vegetable production systems:Loss characteristics,impact,and management Practices[J].Science of The Total Environment,2019,663:971-979.
-
[2] Lu X,Yang Y,Hong C,et al.Optimization of vegetable waste composting and the exploration of microbial mechanisms related to fungal communities during Composting[J].Journal of Environmental Management,2022,319:115694.
-
[3] Wan W,Wang Y,Tan J,et al.Alkaline Phosphataseharboring bacterial community and multiple enzyme activity contribute to phosphorus transformation during vegetable waste and chicken manure Composting[J].Bioresource Technology,2020,297:122406.
-
[4] Chen M,Wang C,Wang B,et al.Enzymatic mechanism of organic nitrogen conversion and ammonia formation during vegetable waste composting using two Amendments[J].Waste Management,2019,95:306-315.
-
[5] 张凯歌,王晓东,马永杰,等.柠条堆肥与翻耕深度对设施黄瓜生长、品质及产量的协同影响[J].西南农业学报,2022,35(1):33-42.
-
[6] Jolanun B,Tripetchkul S,Chiemchaisri C,et al.Effect of moisture content on fed batch composting reactor of vegetable and fruit wastes[J].Environmental Technology,2005,26(3):293-302.
-
[7] 游宏建,张美君,安明远,等.不同堆肥材料及其碳氮比对餐厨废弃物堆肥进程中养分及微生物的影响[J].西南农业学报,2022,35(7):1631-1639.
-
[8] Song B,Manu M K,Li D,et al.Food waste digestate composting:Feedstock optimization with sawdust and mature Compost[J].Bioresource Technology,2021,341:125759.
-
[9] Wu X,Wang J,Yu Z,et al.Impact of bamboo sphere amendment on composting performance and microbial community succession in food waste Composting[J].Journal of Environmental Management,2022,303:114144.
-
[10] Rich N,Bharti A,Kumar S.Effect of bulking agents and cow dung as inoculant on vegetable waste compost Quality[J]. Bioresource Technology,2018,252:83-90.
-
[11] Cao M K,Guo H T,Zheng G D,et al.Microbial succession and degradation during kitchen waste biodrying,highlighting the thermophilic Phase[J].Bioresource Technology,2021,326:124762.
-
[12] Yang F,Li Y,Han Y,et al.Performance of mature compost to control gaseous emissions in kitchen waste Composting[J]. Science of The Total Environment,2019,657:262-269.
-
[13] Wang Y,Tang Y,Yuan Z.Improving food waste composting efficiency with mature compost Addition[J].Bioresource Technology,2022,349:126830.
-
[14] Yang W,Zhang L.Addition of mature compost improves the composting of green Waste[J].Bioresource Technology,2022,350:126927.
-
[15] Ma C,Hu B,Wei M B,et al.Influence of matured compost inoculation on sewage sludge composting:Enzyme activity,bacterial and fungal community Succession[J].Bioresource Technology,2019,294:122165.
-
[16] Zhang B,Xu Z,Jiang T,et al.Gaseous emission and maturity in composting of livestock manure and tobacco wastes:Effects of aeration intensities and mitigation by physiochemical Additives[J]. Environmental Technology & Innovation,2020,19:100899.
-
[17] Yang Y,Wang G,Li G,et al.Selection of sensitive seeds for evaluation of compost maturity with the seed germination Index[J]. Waste Management,2021,136:238-243.
-
[18] Yao X,Zhou H,Meng H,et al.Amino acid profile characterization during the Co-composting of a livestock manure and maize straw Mixture[J].Journal of Cleaner Production,2021,278:123494.
-
[19] Cai G,Li J,Zhou M,et al.Compost-derived indole-3-acetic-acid-producing bacteria and their effects on enhancing the secondary fermentation of a swine manure-corn stalk Composting [J].Chemosphere,2022,291:132750.
-
[20] Ma F,Zhu T,Yao S,et al.Coupling effect of high temperature and thermophilic bacteria indirectly accelerates the humification process of municipal sludge in hyperthermophilic Composting [J].Process Safety and Environmental Protection,2022,166:469-477.
-
[21] Chang R,Li Y,Li J,et al.Influences of the thermophilic period on biodegradation and nitrogen loss in stimulated vegetable waste Composting[J].Global Ecology and Conservation,2019,18:e00623.
-
[22] Wang K,Mao H,Li X.Functional characteristics and influence factors of microbial community in sewage sludge composting with inorganic bulking Agent[J].Bioresource Technology,2018,249:527-535.
-
[23] Ayd1n T F.Evaluation of the influence of rice husk amendment on compost quality in the composting of sewage Sludge[J]. Bioresource Technology,2023,373:128748.
-
[24] Peng X Y,Wang S P,Chu X L,et al.Valorizing kitchen waste to produce Value-added fertilizer by thermophilic semi-continuous composting followed by static stacking:Performance and bacterial community succession Analysis[J].Bioresource Technology,2023,373:128732.
-
[25] Yuan J,Li Y,Chen S,et al.Effects of phosphogypsum,superphosphate,and dicyandiamide on gaseous emission and compost quality during sewage sludge Composting[J]. Bioresource Technology,2018,270:368-376.
-
[26] 邓亚琴,徐智,张勇,等.土壤微生物生物量氮对不同腐熟度有机肥的响应及对土壤矿质氮的调控作用[J].应用生态学报,2023,34(1):137-144.
-
[27] Wang G,Kong Y,Yang Y,et al.Superphosphate,biochar,and a microbial inoculum regulate phytotoxicity and humification during chicken manure Composting[J].Science of The Total Environment,2022,824:153958.
-
[28] Bernal M P,Alburquerque J A,Moral R.Composting of animal manures and chemical criteria for compost maturity assessment. A Review[J].Bioresource Technology,2009,100(22):5444-5453.
-
[29] Rawoteea S A,Mudhoo A,Kumar S.Co-composting of vegetable wastes and carton:Effect of carton composition and parameter Variations[J].Bioresource Technology,2017,227:171-178.
-
[30] Wang X,Pan S,Zhang Z,et al.Effects of the feeding ratio of food waste on Fed-batch aerobic composting and its microbial Community[J].Bioresource Technology,2017,224:397-404.
-
[31] 张陆,曹玉博,王惟帅,等.鸡粪添加对蔬菜废弃物堆肥腐殖化过程的影响[J].中国生态农业学报(中英文),2022,30(2):258-267.
-
[32] Wang S P,Gao Y,Sun Z Y,et al.Thermophilic Semicontinuous composting of kitchen waste:Performance evaluation and microbial community Characteristics[J].Bioresource Technology,2022,363:127952.
-
[33] Zhang L,Sun X.Changes in physical,chemical,and microbiological properties during the two-stage co-composting of green waste with spent mushroom compost and Biochar[J]. Bioresource Technology,2014,171:274-284.
-
[34] Mahapatra S,Ali M H,Samal K.Assessment of compost Maturity-stability indices and recent development of composting Bin[J].Energy Nexus,2022,6:100062.
-
[35] Lin H,Ye J,Sun W,et al.Solar composting greenhouse for organic waste treatment in Fed-batch mode:Physicochemical and microbiological Dynamics[J].Waste Management,2020,113:1-11.
-
[36] Wan L,Wang X,Cong C,et al.Effect of inoculating microorganisms in chicken manure composting with maize Straw [J].Bioresource Technology,2020,301:122730.
-
[37] Kong Y,Wang G,Chen W,et al.Phytotoxicity of farm livestock manures in facultative heap composting using the seed germination index as Indicator[J].Ecotoxicology and Environmental Safety,2022,247:114251.
-
摘要
蔬菜废弃物含水率高,在堆肥堆制中需要添加大量高碳低水辅料进行调节,生产成本高,资源化利用率低,为了研发适用于消纳高含水率蔬菜废弃物的好氧堆肥发酵工艺体系以促进废弃物高效资源化利用,通过设置传统好氧堆肥和循环堆肥两组试验,研究蔬菜废弃物循环堆肥的性能,评价其工艺的可行性和经济效益。结果表明:在第一、二次循环过程中,堆肥性能稳定,堆体升温迅速,高温期分别持续 10、5 d;在第三次循环中,系统稳定性开始波动,温度≥ 50℃保持 5 d,第四次循环堆肥系统恶化,堆体无法达到 50℃,终止循环过程。循环堆肥物料最终 pH 值为 6.72、电导率值为 3.43 mS·cm-1,种子发芽指数为 72.0%,满足无害化标准要求,不会对植物产生毒害。循环堆肥能使蔬菜废弃物迅速脱水,并将堆体水分保持在 50% ~ 60% 的最佳范围以利于有机物质的降解,4 次循环蔬菜废弃物最高降解率分别为 92.9%、88.6%、59.4%、21.7%。经济效益分析表明,与常规堆肥相比较,循环堆肥辅料用量及成本减少 48.8%,同时,添加同量的辅料,循环堆肥能消纳更多的蔬菜废弃物,其利润是常规堆肥的 7.15 倍。综上所述,循环堆肥工艺可行、性能稳定,最大循环次数为 3 次,辅料应用量少,利润高,是处理高含水率蔬菜废弃物经济可行的技术。
Abstract
Vegetable waste has high water content.A large number of high carbon and low water auxiliary materials need to be added in the composting process for adjustment,resulting in high production cost and low resource utilization rate. In order to develop the aerobic composting process system suitable for consuming vegetable waste with high water content and promote the efficient resource utilization of waste,an experiment with traditional aerobic composting and recycling composting was conducted.The performance of vegetable waste recycling composting was studied,and the feasibility and economic benefits of the process were evaluated.The results showed that in the first and second cycle,the performance of the composting was stable,and the temperature of the pile was rapid,and the high temperature period lasted for 10 and 5 days, respectively.In the third cycle,the stability of the system began to fluctuate,and the ≥50℃ temperature was remained for 5 days.In the fourth cycle,the composting system deteriorated and the heap could not reach 50℃,which terminated the cycle process.The final pH value of the recycled composts material was 6.72,the EC value was 3.43 mS·cm-1,and the seed germination index was 72.0%,which met the requirements of the harmless standard and did not cause toxicity to plants. The recycling composting can dehydrate vegetable waste rapidly,and keep the water of the pile in the optimal range of 50%-60% to facilitate the degradation of organic materials.The highest degradation rates of the four recycling for vegetable waste were 92.9%,88.6%,59.4%,21.7%,respectively.The economic benefit analysis showed that,compared with conventional composting,the amount of auxiliary materials and cost of recycling composting were reduced by 48.8%.At the same time,adding the same amount of auxiliary materials,recycling composting could absorb more vegetable waste,and its profit was 7.15 times that of conventional composting.In conclusion,the process of recycling composting is feasible and stable,the maximum number of cycles is three times,the amount of auxiliary materials is less,and the profit is high.It is an economical and feasible technology for the treatment of vegetable waste with high water content.
Keywords
vegetable waste ; recycled composting ; composting performance ; economic benefit