-
土壤作为人类依赖的重要资源在日常生产和生活中具有举足轻重的作用。然而,近些年随着城市快速发展,工业进程和集约化农业的发展产生大量无机和有机污染物。例如,大量化肥农药的滥用,工业废物的填埋和污水的灌溉和矿山的开采使得这些污染物扩散到土壤中,所造成的土壤污染(包括重金属和持久性有机污染物的聚集)已经成为全球性环境问题。据估计,我国 19% 农业土壤被污染,导致每年 1200 万 t 谷类的浪费[1]。由于土壤污染的长期性和隐蔽性,通过动植物循环进入食物链,造成环境生态风险和人类健康威胁[2]。因此,寻求绿色友好和高效稳定的污染土壤的修复技术是目前亟须解决的难题[3]。
-
传统的土壤修复技术包括物理(如土壤水洗、客土)、化学(如玻璃固定、热解吸)和生物修复。然而,这些方法存在一定缺陷,例如昂贵、费时和二次污染。纳米零价铁(nZVI)由于粒径小、表面积大、还原性高等特点广泛地应用于污染土壤的修复[4-5]。而且 nZVI 还可以作为土壤中潜在肥料,由于它能够促进铁的吸收和植物的光合作用[6-7]。图1A 显示 2012—2022 年来关于 nZVI 复合材料在土壤修复的文章[在 web of Science 以“nano zero-valent iron”(nZVI)和“soil”(土壤)为关键词,以 2012—2022 为发表日期]。发表文章数逐年上升,特别是 2018 年以来数量显著提高,说明 nZVI 复合材料已经广泛地应用于土壤修复。而且关于 nZVI 复合材料对土壤中污染物修复综述很多[8-14],但是 nZVI 复合材料不同性质对土壤中污染物修复的影响及其作用机理的总结较少[15]。
-
本综述首先总结 nZVI 复合材料不同改性技术的优缺点和合成原理;分析 nZVI 复合材料的性质 (铁含量、纳米尺寸、比表面积)对土壤中重金属,有机污染物的修复影响(图1B);最后对纳米零价铁复合材料的未来应用进行展望。
-
1 纳米零价铁复合材料的合成和性质
-
1.1 纳米零价铁合成和性质
-
目前主要通过液相还原法合成 nZVI,即在氮气条件下通过硼氢化钠还原铁离子得到内层为致密零价铁和外层为无定型氧化物的核壳结构[16-18]。该方法在合成 nZVI 时易团聚和氧化导致活性低,而且合成过程中会产生二次污染[19]。目前国内外研究学者通过绿色方法合成 nZVI。Wei 等[20]通过水葫芦植物提取液生物合成无定型球状 (20~0 nm)nZVI,分散性较好,表面覆盖各种有机物作为覆盖剂或稳定剂(图2A)。在污染土壤中,单一的球状 nZVI 逐渐氧化,压塌并附着在黏土矿物表面,最初的铁的氧化产物是磁赤铁矿和磁铁矿。土壤含水量超过 70%,酸性土壤和低含量可溶性芳香性碳都加速 nZVI 氧化,nZVI 腐蚀产物易团聚(图2B)[21]。
-
图1 纳米零价铁研究情况
-
注:A:2012—2022 年发表论文数[在 web of science 中检索“soil”( 土壤)和“nano zero-valent iron”(纳米零价铁)两关键词 ],左上图为纳米零价铁 SEM 图;B:纳米零价铁复合材料对土壤有机和无机污染物修复。
-
1.2 纳米零价铁复合材料的合成和性质
-
nZVI 由于内在缺陷(例如易团聚、易氧化) 大幅度降低修复效果,限制实际应用[22-23]。生物炭由于能够提高土壤肥力,消散或固定土壤污染物,调节微生物群落和结构,目前作为广泛应用且环境友好的土壤改良剂[24-26]。因此,近十几年来,利用各种绿色、环境友好方法高效地制备生物炭 /nZVI[27-29]。例如,Yang 等[30] 利用绿茶提取液绿色制备 nZVI/ 蒙脱石复合材料,nZVI 紧紧包裹和嵌入蒙脱石层间(图2C);祝方等[31] 也利用 Fe2+、Cu2+ 和绿茶提取液在氮气下制备绿色合成 nZVI/Cu 复合材料。Liu 等[32] 利用一步碳热还原法合成 nZVI/ 生物炭复合材料[稻壳 +Fe2(SO4)3 在氮气和 800℃裂解 30 min]。生物炭具有粗糙表面和大量孔道,作为基质和载体有助于 nZVI 合成,合成材料平均粒径约 100 nm,而且分散性好 (图2D)[32]。这些方法简单、易用,还可以充分利用农业废弃物。
-
图2 各种纳米零价铁复合材料
-
注:A:nZVI[20];B:nZVI+ 土壤(60 d)[21];C:蒙脱石 /nZVI[30];D:生物炭 /nZVI[32]。
-
2 纳米零价铁复合材料对污染土壤修复
-
2.1 有机污染物的修复
-
2.1.1 抗生素
-
抗生素(如四环素、磺胺类药物)广泛地应用于人类和动物的细菌感染,甚至促进动物的生长[33]。这些抗生素由于弱吸附性具有高的迁移风险和生物可利用性[25]。而且,抗生素的滥用导致抗生素耐药基因的快速出现,很有可能迁移和整合人类病原体。据估计,到 2050 年由于抗生素耐药基因导致死亡数达到 1000 万人[34]。因此,为了有效降低抗生素耐药基因的风险,找到一种环境友好且有效方法协同除去抗生素和它们相应的基因是非常必要的。目前,已有大量文献调研 nZVI 对水体中抗生素的吸附和降解[35-40],但对土壤中抗生素的研究,特别是综述较少[25,41]。
-
Conde-Cid 等[42]发现污染土壤中金霉素(氯四环素)相对于四环素和土霉素(氧四环素)更易滞留土壤中。Zhang 等[41]调查不同条件(蚯蚓) 对污染土壤中磺胺甲恶唑(SMX)在 nZVI/ 生物炭修复的影响。nZVI/ 生物炭有效提高土壤中 SMX 的消散,蚯蚓提高变形杆菌的富集。表面修饰生物炭或 SMX 与蚯蚓的协同作用提高超氧化物歧化酶的活性。Zhou 等[43]发现 nZVI 活化的过硫酸盐对农业土壤中 SMX 存在很好的降解效果(87.6%,4 h,30℃)归因于羟基自由基。Lu 等[35]发现 nZVI 对抗生素耐药基因具有高吸附[吸附速率 0.06 mg/ (g·min),吸附容量 4.29 mg/g,高于纳米 TiO2 (2.15 mg/g)]和易破碎的特征归因于形成 Fe-O-P 的络合物,而抗生素耐药基因与 TiO2 结合只通过静电吸引,解吸下来抗生素耐药基因呈完整结构 (图3A)。而从 nZVI 解吸下来的抗生素耐药基因分裂小片段,与 DNA 碱基对组成无关。这些发现表明 nZVI 对抗生素及其抗生素耐药基因具有很好的治理效果。
-
2.1.2 含氯有机物
-
土壤中各种有机氯污染物(如三氯乙烯[44-45]、二氯苯酚[46]、五氯苯酚[47-51])由于持久性和高毒性存在显著的健康风险。大量研究表明,nZVI 为有机氯污染的土壤修复提供一种很有前景的解决方案。
-
Diao 等[46]研究表明,过硫酸盐修饰 nZVI/ 生物炭对土壤中 2,4-二氯苯酚降解(91%,40 mg/ kg,4 h,pH 4.5)归因于 SO4-.,而有机酸抑制其降解过程。Tian 等[44] 研究发现,nZVI 改性复合材料对污染土壤中三氯乙烯存在高效脱氯效率 (84.7%)。Tian 等[45] 证实,nZVI 改性复合材料对土壤三氯乙烯的降解机理主要由于还原性脱氯作用。Kang 等[52]发现土壤中对-硝基氯苯在过硫酸盐 /nZVI(从 0.1 到 1 mmol/g)去除效率显著提高(10.8%~90.1%),也显著高于单一过硫酸盐(36.5%) 和 nZVI(60.2%)。Liu 等[47] 发现在污染土壤中加入 nZVI(100 mg/kg,140 d)形成根表铁膜,五氯苯酚(PCP)去除率从 49.9% 提高到 89%,谷物中 PCP 含量降低 83%~86%,谷物产量提高 47%~55%(图3B);而且,nZVI 对 PCP 去除率(83%~89%)显著高于 mZVI(71.2%)和 Fe2+(65.4%)(图3B)。Liu 等[50]发现有机氯污染的稻田在 nZVI、有机物和本土脱卤菌提高五氯苯酚去除效果(从 34.4% 提高 84.5%,培养 15 d)归因于土壤有机质促进微生物繁殖,nZVI 加速土壤有机质微生物迁移和 Fe-PCP 生物循环的氧化还原中诱导更高的电子迁移能力。在单独使用 nZVI 或土壤有机质下通过邻位和间位取代将五氯苯酚降解,而在脱氯菌共存下通过对位取代将五氯苯酚降解为 2,4,6-三氯苯酚。
-
2.1.3 苯类有机物
-
土壤中多环芳香化合物(如多环芳烃、多氯联苯等)和内分泌干扰物(如双酚 A、四溴双酚 A) 由于环境毒性、可持久性和三致效应(致癌,致畸和致突变),对土壤生态系统和人类健康存在显著的影响[53-54]。目前,关于纳米材料对土壤中苯类有机污染物治理文章很多[55-56],但是较少描述 nZVI 复合材料对污染土壤中多环芳香化合物修复的最新进展。
-
Song 等[57]对比微米级和纳米级 ZVI/ 过硫酸盐复合材料对污染土壤中多环芳烃的苯并(α)蒽降解。虽然前 30 d 没有显著差异,而且降解速率非常快( 从 1.6 mg/kg 降低到 0.5 mg/kg),但是 100 d 后 nZVI 对苯并(α)蒽具有更好降解效果(0.25 mg/kg,图3C)。而且过硫酸修复后,厚壁菌门的微生物是主要优势菌种。Wu 等[58]发现,加入表面活性剂可促进 nZVI 对土壤中四氯联苯的脱氯过程。Yuan 等[59]发现过硫酸盐 /nZVI 复合材料对土壤中四溴双酚 A 具有很好的降解能力(78.32%,12 h,pH 5.5,25℃),归因于异丙基和苯环上脱溴和裂解,而且 Cu2+ 和 Zn2+ 分别加速和抑制其降解效果。付欣等[60] 发现纳米零价铁铜(0.3 g)对土壤中四氯双酚 A 降解(85%)是一个逐步还原脱氯过程。 Shen 等[61]也发现添加聚乙二醇辛基苯基醚添加剂促进硫化 nZVI 对四溴双酚 A 的降解。Chen 等[62] 发现,nZVI/ 微生物对污染土壤中六氯己烷(85%) 具有很好的降解能力归因于它们的协同效应。这些结果表明,nZVI 与过硫酸盐结合对难降解有机物具有很好的治理效果。
-
2.1.4 其他有机物
-
土壤中除上述有机污染物外,还有很多其他有机污染物,如农药(林丹[63])、硝基类有机物[52,64]、除草剂( 阿特拉津[65])和总石油烃[66-68]等。Diao 等[65]发现过硫酸盐活化的 nZVI/ 生物炭对阿特拉津具有很好的降解效果(96%,包括脱烷基化、脱氯和羟基化作用)归于 SO4-. 活性氧组分,同时羟基(—OH)和单线氧(1 O2)也参与反应。总石油烃随着产品和应用提高对土壤健康存在威胁;Zhang 等[66]研究表明,过硫酸盐 / 生物炭 /nZVI 复合材料不仅提高土壤微生物的新陈代谢活性,而且能够将长链的总石油烃降解为短链,包括化学降解(0~6 d)和生物降解(6~60 d,图3D)。Bajagain 等[67]调研柴油污染土壤中总石油烃在 nZVI/ 过硫酸盐复合材料具有很好的降解效率 (61.2%,2 h)归因于活性氧自由基(羟基和硫酸根自由基)。Desalegn 等[68]也发现 nZVI/ 过硫酸盐对土壤石油烃具有催化氧化能力(>90%,7 d)归因于 nZVI 作为过硫酸氧化的活化剂、羟基和硫酸基协同作用。这些结果表明 nZVI 复合材料既能固定土壤中有机污染物又能提高作物的产量,对污染土壤具有很好的化学修复效果。
-
图3 纳米零价铁复合材料对土壤有机污染物的修复
-
注:A:nZVI 对抗生素耐药基因吸附[35],ARG 为抗生素耐药基因;B:五氯苯酚[47],图中小写字母不同表示处理间差异显著(P<0.05);C:多环芳烃[57],C-n ZVI 为硬脂酸包裹 nZVI,mZVI 为微米级 ZVI;D:总石油烃[66],BC 为生物炭,PS 为过硫酸盐,TPHs 为总石油烃。
-
2.2 重金属修复
-
2.2.1 铬
-
土壤中铬(Cr)主要来自人类活动,例如采矿、冶金、电镀、皮革制造、化工产品生产[69]。铬在土壤中主要以两种稳定态即 Cr3+[易形成 Cr(OH)3 沉淀,毒性较小]和 Cr6+(酸性下 HCrO4-、H2CrO4 和碱性下 Cr2O7 2-、CrO4 2-)形态存在土壤[70]。因此,Cr6+ 相对于 Cr3+ 更容易被植物吸收,危害生态环境和人类健康(如致畸性、致癌性),已被美国环境保护署列为 A 类人类致癌物[71]。目前从工程实践来说,在土壤加入 nZVI 复合材料能够将 Cr6+ 原位还原、沉淀 / 固定[72]。nZVI 复合材料对 Cr6+ 污染土壤的研究进展较多[73-77],但是不同类型 nZVI 复合材料的性质对污染土壤中 Cr 的修复影响的综述很少。
-
Liu 等[78] 发现 nZVI/ 生物炭对水稻土中 Cr6+ 吸附容量(516.7 mg/g) 是 nZVI 的 2.8 倍,而且硫酸根、碳酸根和有机酸都抑制 Cr6+ 吸附。Wang 等[79]发现在盐碱地加入 nZVI/ 生物炭后 Cr6+ 释放量从 70.7 mg/kg 减低到 0.6~1.7 mg/kg(pH 4~8),作用机理包括 Cr6+ 还原为 Cr3+ 和共沉淀(FeCr2O4)[79]。 Liu 等[80]通过 X-射线光电子能谱(XPS)分析 Cr3+ 含量是 Cr6+ 含量的 2.1 倍,表明土壤中 Cr6+ 去除机理中相对于吸附,还原作用占主导因素。祝方等[31]通过淋洗试验发现经过 nZVI/Cu 悬浮液处理后土壤 Cr6+ 可提取态和还原态 Cr 含量降低,而可氧化态和残渣态 Cr 含量显著提高,说明处理后 Cr 在污染土壤中更稳定,避免对周围环境造成威胁。Pei 等[81]也证实在 Cr 污染的土壤加入 nZVI/ 醋渣可以将几乎所有的交换态 Cr 转化为 Fe-Mn 氧化结合态和有机态。Hui 等[82] 证实土壤有机质促进 nZVI 对 Cr 的吸附(79.87%), nZVI 主要腐蚀产物是 Fe3O4、γ-Fe2O3 和 α-FeOOH 等铁(氢)氧化物。Guan 等[83]发现经过硫化 nZVI 和 nZVI 孵化后土壤中 Cr(153.6 mg/kg)通过碱提取浓度分别降低到 23.4 和 131.6 mg/kg,表明硫化 nZVI 具有更好的还原和固定(将可交换态 Cr 转变更加稳定的 Fe-Mn 氧化物结合态)土壤 Cr6+ 能力(图4A)。
-
综上所述,nZVI 复合材料在 Cr6+ 污染土壤修复治理中具有极其广泛的应用前景。
-
2.2.2 镉
-
镉(Cd)在我国北方地区土壤特别是农田土壤超标率(7%)高出食品中污染物限量标准中的限值 (GB 2762—2005)[84]。由于化学毒性、生物累积性和易迁移性,土壤中 Cd 污染的治理已经成为亟待解决的环境问题[85]。目前,关于 Cd 的矿物修复[86-88] 和生物修复[89-92]的综述很多,然而关于 nZVI 复合材料对污染土壤中 Cd 修复的综述较少[84,93]。
-
Phenrat 等[94]证实水稻田土壤 93% 可溶态 Cd (可交换态和碳酸盐态)被 nZVI 有效固定。Qiao等[95] 使用 nZVI/ 生物炭对稻田中 Cd(稻谷 0.15 mg/kg,93%)和砷(As)(稻谷 0.17 mg/kg,61%) 具有很好固定修复效果,表明 nZVI/ 生物炭通过形成无定型 Fe 和蚀斑能同时减少 Cd 和 As 生物可利用性。Li 等[96]也发现 0.2%nZVI/0.5% 生物炭对土壤中 Cd 和 As 具有很好的钝化作用。Vitkova 等[97] 证实 nZVI 对污染土壤中 As、Cd、铅(Pb)和锌 (Zn)固定机理包括 nZVI 和新形成的 Fe 氢氧化物和二次 Fe-As 等沉淀物。Zhao 等[98]证实 nZVI 通过给电子和刺激硫酸盐还原菌酶活性,很好地生物固化污染土壤中 Cd。许亚琼等[99]研究发现 nZVI 改性生物炭 nZVI/ 生物炭对污染土壤中 Cd 的吸附容量(125 mg/g)是生物炭的 4.3 倍,沉淀和表面络合是 nZVI/ 生物炭固定土壤中 Cd 的主要机制。 Guo 等[100]通过分级提取法证实加入磺化 nZVI(5 g/kg,30 d)将 97.6% 交换态 Cd 被转变铁锰氧化物结合态和有机结合态,Cd2+ 与磺化 nZVI 和 FeS 反应分别形成 CdO 和 CdS 沉淀物,而且 Cd2+ 与磺化 nZVI 的腐蚀产物(α-FeOOH、γ-FeOOH 和 γ-Fe2O3)反应生成各种表面络合物(图4B)。Xue 等[101]发现 nZVI 功能化复合材料更加有效地将沉积物中易变态的 Cd 转变为稳定态(提高 11.37 mg/ kg,42 d),表明纳米材料对污染河流沉积物中重金属种态变化具有潜在影响。
-
2.2.3 铅
-
作为典型的重金属,土壤铅(Pb)污染已经引起全球的关注[102-103]。因此,高效治理含 Pb 土壤是目前当务之急[93]。近些年来,国内外学者将 nZVI 复合材料广泛地应用污染土壤中 Pb 修复[104-106]。
-
Zhou 等[107]发现在污染土壤中离子交换态和碳酸盐结合态 Pb 随着 nZVI 提高显著降低归因于形成 Pb-Fe 水合氧化物沉淀和转移。Peng 等[108]发现 nZVI/ 生物炭对污染土壤中 Pb 固定率(54.6%,反应 90 d)远远高于 Fe3O4/ 生物炭(30.5%),然而添加 Fe3O4/ 生物炭提高土壤酶活性。Qian 等[109] 发现 Pb 污染土壤中加入多孔生物炭 /nZVI,Pb 以 PbCO3、PbO 和 Pb(OH)2 形式存在。Huang 等[110]发现在污染的沉积物加入 nZVI 有助于 Pb 的生物修复。这些研究证实生物炭 /nZVI 作为土壤中多种重金属修复的潜在技术。
-
2.2.4 砷
-
有效治理水稻土中易变砷(As)是缓解砷在植物富集的基本路径[111]。
-
Qiao 等[112] 发现磺化 nZVI 对土壤中水溶性的 As5+ 转化为不易溶解 Fe-Mn 结合态,而且反应 30 d 只有 0.7% As 被解吸,说明磺化 nZVI 具有很好的长期稳定性。Baragano 等[113] 发现虽然 nZVI(89.5%)和针铁矿纳米材料(82.5%)对土壤中 As 都具有很好固定效果,然而在高剂量下针铁矿提高土壤毒性而 nZVI 降低土壤毒性。Fan 等[114] 发现 93%As 被 nZVI/ 生物炭固定归因于 nZVI 氧化的无定型 FeOOH 的吸附和 Ca/Al-Fe-As-O 共沉淀。Yang 等[115] 证实 nZVI/ 生物炭对含 As 土壤存在显著固定性能和利用性降低 30% 以上,主要形成沉淀和表面络合物。Zhang 等[116] 发现 nZVI/ 生物炭复合材料对土壤中的 As 的固定率达到 82%,主要由于形成 As-Fe 共沉淀物。Li 等[117]研究 nZVI/ 沸石复合材料(30 g/kg,180 d) 对农场土壤中的 Cd、Pb 和 As 固定机理包括 B 型三元络合(吸附剂表面-金属离子-阴离子)、异相沉淀[Cd3(AsO4)2,PbFe2(AsO4)2(OH)2]和并存氧化还原反应(As0)。Huang 等[118] 发现 nZVI/ 石英在 pH 5~9 对土壤 As3+ 去除率(72.1%)显著高于铁氧化物(26.8%)和 Fe 浸渍的生物炭(30%,图4C),然而硅酸和磷酸抑制 As 的提取。这些结果证实 nZVI/ 生物炭可以作为一个潜在的改良剂同时修复污染土壤中 As 和其他重金属[119]。
-
2.2.5 其他重金属
-
除上述重金属以外,nZVI 复合材料还应用于其他污染土壤中重金属的修复。Danila 等[120] 发现相对于微米 ZVI,nZVI 对污染土壤中 Cu、As 和 Pb 具有更好的固定效果,根据解吸试验固定后 Pb 相对于 Cu 和 As 更容易解吸。然而,Dovletyarova 等[121]发现在 Cu 和 Ni 污染土壤加入微米和纳米级 ZVI 修复对植物(黑麦草)生长没有显著影响。 Sang 等[122]发现生物表面活性剂修饰 nZVI 对污染土壤中 Ni2+ 由主要的游离态转化为 Fe-Mn 结合态和残渣态。通过 XPS 和 X-射线衍射分析证实作用机理包括还原、吸附、沉淀 / 共沉淀。Vasarevicius 等[123] 发现 nZVI 对 Cu2+ 和 Ni2+ 固定率显著高于 Cd2+ 和 Pb2+。Mandal 等[124] 也证实在含 Cu 污染土壤加入生物炭 / 氧化石墨烯 /nZVI 复合材料 14 d 时,有效 Cu2+ 含量减少 65% 以上。吸附[生物炭中孔结构和氧化石墨烯丰富含氧功能团(C—O, C—O,—OH)有助于吸附]、还原(nZVI 强氧化还原能力)和共沉淀(腐蚀产物的络合能力)等主要过程影响土壤中 Cu 的迁移和重现(图4D)[124]。 Mitzia 等[125] 也发现 nZVI/ 生物炭对污染土壤中 Zn2+ 具有很好固定效果主要归因于 Fe/Mn/Al(氢) 氧化物对 Zn2+ 的束缚。Cao 等[126]发现,农场土中 Zn2+ 在草酸修饰 nZVI 富集能力(8.93%)远远低于柠檬酸和酒石酸修饰 nZVI(19.24% 和 18.16%)。 Mandal 等[127] 发现聚硫化物 /nZVI/ 生物炭对硒 (Se)高固定率(77.29%,30 d)归因于水溶和交换态 Se 转变成更难利用形式(酸溶、有机和残渣态)。表面吸附、还原和络合是 Se 固定主要机理。
-
图4 nZVI 复合材料对土壤重金属修复
-
注:A:土壤中 Cr6+ 被磺化 nZVI 固定[83],RS、OM、OX、CB、EX 分别表示交换态、碳酸盐结合态、铁锰氧化物结合态、有机结合态、残留态;B:磺化 nZVI 对土壤 Cd2+ 固定[100];C:各种 nZVI 对土壤 As3- 提取率[118],图中小写字母不同表示处理间差异显著(P<0.05);D:氧化石墨烯 /nZVI 对土壤 Cu2+ 固定[124]。
-
3 结论与展望
-
本文系统地调研 nZVI 复合材料对有机污染物、重金属和石油类污染土壤修复。由于还原性强、纳米效应和吸附性好等特点可提高颗粒在环境修复中的流动性和渗透性。土壤中污染物与 nZVI 复合材料的作用机理包括吸附、氧化还原、表面络合、共沉淀。污染土壤中加入 nZVI 复合材料不仅提高土壤 pH,而且有利于作物产量的提高。关于 nZVI 复合材料在污染土壤修复的未来研究方向为生物兼容性,nZVI 复合材料原位修复必然扰乱土壤的生态系统,Zhu 等[128]发现 nZVI 对玉米生长有毒害作用,还对土壤微生物有毒害作用等[129-132]。因此,今后需要进一步研究 nZVI 在土壤修复过程中对土壤生态系统的兼容性[133];总之,nZVI 复合材料是目前一种新型环境友好材料,在土壤修复领域具有广泛的应用前景。
-
参考文献
-
[1] Rodríguez-Eugenio N,McLaughlin M,Pennock D.Soil pollution:a hidden reality[M/OL]//Food and agriculture organization of the United Nations.http://agris.fao.org/agris-search/search.do?recordID=XF2018001459,2018.
-
[2] FAO,IFAD,UNICEF,et al.The state of food security and nutrition in the world[EB/OL].[2023-04-27].http://www. fao.org/publications/home/fao-flagship-publications/the-state-of-food-security-and-nutrition-in-the-world/e.2023.
-
[3] Gong Y Y,Zhao D Y,Wang Q L.An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids:technical progress over the last decade[J].Water Research,2018,147(15):440-460.
-
[4] Baragano D,Forjan R,Fernandez B,et al.Application of biochar,compost and ZVI nanoparticles for the remediation of As,Cu,Pb and Zn polluted soil[J].Environmental Science and Pollution Research,2020,27(27):33681-33691.
-
[5] Cai C Y,Zhao M H,Yu Z,et al.Utilization of nanomaterials for in-situ remediation of heavy metal(loid)contaminated sediments:a review[J].Science of the Total Environment,2019,622:205-217.
-
[6] Lombi E,Donner E,Dusinska M,et al.A one health approach to managing the applications and implications of nanotechnologies in agriculture[J].Nature Nanotechnol,2019,14:523-531.
-
[7] Lowry G V,Avellan A,Gilbertson L M.Opportunities and challenges for nanotechnology in the agri-tech revolution[J]. Nature Nanotechnol,2019,14:517-522.
-
[8] Xue W J,Huang D D,Zeng G M,et al.Performance and toxicity assessment of nanoscale zero valent iron particles in the remediation of contaminated soil:a review[J].Chemosphere,2018,210::1145-1156.
-
[9] Wang S S,Zhao M Y,Zhou M,et al.Biochar-supported nZVI(nZVI/BC)for contaminant removal from soil and water:a critical review[J].Journal of Hazardous Materials,2019,373(5):820-834.
-
[10] Lyu H,Tang J,Cui M,et al.Biochar/iron(BC/Fe)composites for soil and groundwater remediation:synthesis,applications,and mechanisms[J].Chemosphere,2019,246:125609.
-
[11] Liang W Y,Wang G H,Peng C,et al.Recent advances of carbon-based nano zero valent iron for heavy metals remediation in soil and water:a critical review[J].Journal of Hazardous Materials,2022(5):127993.
-
[12] Li Y,Zhao H P,Zhu L.Remediation of soil contaminated with organic compounds by nanoscale zero-valent iron:a review[J]. Science of the Total Environment,2021,760:143413.
-
[13] Jiang D,Zeng G,Huang D,et al.Remediation of contaminated soils by enhanced nanoscale zero valent iron[J].Environmental Research,2018,163:217-227.
-
[14] Galdames A,Ruiz-Rubio L,Orueta M,et al.Zero-valent iron nanoparticles for soil and groundwater remediation[J].International Journal of Environmental Research and Public Health,2020,17:5817.
-
[15] Liu L,Li W,Song W,et al.Remediation techniques for heavy metal-contaminated soils:principles and applicability[J]. Science of the Total Environment,2018,633:206-219.
-
[16] Ci Z,Yue Y,Xiao J,et al.Spectroscopic and modeling investigation of U(VI)removal mechanism on nanoscale zero-valent iron/clay composites[J].Journal of Colloids and Interface Science,2023,630:395-403.
-
[17] Ishag A,Li Y,Zhang N,et al.Environmental application of emerging zero-valent iron-based materials on removal of radionuclides from the wastewater:a review[J].Environmental Research,2020,188:109855.
-
[18] Wang M,Cheng W,Wan T,et al.Mechanistic investigation of U(VI)sequestration by zero-valent iron/activated carbon composites[J].Chemical Engineering Journal,2019,362:99-106.
-
[19] Bae S,Collins R N,Waite T D,et al.Advances in surface passivation of nanoscale zerovalent iron:a critical review[J]. Environmental Science & Technology,2018,52:12010-12025.
-
[20] Wei Y F,Fang Z Q,Zheng L C,et al.Biosynthesized iron nanoparticles in aqueous extracts of Eichhornia crassipes and its mechanism in the hexavalent chromium removal[J].Applied Surface Science,2017,399:322-329.
-
[21] Wang Y,Liu Y,Su G,et al.Transformation and implication of nanoparticulate zero valent iron in soils[J].Journal of Hazardous Materials,2021,412:125207.
-
[22] Wei K,Li H,Gu H Y,et al.Strained zero-valent iron for highly efficient heavy metal removal[J].Advanced Functional Materials,2022,32:2200498.
-
[23] Sun Y B,Ding C C,Cheng W C,et al.Simultaneous adsorption and reduction of U(VI)on reduced graphene oxide-supported nanoscale zerovalent iron[J].Journal of Hazardous Materials,2014,280:399-408.
-
[24] He M,Xiong X,Wang L,et al.A critical review on performance indicators for evaluating soil biota and soil health of biochar-amended soils[J].Journal of Hazardous Materials,2021,414:125378.
-
[25] Zhang G,Zhao Z,Yin X A,et al.Impacts of biochars on bacterial community shifts and biodegradation of antibiotics in an agricultural soil during short-term incubation[J].Science of the Total Environment,2021,771:144751.
-
[26] Batool M,Khan W U D,Hamid Y,et al.Interaction of pristine and mineral engineered biochar with microbial community in attenuating the heavy metals toxicity:a review[J].Applied Soil Ecology,2022,175:104444.
-
[27] Yang F,Zhang S,Sun Y,e t a l.Fabrication and characterization of hydrophilic corn stalk biochar-supported nanoscale zero-valent iron composites for efficient metal removal [J].Bioresourous Technology,2018,265:490-497.
-
[28] Yang D,Yang S,Yuan H,et al.Co-benefits of biochar-supported nanoscale zero-valent iron in simultaneously stabilizing soil heavy metals and reducing their bioaccessibility[J].Journal of Hazardous Materials,2021,418:126292.
-
[29] Wang Y,O’Connor D,Shen Z,et al.Green synthesis of nanoparticles for the remediation of contaminated waters and soils:constituents,synthesizing methods,and influencing factors[J]. Journal of Cleaner Production,2019,226:540-549.
-
[30] Yang J,Wang S,Xu X,et al.Synthesis of montmorillonite-supported nano-zero-valent iron via green tea extract:enhanced transport and application for hexavalent chromium removal from water and soil[J].Journal of Hazardous Materials,2021,419:126461.
-
[31] 祝方,刘涛,石建惠.绿色合成纳米零价铁铜淋洗修复 Cr(VI)污染土壤[J].环境工程,2019,37(4):172-176.
-
[32] Liu X,Yang L,Zhao H,et al.Pyrolytic production of zerovalent iron nanoparticles supported on rice husk-derived biochar:simple,in situ synthesis and use for remediation of Cr(VI)-polluted soils[J].Science of the Total Environment,2020,708:134479.
-
[33] Rauseo J,Caracciolo A B,Ademollo N,et al.Dissipation of the antibiotic sulfamethoxazole in a soil amended with anaerobically digested cattle manure[J].Journal of Hazardous Materials,2019,378:120769.
-
[34] Phattarapattamawong S,Chareewan N,Polprasert C. Comparative removal of two antibiotic resistant bacteria and genes by the simultaneous use of chlorine and UV irradiation(UV/chlorine):influence of free radicals on gene degradation[J]. Science of the Total Environment,2021,755:142696.
-
[35] Lu X,Hou J,Yang K,et al.Binding force and site-determined desorption and fragmentation of antibiotic resistance genes from metallic nanomaterials[J].Environmental Science & Technology,2021,55:9305-9316.
-
[36] Lu T,Zhang J,Su T,et al.Coupled mechanism of enhanced and inhibitory effects of nanoscale zero-valent iron on methane production and antibiotic resistance genes in anaerobic digestion of swine manure[J].Bioresourous Technology,2022,360:127635.
-
[37] Wang P,Chen X,Liang X,et al.Effects of nanoscale zerovalent iron on the performance and the fate of antibiotic resistance genes during thermophilic and mesophilic anaerobic digestion of food waste[J].Bioresourours Technology,2019,293:122092.
-
[38] Xu J,Liu X,Cao Z,et al.Fast degradation,large capacity,and high electron efficiency of chloramphenicol removal by different carbon-supported nanoscale zerovalent iron[J].Journal of Hazardous Materials,2020,384:121253.
-
[39] Chen L,Yuan T,Ni R,et al.Multivariate optimization of ciprofloxacin removal by polyvinylpyrrolidone stabilized NZVI/Cu bimetallic particles[J].Chemical Engineering Journal,2019,365:183-192.
-
[40] Liu Y,Gao J,Wang Y,et al.The removal of antibiotic resistant bacteria and genes and inhibition of the horizontal gene transfer by contrastive research on sulfidated nanoscale zerovalent iron activating peroxymonosulfate or peroxydisulfate[J].Journal of Hazardous Materials,2022,423:126866.
-
[41] Zhang G,Ren R,Li L,et al.Positive and negative effects of nanoscale zero-valent iron-enriched biochar on sulfamethoxazole remediation in contaminated soil[J].Ecotoxicology and Environmental Safety,2022,246:114133.
-
[42] Conde-Cid M,Ferreira-Coelho G,Nunez-Delgado A,et al.Competitive adsorption of tetracycline,oxytetracycline and chlortetracycline on soils with different pH value and organic matter content[J].Environmental Research,2019,178:108669.
-
[43] Zhou Z,Ma J,Liu X,et al.Activation of peroxydisulfate by nanoscale zero-valent iron for sulfamethoxazole removal in agricultural soil:effect,mechanism and ecotoxicity[J]. Chemosphere,2019,223:196-203.
-
[44] Tian H,Liang Y,Yang D.Characteristics of PVP-stabilised nZVI and application to dechlorination of soil-sorbed TCE with ionic surfactant[J].Chemosphere,2020,239:124807.
-
[45] Tian H,Liang Y,Zhu T,et al.Surfactant-enhanced PEG-4000-nZVI for remediating trichloroethylene-contaminated soil [J].Chemosphere,2018,195:585-593.
-
[46] Diao Z H,Yan L,Dong F X,et al.Degradation of 2,4-dichlorophenol by a novel iron based system and its synergism with Cd(II)immobilization in a contaminated soil[J]. Chemical Engineering Journal,2020,379:122313.
-
[47] Liu Y,Wu T,White J C,et al.A new strategy using nanoscale zero-valent iron to simultaneously promote remediation and safe crop production in contaminated soil[J].Nature Nanotechnology,2021,16:197-205.
-
[48] Li H,Chen S,Ren L Y,et al.Biochar mediates activation of aged nanoscale ZVI by Shewanella putrefaciens CN32 to enhance the degradation of pentachlorophenol[J].Chemical Enginerring Journal,2019,368:148-156.
-
[49] Su G P,Wang Y L,Ma B,et al.Nanoscale zero-valent iron changes microbial co-occurrence pattern in pentachlorophen-ol-contaminated soil[J].Journal of Hazardous Materials,2022,438:129482.
-
[50] Liu Y Z,Wang Y L,Wu T,et al.Synergistic effect of soil organic matter and nanoscale zero-valent iron on biodechlorination [J].Environmental Science & Technology,2022,56:4915-4925.
-
[51] Ren Y,Lee Y,Cui M,et al.Evaluation of self-oxidation and selectivity of iron-based reductant in anaerobic pentachlorophenol contaminated soil[J].Journal of Hazardous Materials,2022,424:127322.
-
[52] Kang J,Wu W C,Liu W S,et al.Zero-valent iron(ZVI)activation of persulfate(PS)for degradation of para-chloronitrobenzene in soil[J].Bulletin Environmental Contamination and Toxicology,2019,103:140-146.
-
[53] Liu F M,Chen Y Z,Yi S P,et al.Geoenvironmental characteristics of bisphenol A contaminated soil after persulfate treatment with different activation/enhancement methods[J]. Plos One,2019,14:e0214024.
-
[54] Jing R,Fusi S,Kjellerup B V.Remediation of polychlorinated biphenyls(PCBs)in contaminated soils and sediment:state of knowledge and perspectives[J].Frontier in Environmental Science,2018,6:79.
-
[55] Mazarji M,Minkina T,Sushkova S,et al.Effect of nanomaterials on remediation of polycyclic aromatic hydrocarbons-contaminated soils:a review[J].Journal of Environmental Management,2021,284:112023.
-
[56] Wu T,Liao X Y,Zou Y T,et al.Fe-based nanomaterial transformation to amorphous Fe:enhanced alfalfa rhizoremediation of PCBs-contaminated soil[J].Journal of Hazardous Materials,2022,425:127973.
-
[57] Song Y,Fang G,Zhu C,et al.Zero-valent iron activated persulfate remediation of polycyclic aromatic hydrocarbon-contaminated soils:an in situ pilot-scale study[J].Chemical Engineering Journal,2019,355:65-75.
-
[58] Wu Y X,Wang Y,Huang X F,et al.Surfactant-facilitated dechlorination of 2,2’,5,5’-tetrachlorinated biphenyl using zero-valent iron in soil/sediment solution:integrated effects of plausible factors[J].Chemosphere,2018,212:845-852.
-
[59] Yuan X,Li T,He Y,et al.Degradation of TBBPA by nZVI activated persulfate in soil systems[J].Chemosphere,2021,284:131166.
-
[60] 付欣,梁莉,李筱琴,等.纳米零价铁铜双金属体系对土壤中四氯双酚A的降解[J].环境科学学报,2018,38(4):1606-1612.
-
[61] Shen W T,Xu J,Zhu L Z.Triton X-100 improves the reactivity and selectivity of sulfidized nanoscale zerovalent iron toward tetrabromobisphenol A:implications for groundwater and soil remediation[J].Journal of Hazardous Materials,2021,416:126119.
-
[62] Chen Z,Tang X,Qiao W,et al.Nanoscale zero-valent iron reduction coupled with anaerobic dechlorination to degrade hexachlorocyclohexane isomers in historically contaminated soil [J].Journal of Hazardous Materials,2020,400:123298.
-
[63] Hou J Y,Zhang Y,Wu X H,et al.Zero-valent iron-induced successive chemical transformation and biodegradation of lindane in historically contaminated soil:an isotope-informed metagenomic study[J].Jouranal of Hazardous Materials,2022,433:128802.
-
[64] Cai Z Q,Fu J,Du P,et al Reduction of nitrobenzene in aqueous and soil phases using carboxymethyl cellulose stabilized zero-valent iron nanoparticles[J].Chemical Engineering Journal,2018,332:227-236.
-
[65] Diao Z H,Zhang W X,Liang J Y,et al.Removal of herbicide atrazine by a novel biochar based iron composite coupling with peroxymonosulfate process from soil:synergistic effect and mechanism[J].Chemical Engineering Journal,2021,409:127684.
-
[66] Zhang B,Guo Y,Huo J,et al.Combining chemical oxidation and bioremediation for petroleum polluted soil remediation by BC-nZVI activated persulfate[J].Chemical Engineeing Journal,2020,382:123055.
-
[67] Bajagain R,Jeong R G.Degradation of petroleum hydrocarbons in soil via advanced oxidation process using peroxymonosulfate activated by nanoscale zero-valent iron[J].Chemosphere,2021,270:128627.
-
[68] Desalegn B,Megharaj M,Chen Z,et al.Green mango peel-nanozerovalent iron activated persulfate oxidation of petroleum hydrocarbons in oil sludge contaminated soil[J].Environmental Technology Innovation,2018,11:142-152.
-
[69] Arellano-Sanchez M G,Devouge-Boyer C,Hubert-Roux M,et al.Chromium determination in leather and other matrices:a review[J].Critical Reviews in Analytical Chemistry,2022,52:1537-1556.
-
[70] GracePavithra K,Jaikumar G,Kumar P S,et al.A review on cleaner strategies for chromium industrial wastewater:present research and future perspective[J].Journa of Cleaner Production,2019,228:580-593.
-
[71] Rai P K,Lee S S,Zhang M,et al.Heavy metals in food crops:health risks,fate,mechanisms,and management[J]. Environmental International,2019,125:365-385.
-
[72] Min X B,Li Q,Zhang X M,et al.Characteristics,kinetics,thermodynamics and long-term effects of zerovalent iron/pyrite in remediation of Cr(VI)-contaminated soil[J].Environmental Pollution,2021,289:117830.
-
[73] 黄开友,申英杰,王晓岩,等.生物炭负载纳米零价铁制备及修复六价铬污染土壤技术研究进展[J].环境工程,2020,38(11):203-210,195.
-
[74] Lacalle R G,Garbisu C,Becerril J M.Effects of the application of an organic amendment and nanoscale zero-valent iron particles on soil Cr(VI)remediation[J].Environmental Science and Pollution Research,2020,27:31726-31736.
-
[75] Hou S,Wu B,Peng D,et al.Remediation performance and mechanism of hexavalent chromium in alkaline soil using multi-layer loaded nano-zero-valent iron[J].Environmental Pollution,2019,252:553-561.
-
[76] Chen X,Li X,Xu D,et al.Application of nanoscale zero-valent iron in hexavalent chromium-contaminated soil:a review[J]. Nanotechnology Review,2020,9:736-750.
-
[77] Di Palma L,Verdone N,Vilardi G.Kinetic modeling of Cr(VI)reduction by nZVI in soil:the influence of organic matter and manganese oxide[J].Bulletin of Envionmental Contamination and Toxicology,2018,101:692-697.
-
[78] Liu K,Li F,Tian Q,et al.A highly porous animal bone-derived char with a superiority of promoting nZVI for Cr(VI)sequestration in agricultural soils[J].Jouranal of Environmental Science,2021,104:27-39.
-
[79] Wang H,Zhang M,Li H.Synthesis of nanoscale zerovalent iron(nZVI)supported on biochar for chromium remediation from aqueous solution and soil[J].International Journal of Environmental Research Public Health,2019,16:4430.
-
[80] Liu S,Gao H,Cheng R,et al.Study on influencing factors and mechanism of removal of Cr(VI)from soil suspended liquid by bentonite-supported nanoscale zero-valent iron[J].Scientific Report,2020,10:8831.
-
[81] Pei G,Zhu Y,Wen J,et al.Vinegar residue supported nanoscale zero-valent iron:remediation of hexavalent chromium in soil[J].Environmental Pollution,2020,256:113407.
-
[82] Hui C,Zhang Y,Ni X,et al.Interactions of iron-based nanoparticles with soil dissolved organic matter:adsorption,aging,and effects on hexavalent chromium removal[J]. Jouranal of Hazardous Materials,2021,406:124650.
-
[83] Guan X,Yang H,Sun Y,et al.Enhanced immobilization of chromium(VI)in soil using sulfidated zero-valent iron[J]. Chemosphere,2019,228:370-376.
-
[84] 孙丽娟,秦秦,宋科,等.镉污染农田土壤修复技术及安全利用方法研究进展[J].生态环境学报,2018,27(7):1377-1386.
-
[85] Guha T,Barman S,Mukherjee A,et al.Nano-scale zero valent iron modulates Fe/Cd transporters and immobilizes soil Cd for production of Cd free rice[J].Chemosphere,2020,260:127533.
-
[86] 吴秋梅,刘刚,王慧峰,等.水铝钙石对不同镉污染农田重金属的钝化效果及机制[J].环境科学,2019,40(12):5540-5549.
-
[87] 鄢德梅,郭朝晖,黄凤莲,等.钙镁磷肥对石灰、海泡石组配修复镉污染稻田土壤的影响[J].环境科学,2020,41(3):1491-1497.
-
[88] Zhang X,Zhang P,Hu Y,et al.Immobilization of cadmium in soil and improved iron concentration and grain yields of maize(Zea mays L.)by chelated iron amendments[J].Environmental Science and Pollution Research,2021,28:53161-53170.
-
[89] 曾星,李伟亚,陈章,等.龙葵修复镉污染土壤的研究进展 [J].草业科学,2019,36(5):1308-1316.
-
[90] 毕冬雪,邓亚娟,孟凡德,等.腐殖质纳米颗粒对镉污染土壤的修复[J].环境工程学报,2018,12(5):1295-1302.
-
[91] 贺玉龙,余江,谢世前,等.可生物降解螯合剂GLDA强化三叶草修复镉污染土壤[J].环境科学,2020,41(2):979-985.
-
[92] 汪玉瑛,计海洋,吕豪豪,等.羊栖菜生物炭对镉污染土壤性质及镉形态的影响[J].农业环境科学学报,2018,37(6):1132-1140.
-
[93] 王建乐,谢仕斌,涂国权,等.多种材料对铅镉污染农田土壤原位修复效果的研究[J].农业环境科学学报,2019,38(2):325-332.
-
[94] Phenrat T,Hongkumnerd P,Suk-In J,et al.Nanoscale zerovalent iron particles for magnet-assisted soil washing of cadmium-contaminated paddy soil:proof of concept[J]. Environmental Chemistry,2019,16:446-458.
-
[95] Qiao J T,Liu T X,Wang X Q,et al.Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils[J]. Chemosphere,2018,195:260-271.
-
[96] Li Y,Wen J Q,Shen P F,et al.Comparison of four amendments for arsenic and cadmium combined contaminated soil [J].Bulletin of Envionmental Contamination and Toxicology,2020,105:639-644.
-
[97] Vitkova M,Puschenreiter M,Komarek M.Effect of nano zero-valent iron application on As,Cd,Pb,and Zn availability in the rhizosphere of metal(loid)contaminated soils[J]. Chemosphere,2018,200:217-226.
-
[98] Zhao Q,Li X,Xiao S,et al.Integrated remediation of sulfate reducing bacteria and nano zero valent iron on cadmium contaminated sediments[J].Journal of Hazardous Materials,2021,406:124680.
-
[99] 许亚琼,王雪佳,李荣华,等.纳米零价铁改性生物炭对污染土壤中Cd稳定化效果及作用机制研究[J].农业环境科学学报,2022,41(11):2478-2487.
-
[100] Guo Y,Li X,Liang L,et al.Immobilization of cadmium in contaminated soils using sulfidated nanoscale zero-valent iron:effectiveness and remediation mechanism[J].Jouranal of Hazardous Materials,2021,420:126605.
-
[101] Xue W,Peng Z,Huang D,et al.Nanoremediation of cadmium contaminated river sediments:microbial response and organic carbon changes[J].Jouranl of Hazardous Materials,2018,359:290-299.
-
[102] Lin Y,Huang L,Xu J,et al.Blood lead,bone lead and child attention-deficit-hyperactivity-disorder-like behavior[J]. Science of the Total Environment,2019,659:161-167.
-
[103] de Souza I D,de Andrade A S,Siqueira Dalmolin R J.Lead-interacting proteins and their implication in lead poisoning[J]. Critical Reviews in Toxicology,2018,48:375-386.
-
[104] Xue W,Huang D,Zeng G,et al.Nanoscale zero-valent iron coated with rhamnolipid as an effective stabilizer for immobilization of Cd and Pb in river sediments[J].Journal of Hazardous Materials,2018,341:381-389.
-
[105] Mandal S,Pu S,Shangguan L,et al.Synergistic construction of green tea biochar supported nZVI for immobilization of lead in soil:a mechanistic investigation[J].Environental International,2020,135:105374.
-
[106] Li Z,Wang L,Meng J,et al.Zeolite-supported nanoscale zero-valent iron:new findings on simultaneous adsorption of Cd(II),Pb(II),and As(III)in aqueous solution and soil[J]. Journal of Hazardous Materials,2018,344:1-11.
-
[107] Zhou W H,Liu F,Yi S,et al.Simultaneous stabilization of Pb and improvement of soil strength using nZVI[J].Science of the Total Environment,2019,651:877-884.
-
[108] Peng D,Wu B,Tan H,et al.Effect of multiple iron-based nanoparticles on availability of lead and iron,and micro-ecology in lead contaminated soil[J].Chemosphere,2019,228:44-53.
-
[109] Qian W,Liang J Y,Zhang W X,et al.A porous biochar supported nanoscale zero-valent iron material highly efficient for the simultaneous remediation of cadmium and lead contaminated soil[J].Journal of Environmental Science,2022,113:231-241.
-
[110] Huang D,Qin X,Peng Z,et al.Nanoscale zero-valent iron assisted phytoremediation of Pb in sediment:impacts on metal accumulation and antioxidative system of Lolium perenne[J]. Ecotoxicology and Environmental Safety,2018,153:229-237.
-
[111] Li J N,Zhang Y,Wang F H,et al.Arsenic immobilization and removal in contaminated soil using zero-valent iron or magnetic biochar amendment followed by dry magnetic separation[J]. Scicence of the Total Environment,2021,768:144521.
-
[112] Qiao J L,Liu Y,Yang H Y,et al.Remediation of arsenic contaminated soil by sulfidated zero-valent iron[J].Frontiers of Environmental Science & Engineering,2020,15:83.
-
[113] Baragano D,Alonso J,Gallego J R,et al.Zero valent iron and goethite nanoparticles as new promising remediation techniques for As-polluted soils[J].Chemosphere,2020,238:124624.
-
[114] Fan J,Chen X,Xu Z,et al.One-pot synthesis of nZVI-embedded biochar for remediation of two mining arsenic-contaminated soils:arsenic immobilization associated with iron transformation[J].Journal of Hazardour Materils,2020,398:122901.
-
[115] Yang D,Yang S,Wang L,et al.Performance of biochar-supported nanoscale zero-valent iron for cadmium and arsenic co-contaminated soil remediation:insights on availability,bioaccumulation and health risk[J].Environmental Pollution,2021,290:118054.
-
[116] Zhang P,Fan J,Xu X,et al.Contrasting effects of dry-wet and freeze-thaw aging on the immobilization of As in As-contaminated soils amended by zero-valent iron-embedded biochar[J]. Journal of Hazardous Materials,2022,426:128123.
-
[117] Li Z,Wang L,Wu J,et al.Zeolite-supported nanoscale zero-valent iron for immobilization of cadmium,lead,and arsenic in farmland soils:encapsulation mechanisms and indigenous microbial responses[J].Environmental Pollution,2020,260:114098.
-
[118] Huang R,Wang X,Xing B.Removal of labile arsenic from flooded paddy soils with a novel extractive column loaded with quartz-supported nanoscale zero-valent iron[J].Environmental Pollution,2019,255:113249.
-
[119] Tan X F,Deng Y Y,Shu Z H,et al.Phytoremediation plants(ramie)and steel smelting wastes for calcium silicate coatedn-ZVI/biochar production:environmental risk assessment and efficient As(V)removal mechanisms[J].Science of the Total Environment,2022,844:156924.
-
[120] Danila V,Kumpiene J,Kasiuliene A,et al.Immobilisation of metal(loid)s in two contaminated soils using micro and nano zerovalent iron particles:evaluating the long-term stability[J]. Chemosphere,2020,248:126054.
-
[121] Dovletyarova E A,Fareeva O S,Zhikharev A P,et al. Choose your amendment wisely:zero-valent iron nanoparticles offered no advantage over microparticles in a laboratory study on metal immobilization in a contaminated soil[J].Applied Geochemistry,2022,143:105369.
-
[122] Sang L,Wang G,Liu L,et al.Immobilization of Ni(II)at three levels of contaminated soil by rhamnolipids modified nano zero valent iron(RL@nZVI):effects and mechanisms[J]. Chemosphere,2021,276:130139.
-
[123] Vasarevicius S,Danila V,Janusevicius T.Immobilisation of cadmium,copper,lead,and nickel in soil using nano zerovalent iron particles:ageing effect on heavy metal retention[J].Water Air and Soil Pollution,2020,231:496.
-
[124] Mandal S,Pu S,He L,et al.Biochar induced modification of graphene oxide & nZVI and its impact on immobilization of toxic copper in soil[J].Environmental Pollution,2020,259:113851.
-
[125] Mitzia A,Vitkova M,Komarek M.Assessment of biochar and/or nano zero-valent iron for the stabilisation of Zn,Pb and Cd:a temporal study of solid phase geochemistry under changing soil conditions[J].Chemosphere,2020,242:125248.
-
[126] Cao Y,Zhang S,Zhong Q,et al.Feasibility of nanoscale zero-valent iron to enhance the removal efficiencies of heavy metals from polluted soils by organic acids[J].Ecotoxicology and Environmental Safety,2018,162:464-473.
-
[127] Mandal S,Pu S,Wang X,et al.Hierarchical porous structured polysulfide supported nZVI/biochar and efficient immobilization of selenium in the soil[J].Science of the Total Environment,2020,708:134831.
-
[128] Zhu Y,Li H,Wu Y,et al.Effects of surface-modified biochars and activated carbon on the transformation of soil inorganic nitrogen and growth of maize under chromium stress[J].Chemosphere,2019,227:124-132.
-
[129] Anza M,Salazar O,Epelde L,et al.The application of nanoscale zero-valent iron promotes soil remediation while negatively affecting soil microbial biomass and activity[J]. Frontier in Environmental Science,2019,7:19.
-
[130] Gomez-Sagasti M T,Epelde L,Anza M,et al.The impact of nanoscale zero-valent iron particles on soil microbial communities is soil dependent[J].Journal of Hazardous Materials,2019,364:591-599.
-
[131] Fajardo C,Costa G,Nande M,et al.Heavy metals immobilization capability of two iron-based nanoparticles(nZVI and Fe3O4):soil and freshwater bioassays to assess ecotoxicological impact[J].Science of the Total Environment,2019,656:421-432.
-
[132] Fajardo C,Martin M,Nande M,et al.Ecotoxicogenomic analysis of stress induced on Caenorhabditis elegans in heavy metal contaminated soil after nZVI treatment[J].Chemosphere,2020,254:126909.
-
[133] Vanzetto G V,Thome A.Bibliometric study of the toxicology of nanoescale zero valent iron used in soil remediation[J]. Environmental Pollution,2019,252:74-83.
-
摘要
土壤污染严重威胁农产品的安全和人类健康。近几年来纳米零价铁(nZVI)复合材料由于环境友好、易于制备、价格低廉、优异化学活性等特点广泛地应用于污染土壤修复,但是对土壤中不同污染类型修复的调研较少。综述主要调研 nZVI 复合材料修复污染土壤中重金属、有机污染物和石油有机物的最新进展。重点评述 nZVI 复合材料的不同性质对污染土壤中各种污染物修复效果的影响,最后对 nZVI 铁复合材料修复污染土壤得出结论并对未来方向进行展望。该综述为更好地应用 nZVI 复合材料对污染土壤的修复提供理论依据和指导。
Abstract
Soil pollution severely threatens the safety of agricultural products and human health. In recent years,nano zero-valent iron(nZVI)composites have been widely utilized for remediation of polluted soil due to their environmental friendliness,easy synthesis,low cost and excellent chemical activity. However,few investigations on the remediation of the different contaminants in soils were available. In this review,the recent advances of remediation of polluted soil, including heavy metals,organic pollutants and oil pollutants,was reviewed in details. The effect of the different properties of nZVI-based composites on the remediation of various pollutants in soils was mainly evaluated. Lastly,the conclusions and prospective were put forward. This review will provide theoretical basis and guiding significance for the better application of nZVI-based composites to the remediation of polluted soil.
Keywords
nano zero-valent iron ; polluted soil ; heavy metals ; organic pollution ; remediation mechanism