-
耕作是农业土壤管理最重要的机械方法,对农业文明的发展起到至关重要的作用[1]。耕作可以分为深耕和浅耕,浅耕(15 cm 左右)是最常用的耕作方式。但人们发现,长期单一浅耕具有土壤亚表层紧实、毛细孔隙减少等弊端,因此,深耕技术逐渐衍生成为一种重要的耕作方式[2]。深耕(≥ 20 cm)[2]可以打破土壤犁底层硬盘,增加孔隙度,降低土壤压实度,这些物理性状可进一步改善土壤化学和生物学特性,进而促进作物生长、提高产量[3]。此外,深耕还应用于土壤重金属污染修复领域,主要是将深层未污染的土壤翻至表面,达到降低表层污染物浓度的目的[4]。然而,现有的研究表明,深耕可以加剧土壤物理结构的扰动和土壤团聚结构的破坏,使受保护的有机碳、有机氮暴露出来,加速微生物对有机质的分解[5-6]。其中,有机碳矿化可促进二氧化碳(CO2)的排放[7-8],氮素的变化可作用于土壤硝化、反硝化过程,进而影响氧化亚氮(N2O)的排放,此外,深耕还会影响土壤中的产甲烷菌和甲烷氧化菌,进一步对甲烷 (CH4)的排放产生影响。CO2 作为一种重要的温室气体,直接排放至大气中会加剧全球气候变化[9-10]。土壤是陆地生态系统最大的碳库,前人对区域尺度陆地生态系统观测研究显示,耕地释放的 CO2 量最大,约占全年总 CO2 排放量的 31%,其次是牧场,人工林地 CO2 排放量最低,约占全年的 18%[11]。CO2 虽然是大气中最丰富的温室气体,但因为 CH4 和 N2O 独特的辐射特性和在大气中的停留时间,导致二者的全球变暖潜势分别是 CO2 的 23 和 296 倍[12-13]。其中 CH4 是仅次于 CO2 第二重要的温室气体,约占辐射强度的 20%,其自然来源主要是湿地,人为来源包括稻田、肠道发酵、天然气、污水、土地管理和垃圾填埋场等,目前约 50% 的 CH4 排放是人为造成的[12]。陆地和海洋是 N2O 的主要来源,其中土壤约占总排放量的 65%,海洋约占总排放量的 30%[12]。
-
CO2、CH4 和 N2O 的综合作用可以用全球增温潜势来表示,张黛静等[14]通过研究不同耕作方式和培肥模式下的土壤温室气体排放,发现配合深耕的处理相比于浅耕和免耕,全球增温潜势处于最高水平。Dendooven 等[15]通过比较保护性耕作和传统深耕下的土壤碳固存和温室气体排放的规律,发现深耕处理下的碳固存低于保护性耕作,而全球增温潜势显著高于保护性耕作。Saldukaitė 等[16]研究了冬油菜在免耕和深耕处理下的土壤温室气体排放,发现免耕处理温室气体排放对环境影响最小,较深耕相比降低了 21.2%。虽然已有较多针对深耕条件下土壤温室气体排放变化的研究,但仍缺少较为系统的梳理和总结,本文主要对前人该部分的研究结果进行综述,以期明了深耕对土壤温室气体包括 CO2、CH4 和 N2O 排放的影响。
-
1 深耕技术原理与应用现状
-
深耕主要是通过影响土壤物理结构进而影响化学和生物学性质。深耕对土壤物理结构的影响多集中于研究容重、穿透阻力和土壤团聚体稳定性几个方面。其中,主要通过影响容重而影响土壤其他物理性质,如孔隙度、湿度等[17]。土壤容重可以反映土壤紧实度,其变化层次主要集中于相应耕作深度[18],且与耕作时间、监测时间有关。诸多研究结果表明,深耕后土壤容重显著降低[19-20],也有研究结果表明深耕对于土壤容重的影响不大[21-22],此外,还有研究指出深耕后的土壤容重与免耕差异较大,但是随着时间的推移,容重差异逐渐减小[23-24]。深耕对土壤起到一定的疏松作用,因此,可以降低土壤容重,但随着时间的推移,由于机械压实、土壤的自然迁移、降雨等活动对土壤产生压实作用的影响抵消了土壤疏松作用的影响[25-26],因此,会出现与免耕相比容重差异减小的现象。 Ussiri 等[27]还研究了长期深耕后土壤容重的变化,发现连续 43 年深耕后表层土壤容重显著增加,造成这种现象的原因可能是深耕后土壤有机碳的含量降低[28],蚯蚓活动和微生物活性减弱[29],土壤团聚体稳定性下降,使得土壤中的疏松结构物质和大孔隙有所减少,进而导致容重的增加。
-
除容重外,另一反映土壤紧实度的重要指标为土壤穿透阻力,是指土壤基质抵抗外物锲入的能力,可决定作物根系的生长状况,研究表明,深耕可降低土壤的穿透阻力[25],对于质地和有机质含量相对稳定的土壤,容重和土壤含水率共同决定土壤穿透阻力,当含水率不变时,穿透阻力与容重呈正相关,当容重不变时,穿透阻力与含水率呈负相关[30]。
-
土壤团聚体的数量和稳定性可影响土壤容重和养分的固持,土壤碳、氮、磷等养分的累积受团聚体粒级组成比例的显著影响,其中大团聚体可显著影响土壤养分的固持[31]。深耕可影响土壤团聚体的粒级分布,连续 5 年深耕可降低土壤中 >0.25 mm 的大团聚体数量,增加 0.053~0.25 mm 微团聚体的数量,对于 <0.053 mm 的微团聚体数量无显著影响。其中,对 >1 mm 的大团聚体的影响要大于 0.25~1 mm 的大团聚体,且仅在 >1 mm 的大团聚体中表现出了显著差异[32],同时深耕可降低土壤中 >2 mm 的团聚体含量[33]。Ussiri 等[27]研究结果也表明,与免耕相比,连续 43 年深耕显著降低了土壤水稳性团聚体的稳定性和 >1 mm 团聚体的数量。深耕对土壤中 >0.25 mm 团聚体的影响原因一方面是下层土壤中的团聚体翻至表面,而后经历干湿循环、冻融循环和雨滴冲击遭到破坏[34-35];另一方面则与深耕后有机质的分解有关,有机质作为土壤团聚体的胶结物质,与 >1 mm 的大团聚体数量呈现显著正相关[36],有机质经过分解后,土壤团聚体数量和稳定性都会降低,且这种影响在秸秆还田的情况下仍未得到缓解[32,37-38]。而深耕对于土壤中 <0.053 mm 的微团聚体无显著影响,主要是因为这部分团聚体较其他粒级团聚体稳定[39],深耕对其不会产生较大的干扰。此外,深耕还可导致其他土壤物理特性的变化,如因降低了土壤有机质和团聚体稳定性导致土壤表面与大气直接接触的面积增大,使得土壤受大气温度影响较大,进而导致土壤温差变大[40];因土壤水分蒸发速率加快、渗透速率降低而导致土壤含水率降低[41]等,这些都会进一步影响土壤的其他特性。
-
深耕对土壤化学性质的影响主要表现为对土壤碳、氮等养分元素的影响。有研究表明,在深耕后,变性土和砂性土表层可溶性有机碳含量分别下降了 28% 和 14%[42]。土壤易分解碳通常被团聚体所封存,受到物理保护免于微生物的分解矿化,而耕作会导致土壤团聚体的机械破坏和易分解碳的释放[5],如 Beare 等[43] 研究指出,耕作 13 年后的土壤,受大团聚体保护的碳与免耕相比减少了一半,导致易分解碳和被矿物保护的碳含量较免耕相比更低[5],同时促进了 CO2 的排放[15]。而对表层具有作物残茬或表层有机碳含量丰富的土壤进行深耕,则有利于有机碳的积累,如牧场的表土(0~10 cm)有机碳含量丰富,底土(10~30 cm)有机碳含量不足一半,深耕后底土有机碳含量可显著提高[44]。Alcantara 等[45]研究结果也表明,通过深耕可将有机物质埋入深层,腐熟后增加土壤有机质的含量,但是在移除表层作物残茬的情况下进行深耕,有机碳因未能及时得到补充会导致含量有所降低[15]。Feng 等[46]采用 Meta 方法分析了 43 个研究的 430 组数据,发现深耕对 20~50 cm 土层有机碳含量有显著增加作用,同时指出深耕对有机碳的固存与场地差异性显著相关,对于干旱地区颗粒较细或处于中等、有机碳和容重背景值较高的土壤,有机质的提升效果较好[46]。
-
深耕加速了土壤有机质的矿化分解,使得氮素含量也有所变化[6]。多数研究表明,与免耕相比,耕作降低了表层土壤全氮含量[47-49],这一方面是因为耕作过程将有机质含量丰富的表层土壤翻埋至下层致使表层氮素含量降低,另一方面是由于耕作后表层土壤有机质的矿化分解和活性氮的淋溶导致了土壤氮素的损失。而对于深层土壤全氮含量,冀保毅等[50]研究表明,深耕可显著增加深层土壤全氮含量,主要是通过表层土壤翻埋和改善土壤矿化条件来实现,且这种现象在秸秆还田后更为明显,濮超等[51]也有类似结论。耕作可以显著增加土壤氮素的矿化速率,研究表明耕作后土壤有机质可快速释放铵态氮,在未种植作物期间,耕作结束的一周之后,矿质态氮(NH4 +-N、 NO3--N)浓度表现为降低趋势,深耕较旋耕下降幅度更大,在种植玉米期间,耕作后的一个月内,矿质态氮浓度均处于较高水平,随后则呈降低趋势[40]。除矿质态氮外,深耕还可以显著影响土壤颗粒态氮,阻碍矿物结合态氮的积累[51]。此外,深耕也可以显著改变土壤中其他养分元素如磷、钾含量的变化[50]。
-
深耕对土壤生物学性质也可产生影响。对于土壤动物,与免耕相比,深耕可以降低表层土壤中的土壤动物如蚯蚓的含量,蚯蚓含量主要与有机碎屑的多少和根系的数量、类型有关,由于免耕土壤表层枯枝落叶较多,导致蚯蚓在表层聚集,从而可能增加了其在表层土壤中的种群数量[33,52-53],而深耕则破坏了这种环境。土壤微生物生物量是养分转化和循环的动力,对土壤环境的改变极为敏感。前人研究表明,较免耕相比,深耕可显著降低表层土壤中的微生物量碳以及 0~60 cm 土层中的微生物量氮含量。这可能是因为免耕促进了作物残茬在土壤中的积累,有机碳和养分含量均有所增加,进而增加了微生物活性和微生物生物量;但深耕则因改变了土壤的物理结构进而改变了微生物的生长环境,同时使土壤微生物失去保护暴露在外,导致土壤微生物量碳、氮含量降低[54-56]。土壤酶活性是评价土壤肥力的重要指标,前人研究结果表明,在秸秆还田的条件下,与免耕相比,深耕可以显著降低土壤中与碳氮循环相关的酶,如蔗糖酶、脂肪酶、脲酶和蛋白酶的活性[55,57],这可能与深耕后土壤相应微生物所需的有机质及养分含量的降低、微生物原有适应性的环境受到破坏等因素有关。
-
深耕技术主要应用于对土壤理化和生物学性质的研究,进而了解该技术在农业领域内对土壤肥力和作物产量的影响,以及在环境领域内对温室气体排放的影响,深耕技术应用现状见表1。
-
续表
-
2 深耕对土壤温室气体排放的影响
-
前人针对深耕后土壤温室气体变化的研究主要集中于 CO2、CH4、N2O 几个方面,土壤性质、改良措施、耕作方式和气候因素等都会对深耕后的土壤温室气体产生影响(图1)。
-
2.1 二氧化碳
-
土壤中的 CO2 排放来源于微生物对有机质的分解以及动植物和根系的呼吸作用,影响土壤 CO2 排放的因素见图2。Abdalla 等[62] 通过荟萃分析 (meta-analysis)43 个研究的 174 组数据,指出耕作较免耕可增加 21% 的土壤 CO2 排放量,Al-Kaisi 等[63] 研究表明,耕作引起的土壤 CO2 损失量与土壤扰动的频率和强度有较强的相关性[64],耕作深度对土壤物理性质和CO2 排放有着重要影响[25]。深耕可通过破坏团聚体、释放有机物质进而促进有机碳的矿化[9-10],加速 CO2 的产生。而深耕对土壤物理性质的影响,如降低容重和穿透阻力、增加土壤总孔隙度等会促进 CO2 与外界气体的交换,进一步加速 CO2 的排放(图3),有研究表明,耕作后 CO2 排放量与土壤容重和穿透阻力呈极显著负相关,与总孔隙度和充气孔隙度呈极显著正相关[25,64]。
-
土壤质地、土壤改良、监测时间、耕作方式等都会对深耕土壤 CO2 的排放产生影响。不同质地土壤颗粒的组成不同,而颗粒组成可显著影响土壤的理化及生物学特性,其中,黏粒和粉粒是土壤主要的有机碳库[65],不同质地土壤通气、透水和保肥性能不同,砂性土通气性好、保水保肥能力差,黏土通气性较差、保水保肥能力较好,壤土兼具二者优点,具有通气性好、保水保肥能力好的特点。前人研究了不同质地土壤包括砂壤土(砂粒含量为 78%)[25]、粉砂壤土[1]、砂质黏壤土[66]和粉黏土[58] 在深耕条件下的 CO2 排放量,发现深耕可显著增加不同质地土壤的 CO2 排放量,与免耕相比,深耕后的 CO2 排放量在砂壤土中增加了 51%~207%,粉砂壤土增加了 199%,砂质黏壤土增加了 51%~151%,粉黏土在深耕条件下较浅耕可增加 22.5%~25.4%。深耕可显著促进土壤有机碳的矿化,使得不同类型土壤 CO2 排放量均有所增加,但由于土壤通气性能的不同,导致 CO2 排放量在砂性土、壤土中的排放量要高于黏土。通过分析多个研究深耕后的土壤 CO2 排放量与土壤质地的关系,发现在干旱气候条件下,对于有机碳含量低 (<1%)、含水率低的砂性土,CO2 排放量之间的差异可达 29%,这种差异可能主要由有机碳含量的差异所导致,而有机碳含量高(>3%)、含水率较高的黏性土,CO2 排放量无显著差异。砂性土 CO2 排放量差异较大、而黏性土 CO2 排放量差异较小,主要原因为砂性土大孔隙较多,有利于 CO2 从土壤向大气中排放[67-68]。
-
图1 深耕对土壤温室气体排放的影响机制
-
图2 深耕对土壤环境和土壤碳库的影响[46]
-
图3 深耕对土壤 CO2 排放的影响机理
-
对进行有机改良或有机质本底值较高的土壤进行深耕,发现 CO2 排放量有所增加。如有研究发现,施有机肥后的深耕处理土壤 CO2 排放量要显著高于未施肥的深耕处理[14]。Radicetti 等[69] 研究了砂壤土在不同耕作措施和残茬管理方式(残茬深耕入土、残茬浅耕入土、残茬置于表层)下的土壤 CO2 排放,结果发现,浅耕和深耕残茬入土处理的 CO2 排放量均高于残茬置于表层的处理。 Gesch 等[70]研究了沼泽地改性有机土(有机质含量在 70%~80%)在不同耕作措施处理后 24 h 的土壤 CO2 排放量,发现深耕是免耕的 33 倍。对于有机改良的土壤,有机质含量可显著增加[71],且微生物和作物根系活性均可显著增强[72],进而增加了 CO2 的排放;而有机质本底值高的土壤,深耕后更多的有机质暴露出来被分解矿化,促进了 CO2 的排放。此外,有机土壤受气候条件如风的影响,可能会导致深耕后土壤 CO2 排放浓度的测量值低于免耕,如 Reicosky 等[73]通过研究佛罗里达沼泽地有机土在免耕、深耕和风效应交互作用影响下的 CO2 排放规律,结果发现,因深耕导致了土壤孔隙度的增加,在风的作用下加速了土壤气体的交换,使得深耕较免耕产生了更多的 CO2 排放,但最终由于风的作用使得所测 CO2 平均浓度在免耕处理中 (3.3%)高于深耕处理(1.4%)。
-
除土壤类型、改良措施外,深耕后 CO2 排放量还受监测时间的影响。诸多研究结果表明,耕作对于 CO2 排放的影响是短暂的[63,74],Bilandžija 等[41]研究认为,耕作加速了土壤 CO2 的排放,但是 3 h 后显著降低,Silva-Olaya 等[75] 的研究结果则表明,耕作后 12~13 d 内,土壤 CO2 排放量最高,Amami 等[64]研究发现,耕作 1 d 后 CO2 排放量最大,此后,随着时间的推移,在 40 d 内 CO2 浓度逐渐降低,而 Buragiene 等[1]研究则发现,春耕对 CO2 的排放影响可持续至秋耕。短期内 CO2 的排放量增加主要是因为深耕后受保护的土壤有机碳快速矿化、土壤通气性增强[76],加速了 CO2 的排放,而长期的结果差异可能与土壤自然压实和所处气候条件如降水等因素有关,自然压实和降水均会增加土壤容重,降水还会影响土壤湿度,导致水分进入土壤孔隙中干扰气体扩散[77],同时因深耕导致被破坏的土壤团聚体也会阻碍 CO2 向上运移[78-79]。
-
此外,还有对于不同深耕耕作器械的研究,Pratibha 等[80]研究表明,采用铧式犁和旋耕机可使土壤产生较多的 CO2 排放,La Scala 等[81]研究发现,凿形犁产生的土壤 CO2 排放量要高于旋耕机,有研究表明,在机械耕作阶段,采用铧式犁深耕因消耗柴油产生的 CO2 排放量要显著高于凿形犁[82-83]。综上所述,可推测铧式犁和凿形犁深耕对土壤 CO2 排放贡献率要高于旋耕机,且由铧式犁产生的 CO2 排放要高于凿形犁。
-
除上述因素外,由深耕导致的土壤性质如温度的变化也会影响 CO2 的排放,温度可以通过影响土壤热状况[84]、改变土壤呼吸[85-86],影响有机质的矿化,进而对 CO2 排放产生影响,但前人对温度和 CO2 排放之间的关系并未形成定论,如 Bogužas 等[87]指出,土壤温度与 CO2 的排放量呈负相关,而 Negassa 等[88]的研究则表明土壤温度与 CO2 呈正相关,Buragiene 等[1]的研究结果则显示温度与土壤 CO2 关系不大或影响较弱。造成上述现象的原因可能是除温度外的其他因素如土壤湿度[40]、 pH[1]等共同调节 CO2 的排放。深耕对土壤 CO2 的影响还与微生物呼吸、土壤动物的活动、酶活性和作物根系呼吸[89]有关,CO2 排放受以上因素综合作用的影响。
-
虽然多数研究均表明,与免耕相比,深耕可以释放更多的 CO2 排放量,但是还有一部分研究结果表明深耕可以降低 CO2 的排放量或对其影响很小,甚至几乎没有影响[9,62,90-92],这可能与表层土壤残茬的积累[91]和土壤性质以及气候等影响 CO2 排放的因素综合作用有关。
-
2.2 甲烷
-
土壤既可能是 CH4 的“汇”,也可能是 CH4 排放的“源”。好氧条件可显著促进甲烷氧化菌的生长,甲烷氧化菌利用 O2 和 CH4 进行代谢进而消耗 CH4 [93]。CH4 主要是微生物在严格的厌氧条件下如稻田中分解有机物所产生的[94],厌氧条件下,产甲烷菌利用碳基质包括新添加的有机物和根系分泌物进行生长和发育[95],同时,在厌氧条件下,有机质的不完全矿化通过产生大量的中间产物如甲酸、甲醇、甲胺等产生 CH4 [96-97]。土壤中 CH4 的产生和氧化是同时发生的[98],产生的 CH4 在逃逸到大气中之前,很大一部分(80%)被甲烷氧化菌氧化,这种氧化过程主要发生在土壤表层含氧层或含氧水层的好氧-厌氧界面以及水稻释放 O2 的根部区域[99]。一般认为,干旱、半干旱农田对 CH4 有弱吸收作用,水田生态系统是 CH4 排放的重要来源。
-
对于旱地生态系统,随着耕作的引入,CH4 氧化能力迅速降低,有研究发现,与免耕相比,深耕处理下土壤对 CH4 的吸收量处于最低水平[14], Ball 等[100]研究结果表明,与免耕相比,耕作具有较低的 CH4 氧化率。研究发现,经 140 年耕作的土壤完全失去了 CH4 的氧化能力[101],随着耕作干扰的去除,CH4 氧化能力逐渐恢复,但恢复所需的时间会更长,Jacinthe 等[5]研究表明,免耕 8 年后的土壤 CH4 氧化能力仍未得以恢复,并指出土壤需要几十年无扰动才能恢复 CH4 的汇容量。由深耕造成土壤 CH4 吸收量的降低主要有以下几点原因:耕作破坏了土壤结构,导致决定了甲烷氧化菌和产甲烷菌生态位的土壤理化和生物学性质有所改变,最终使得细菌群落大小和活性发生变化[27,102];耕作对甲烷氧化菌群落的破坏在长时间内难以恢复[103],主要表现为甲烷氧化菌的“饥饿致死”[5];耕作可通过影响气体扩散速率进而影响大气 CH4 的供应速率[27],相比于深耕,长期免耕可改善土壤大孔隙度,维持其连续性,增大气体的扩散速率,进而促进了 CH4 的吸收[27] (图4)。
-
水田生态系统是 CH4 排放的重要来源,约占人为影响因素的 11%[104-105],据估计,未来水稻种植规模还会进一步扩大[106-107],稻田积水有利于形成厌氧环境,进而可以刺激 CH4 的生成,且在通气条件下可以加速 CH4 释放进入大气中[108-110],水田生态系统 CH4 的排放机理见图5。诸多研究结果表明,与免耕相比,耕作后的稻田土壤 CH4 排放量可显著增加[111-112]。2013 年水稻季上海稻田土壤总 CH4 排放量达 3.23 万 t,但 101 个水稻模拟种植的城镇之间差异很大,敏感性分析表明 CH4 的排放量与耕作深度呈正相关[113]。Hwang 等[114]采用模型方法分析和预测了韩国稻田土壤 CH4 的排放,结果显示,至 21 世纪 90 年代,深耕仍会显著增加 CH4 的排放。研究表明,水田土壤 CH4 排放的增加主要与有机质和容重有关[111],深耕有利于有机质的暴露降解,厌氧条件下产甲烷菌对有机质的降解可以增加 CH4 的产生;深耕降低了土壤容重,土壤通气性能与免耕相比较好,从而增加了 CH4 的排放[115-116]。
-
图4 深耕对旱地土壤 CH4 氧化能力的影响
-
施加氮肥、秸秆还田等改良措施可显著影响深耕土壤 CH4 的排放,甚至可能改变旱地土壤的源和汇。研究表明,旱地土壤施加氮肥后,可阻碍 CH4 的氧化[117],但经 43 年免耕处理的土壤仍是 CH4 的汇,CH4 的氧化率为每年 0.32 kg/hm2,而深耕后则成为 CH4 排放的源,CH4 的排放率可达每年 2.76 kg/hm2[27]。施加氮肥降低了 CH4 的氧化能力,主要有以下几点原因:施加氮肥的耕作土壤可以干扰酶活性,如氨单加氧酶会与 CH4 氧化酶产生竞争抑制[118],导致 CH4 的氧化受到了限制[117]; 施肥条件下,CH4 氧化菌群落可被硝化细菌所替代[5],进而降低了 CH4 的氧化;施肥可通过调节土壤碳氮比和刺激反硝化作用抑制 CH4 氧化菌的生长[119]。对于长期免耕的土壤,结构未受扰动,有着较大的孔隙,土壤气体扩散有所增加,有利于甲烷氧化菌的生存[100],虽然这种现象在施加氮肥后被抑制[117],但仍使土壤表现出 CH4 汇的能力。而长期深耕的土壤对 CH4 氧化菌的破坏在长时间内难以恢复,且大孔隙相对较少,使得 CH4 的吸收能力降低,加之氮肥的影响,综合作用使得 CH4 的氧化小于生成,表现为 CH4 的源[27,103]。秸秆还田也可显著影响 CH4 的排放,Omonode 等[116] 研究表明,在旱地种植玉米的土壤中,少量秸秆还田(3%)的深耕处理与大量秸秆还田(93%)的免耕处理相比,CH4 的源、汇差别较大,深耕处理土壤依然是 CH4 的汇,而免耕土壤则变为 CH4 的源。对于深耕处理,土壤扰动较大,通气性能较好,且秸秆还田的量较小,综合作用下未能改变土壤是 CH4 汇的特性,但深耕使还田的秸秆埋入更深层,可能为深层的产 CH4 菌提供更多有机质,导致 CH4 的生成增加,进而降低了旱地土壤 CH4 的汇容量。研究表明,施用活性有机质,如新鲜秸秆,比施用相同数量分解良好的有机质产生更多的 CH4 排放[120]。对于免耕土壤,秸秆还田量大,新鲜有机质含量较高、土壤湿度较大,在厌氧条件下由于不完全矿化产生较多的 CH4,因此成为了 CH4 的源。前人研究也指出,CH4 的产生取决于有机质状态的稳定性及补给的量和形式[121-122]。对于水田土壤,无论是施加氮肥还是秸秆还田均可以增加深耕土壤 CH4 的排放量[98,112-113],这与深耕后土壤容重的降低和有机质的加速降解有关[112],稻田土壤中,有机碳尤其是溶解性有机碳和容重的变化是显著影响耕作土壤CH4 排放的重要因素[111]。
-
图5 水田生态系统 CH4 的排放机理[96]
-
除上述因素外,水分管理[123-124],土壤性质如 pH、氧化还原电位[125]、温度[126] 和 CO2 浓度[127] 以及水稻的种植[111-112] 等都会显著影响 CH4 的排放。土壤水分管理可以影响产甲烷菌的繁殖[128-129],这可能与水分造成的氧化还原电位变化有关。研究表明,CH4 可以在土壤 pH<6.1 和 Eh<150 mV 的条件下产生[130],气温在 25~32℃ 有利于 CH4 氧化菌的生存[112]。深耕可在影响上述因素的基础上对CH4 排放产生进一步的影响。
-
2.3 氧化亚氮
-
N2O 主要是在充水孔隙 >50% 的厌氧环境、且存在成分较为简单的碳的条件下,通过反硝化细菌进行反硝化作用产生,此外,在好氧条件、存在 NH4 + 的环境中通过硝化作用也会产生一定量的 N2O[131]。一般认为,在水田中 N2O 的排放主要来源于反硝化作用,而在旱地土壤中,反硝化作用产生的 N2O 有限,N2O 的排放主要与化学氮肥的施用及后续的硝化作用有关,还可能是由于耕作促进有机质的分解,导致土壤硝化作用的增强,最终使得 N2O 排放量有所增加[27],N2O 的产生机制见图6。
-
图6 土壤 N2O 的产生机制[132]
-
诸多研究结果表明,较免耕相比,深耕会显著增加土壤 N2O 的排放[27,113,133-135],这种现象一般发生在通气性中等和良好的土壤,如壤土、砂壤土中[136],其原因为深耕后的土壤可释放更多的基质进行分解,为异养微生物代谢提供了底物和能量,研究表明,深耕后与硝化作用相关的微生物如好氧亚硝酸盐氧化菌和好氧氨氧化菌的丰度显著增加,促进了土壤硝化作用[60];深耕可加速土壤氮素矿化,使得土壤矿质态氮浓度增加,研究表明 N2O 排放与矿质态氮含量变化高度一致[27,137];深耕可以改善土壤通气性,促进 N2O 在还原为 N2 前发生排放[27,138];免耕的反硝化细菌群落中,N2O 还原酶活性可能要高于深耕,进而导致免耕土壤中 N2 作为反硝化产物的比例会更高[56,139],以上因素的综合作用使深耕处理表现出更高的 N2O 排放特征。
-
还有一些研究表明,与免耕相比,传统深耕会降低 N2O 的排放量[140-142],这种现象多发生在通气性不良的土壤,如黏土、粉质黏土中[136],此时 N2O 的排放主要来源于反硝化作用,深耕使 N2O 排放量降低的原因如下:深耕后土壤容重降低、大团聚体数量减少,充水孔隙率和容重的降低导致土壤可利用的 O2 含量增加,与免耕相比不利于反硝化微生物的厌氧活动[136,142],进而抑制了反硝化过程,前人研究结果表明 N2O 的排放变化与反硝化过程的变化一致[143-144];Tellez-Rio 等[56]研究指出,反硝化活性仅与反硝化细菌功能基因 nirk 丰度显著相关,相比于免耕土壤,深耕显著降低了该基因丰度,进而降低了土壤反硝化作用,减少了 N2O 的产生[56];此外,与深耕相比,免耕土壤有如下特点也会导致最终 N2O 排放量高于深耕:免耕土壤表层凋落物得以积累从而使得表层氮库增加[140-141],可为反硝化微生物提供代谢底物;免耕可降低作物产量,减少氮的吸收,导致残留态氮可利用于硝化、反硝化过程[145];免耕处理充水孔隙度和可溶性有机碳含量较高,减少了气体扩散,为微生物提供了厌氧条件和相应底物,增加了 N2O 的排放[56]。
-
采用施肥、秸秆还田等土壤改良方式后发现 N2O 的排放会有所不同,对施肥土壤进行深耕,发现土壤 N2O 的排放有增加趋势。Ussiri 等[27]通过研究旱地土壤施加氮肥后深耕和免耕处理的 N2O 排放,发现 N2O 排放量在深耕处理中显著高于免耕处理。前人研究了旱地有机肥和氮肥配施的土壤经深耕处理后的 N2O 排放,发现增施有机肥处理可显著增加土壤 N2O 的排放,且深耕处理高于浅耕和免耕处理[14]。施肥后深耕土壤 N2O 排放量的增加与额外的氮输入促进了硝化和反硝化过程有关[27,146]。作物残茬还田会使土壤有机质含量增加,为微生物生长活动提供底物,刺激了微生物的活性,进而增加 N2O 的排放量,这可能会抵消土壤因固存碳而缓解的温室效应[142,147-148],但有研究表明深耕可能会降低秸秆还田土壤 N2O 的排放,原因为秸秆还田增加了土壤碳氮比,进而使得土壤中氮固定的微生物丰度有所增加[142,149],氮固定增加,氮循环减弱,降低了土壤 NO3- 浓度,最终降低 N2O 的排放,研究指出,NO3- 浓度是影响 N2O 排放的重要因素,据此推测,在秸秆还田的条件下进行深耕,土壤 N2O 排放主要来源于反硝化过程[15,56]。
-
水分管理会显著影响土壤 N2O 的排放,研究发现,向干燥的土壤中添加水分,会因激发土壤微生物种群丰度而使 N2O 产生脉冲式排放,这可能是因为土壤充水孔隙度增加,刺激了土壤的反硝化作用,进而使得 N2O 排放量有所增加[56,150]。充水孔隙度可显著影响土壤 N2O 的排放,前人研究表明,当可利用的矿质态氮浓度较低,充水孔隙度 <58% 时,可能会限制 N2O 的排放[56],有研究指出,当充水孔隙率 <50%,且 NH4 + 含量较低时,有利于好氧条件,此时硝化作用可能是 N2O 产生的主要途径,深耕处理后,土壤 N2O 排放量显著高于免耕[56,136]。当充水孔隙度在70%~80% 的条件下,N2O 排放率最大,当充水孔隙继续增大,接近 100% 时,N2O 排放率降低[151]。充水孔隙度可显著影响土壤通气性,有研究指出,对于通气性中等和较差的土壤,尤其是水田土壤,深耕后 N2O 排放低于免耕[136,142]。
-
N2O 排放还受季节和观测时间的影响,如有研究表明,在冬季,深耕后 N2O 的排放量显著低于免耕,而在春、夏和秋季,则与冬季相反,表现为深耕后 N2O 排放量高于免耕,由春、夏、秋季含水率相对较低的结果推测,在这几个季节内,土壤 N2O 的排放主要来源于硝化作用,而非反硝化作用,季节性的差异可能主要是由温度、底物含量的不同所导致的[27]。此外,有研究证明了 N2O 的排放随时间的变化而变化,Six 等[145]汇编和分析了传统耕作和免耕耕作系统土壤温室气体排放的现有数据,得出在湿地生态系统耕作后的 10 年内,免耕处理的 N2O 高于耕作处理,但是在 20 年后,免耕处理的 N2O 则低于传统深耕[27],这可能受耕作后土壤性质变化和气候因素综合作用的影响。
-
土壤性质如土壤温度[40,56]、湿度[152]、气体扩散率[27,136,153]、矿质态氮和有机碳的有效性[27,152]、反硝化酶活性[27]等,气候因素如气温、降水[27]等都可能会对 N2O 排放产生影响,此外,植物对水分和养分的吸收利用以及微生物对底物的消耗等也可能影响 N2O 的排放[152]。在深耕后,这些土壤性质和气候因素的变化可能会进一步对 N2O 的排放产生影响,但这些因素之间的关系复杂,难以定量定义和解释,也难以确定控制 N2O 排放的关键过程[27]。
-
3 结论与展望
-
3.1 结论
-
深耕可以显著改变包括容重、穿透阻力和团聚体等在内的土壤物理性状,进而改变土壤中碳、氮等化学元素的循环,以及土壤微生物和酶活性等生物学性质。在土壤理化和生物学性质变化的基础上,深耕可显著增加土壤 CO2 的排放,降低旱地土壤 CH4“汇”的功能,增加水田土壤 CH4“源”的功能。深耕既可以增加也可以降低 N2O 的排放,这主要与土壤通气性能有关。土壤改良、水分管理、土壤性质和气候因素等均会对深耕后的 3 种温室气体变化产生影响。
-
3.2 展望
-
深耕主要应用于农业和土壤修复领域,结合深耕条件下土壤温室气体的变化,有以下两方面的展望。
-
在农业领域,虽然深耕可以在一定程度上改善土壤的理化和生物学性状,进而起到增产的目的,但这仅为短期有效的策略,长期深耕会导致土壤的退化,同时土壤作为陆地最大的碳库,深耕对土壤温室气体的贡献不容小觑,从可持续发展的角度来看,建议农业领域采用免耕、少耕结合秸秆还田的保护性耕作,这可以在保证增产的同时最大限度的降低土壤温室气体排放。
-
在土壤修复领域,深耕由于其修复时间短、修复方法简单和经济有效等特点,被应用于土壤重金属污染的修复。虽然该方法可以起到降低污染物浓度的目的,但这并非长久之计,同时还贡献了温室气体的排放。从减污降碳的可持续修复角度来看,应加强对该技术与固化稳定化、植物修复等修复技术在具体应用场景下的全生命周期影响评价。
-
参考文献
-
[1] Buragiene S,Sarauskis E,Romaneckas K,et al.Relationship between CO2 emissions and soil properties of differently tilled soils [J].Science of the Total Environment,2019,662:786-795.
-
[2] 蒋发辉,钱泳其,郭自春,等.基于Meta分析评价东北黑土地保护性耕作与深耕的区域适宜性:以作物产量为例[J]. 土壤学报,2022,59(4):935-952.
-
[3] Shukla S K,Yadav R L,Awasthi S K,et al.Soil microbial biomass nitrogen,in situ respiration and crop yield influenced by deep tillage,moisture regimes and N nutrition in sugarcane-based system in subtropical India[J].Sugar Tech,2017,19(2):125-135.
-
[4] Hou D.Sustainable remediation in China:elimination,immobilization,or dilution[J].Environmental Science & Technology,2021,55(23):15572-15574.
-
[5] Jacinthe P A,Lal R.Labile carbon and methane uptake as affected by tillage intensity in a Mollisol[J].Soil & Tillage Research,2005,80(1):35-45.
-
[6] Zuber S M,Behnke G D,Nafziger E D,et al.Crop rotation and tillage effects on soil physical and chemical properties in Illinois [J].Agronomy Journal,2015,107(3):971-978.
-
[7] Six J,Bossuyt H,Degryze S,et al.A history of research on the link between(micro)aggregates,soil biota,and soil organic matter dynamics[J].Soil & Tillage Research,2004,79(1):7-31.
-
[8] Six J,Conant R T,Paul E A,et al.Stabilization mechanisms of soil organic matter:Implications for C-saturation of soils[J]. Plant and Soil,2002,241(2):155-176.
-
[9] Baker J M,Ochsner T E,Venterea R T,et al.Tillage and soil carbon sequestration-What do we really know?[J]. Agriculture,Ecosystems and Environment,2007,118(1-4):1-5.
-
[10] Chi J,Waldo S,Pressley S,et al.Assessing carbon and water dynamics of no-till and conventional tillage cropping systems in the inland Pacific Northwest US using the eddy covariance method[J]. Agricultural and Forest Meteorology,2016,218-219:37-49.
-
[11] Kurganova I,De Gerenyu V L,Rozanova L,et al.Annual and seasonal CO2 fluxes from Russian southern taiga soils[J]. Tellus,Series B:Chemical and Physical Meteorology,2003,55(2):338-344.
-
[12] Houghton J T,Ding Y,Griggs D J.Climate change 2001:the scientific basis:contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change[M].Cambridge:Cambridge University Press,2001.
-
[13] Solomon S,Manning M,Marquis M,et al.Climate change 2007-the physical science basis:Working group I contribution to the fourth assessment report of the IPCC[R].Cambridge University Press,2007:1-56.
-
[14] 张黛静,胡晓,马建辉,等.耕作和培肥对豫中区小麦-玉米轮作系统土壤氮平衡和温室气体排放的影响[J].应用生态学报,2021,32(5):1753-1760.
-
[15] Dendooven L,Gutierrez-Oliva V F,Patino-Zuniga L,et al. Greenhouse gas emissions under conservation agriculture compared to traditional cultivation of maize in the central highlands of Mexico [J].Science of the Total Environment,2012,431:237-244.
-
[16] Saldukaitė L,Šarauskis E,Zabrodskyi A,et al.Assessment of energy saving and GHG reduction of winter oilseed rape production using sustainable strip tillage and direct sowing in three tillage technologies[J].Sustainable Energy Technologies and Assessments,2022,51:101911.
-
[17] Dam R F,Mehdi B B,Burgess M S E,et al.Soil bulk density and crop yield under eleven consecutive years of corn with different tillage and residue practices in a sandy loam soil in central Canada [J].Soil & Tillage Research,2005,84(1):41-53.
-
[18] 韩巍,徐晓旭,李冬,等.耕作方式对辽西褐土区土壤穿透阻力的影响及机理[J].水土保持学报,2020,34(6):143-149.
-
[19] Filho O G,Blanco-Canqui H,da Silva A P.Least limiting water range of the soil seedbed for long-term tillage and cropping systems in the central Great Plains,USA[J].Geoderma,2013,207-208(1):99-110.
-
[20] Huang G B,Chai Q,Feng F X,et al.Effects of different tillage systems on soil properties,root growth,grain yield,and water use efficiency of winter wheat(Triticum aestivum L.)in Arid Northwest China[J].Journal of Integrative Agriculture,2012,11(8):1286-1296.
-
[21] Castellini M,Fornaro F,Garofalo P,et al.Effects of no-tillage and conventional tillage on physical and hydraulic properties of fine textured soils under winter wheat[J].Water(Switzerland),2019,11(3):484.
-
[22] Crawford M H,Rincon-Florez V,Balzer A,et al.Changes in the soil quality attributes of continuous no-till farming systems following a strategic tillage[J].Soil Research,2015,53(3):263-273.
-
[23] Silva B D O,Moitinho M R,Santos G A D A,et al.Soil CO2 emission and short-term soil pore class distribution after tillage operations[J].Soil & Tillage Research,2019,186:224-232.
-
[24] Blanco-Canqui H,Lal R.Principles of soil conservation and management[M].New York:Sterling Publishing Co Inc,2010.
-
[25] Amami R,Ibrahimi K,La Scala Júnior N,et al.Soil physical properties,carbon dioxide emissions and their relationships under different management systems in semi-arid region of Eastern Tunisia[J].Communications in Soil Science and Plant Analysis,2021,52(14):1689-1705.
-
[26] Baumhardt R L,Jones O R,Schwartz R C.Long-term effects of profile-modifying deep plowing on soil properties and crop yield [J].Soil Science Society of America Journal,2008,72(3):677-682.
-
[27] Ussiri D A N,Lal R,Jarecki M K.Nitrous oxide and methane emissions from long-term tillage under a continuous corn cropping system in Ohio[J].Soil & Tillage Research,2009,104(2):247-255.
-
[28] Ussiri D A N,Lal R.Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio[J].Soil & Tillage Research,2009,104(1):39-47.
-
[29] Dick W,McCoy E,Edwards W,et al.Continuous application of no-tillage to Ohio soils[J].Agronomy Journal,1991,83(1):65-73.
-
[30] 张立彬.土壤含水量和土壤紧实度对土壤圆锥指数值影响的试验研究[J].农业工程学报,1993(2):41-44.
-
[31] 刘玮,蒋先军.耕作方式对土壤不同粒径团聚体氮素矿化的影响[J].土壤,2013,45(3):464-469.
-
[32] 梁爱珍,张晓平,杨学明,等.耕作对东北黑土团聚体粒级分布及其稳定性的短期影响[J].土壤学报,2009,46(1):154-158.
-
[33] 刘玲玲,李超,房焕,等.免耕对稻油轮作系统土壤结构的影响[J].土壤学报,2021,58(2):412-420.
-
[34] Paustian K,Elliott E T,Carter M R.Tillage and crop management impacts on soil C storage:Use of long-term experimental data[J].Soil & Tillage Research,1998,47(3-4):vii-xii.
-
[35] Six J,Paustian K,Elliott E T,et al.Soil structure and organic matter:I.Distribution of aggregate-size classes and aggregate-associated carbon[J].Soil Science Society of America Journal,2000,64(2):681-689.
-
[36] 方华军.坡耕地黑土有机碳再分布过程及其动态研究[D]. 长春:中国科学院东北地理与农业生态研究所,2005.
-
[37] Tisdall J M,Oades J M.Organic matter and water‐stable aggregates in soils[J].Journal of Soil Science,1982,33(2):141-163.
-
[38] Oades J M,Waters A G.Aggregate hierarchy in soils[J]. Australian Journal of Soil Research,1991,29(6):815-825.
-
[39] Angers D A.Water-stable aggregation of quebec silty clay soils:Some factors controlling its dynamics[J].Soil & Tillage Research,1998,47(1-2):91-96.
-
[40] Forte A,Fiorentino N,Fagnano M,et al.Mitigation impact of minimum tillage on CO2 and N2O emissions from a Mediterranean maize cropped soil under low-water input management[J].Soil & Tillage Research,2017,166:167-178.
-
[41] Bilandžija D,Zgorelec Ž,Kisić I.Influence of tillage systems on short-term soil CO2 emissions[J].Hungarian Geographical Bulletin,2017,66(1):29-35.
-
[42] Don A,Schulze E D.Controls on fluxes and export of dissolved organic carbon in grasslands with contrasting soil types [J].Biogeochemistry,2008,91(2-3):117-131.
-
[43] Beare M H,Cabrera M L,Hendrix P F,et al.Aggregate-protected and unprotected organic matter pools in conventional-and no-tillage soils[J].Soil Science Society of America Journal,1994,58(3):787-795.
-
[44] Calvelo-Pereira R,Hedley M J,Hanly J A,et al.Spring pasture renewal involving full inversion tillage and a summer crop can facilitate soil C storage,improve crop yields and lower N leaching[J].Soil & Tillage Research,2022,219:105347.
-
[45] Alcantara V,Don A,Vesterdal L,et al.Stability of buried carbon in deep-ploughed forest and cropland soils-implications for carbon stocks[J].Scientific Reports,2017,7(1):5511.
-
[46] Feng Q,An C,Chen Z,et al.Can deep tillage enhance carbon sequestration in soils?A meta-analysis towards GHG mitigation and sustainable agricultural management[J].Renewable and Sustainable Energy Reviews,2020,133:110293.
-
[47] Du Z,Ren T,Hu C.Tillage and residue removal effects on soil carbon and nitrogen storage in the North China Plain[J].Soil Science Society of America Journal,2010,74(1):196-202.
-
[48] González-Prieto S,Díaz-Raviña M,Martín A,et al.Effects of agricultural management on chemical and biochemical properties of a semiarid soil from central Spain[J].Soil & Tillage Research,2013,134:49-55.
-
[49] Fabrizzi K P,Morón A,García F O.Soil carbon and nitrogen organic fractions in degraded vs.non-degraded mollisols in Argentina[J].Soil Science Society of America Journal,2003,67(6):1831-1841.
-
[50] 冀保毅,赵亚丽,郭海斌,等.深耕条件下秸秆还田对不同质地土壤肥力的影响[J].玉米科学,2015,23(4):104-109,116.
-
[51] 濮超,刘鹏,阚正荣,等.耕作方式及秸秆还田对华北平原土壤全氮及其组分的影响[J].农业工程学报,2018,34(9):160-166.
-
[52] Johnson-Maynard J L,Umiker K J,Guy S O.Earthworm dynamics and soil physical properties in the first three years of notill management[J].Soil & Tillage Research,2007,94(2):338-345.
-
[53] Asare S N,Rudra R P,Dickinson W T,et al.Soil macroporosity distribution and trends in a no-till plot using a volume computer tomography scanner[J].Journal of Agricultural and Engineering Research,2001,78(4):437-447.
-
[54] 何瑞清,王百群,张燕.耕作与施肥对甘蔗地土壤微生物量碳、氮的影响[J].水土保持研究,2015,22(5):118-121.
-
[55] 赵雪淞,宋王芳,高欣,等.秸秆还田和耕作方式对花生土壤微生物量、酶活性和产量的影响[J].中国土壤与肥料,2020(3):126-132.
-
[56] Tellez-Rio A,García-Marco S,Navas M,et al.Nitrous oxide and methane emissions from a vetch cropping season are changed by long-term tillage practices in a Mediterranean agroecosystem [J].Biology and Fertility of Soils,2015,51(1):77-88.
-
[57] 王芸,韩宾,史忠强,等.保护性耕作对土壤微生物特性及酶活性的影响[J].水土保持学报,2006(4):120-122,142.
-
[58] Bogunovic I,Pereira P,Galic M,et al.Tillage system and farmyard manure impact on soil physical properties,CO2 emissions,and crop yield in an organic farm located in a Mediterranean environment(Croatia)[J].Environmental Earth Sciences,2020,79(70):1-11.
-
[59] Ball B C,Griffiths B S,Topp C F E,et al.Seasonal nitrous oxide emissions from field soils under reduced tillage,compost application or organic farming[J].Agriculture,Ecosystems and Environment,2014,189:171-180.
-
[60] Liu Y,Zhang J,Wang Z,et al.Restriction of soil bacteria promoting high yield of super hybrid rice in the Huaihe Valley in central China by conventional ploughing intensity[J].Soil & Tillage Research,2021,214:105169.
-
[61] Bilandžija D,Zgorelec Ž,Kisić I.Soil carbon loss by soil respiration under different tillage treatments[J].Agriculturae Conspectus Scientificus,2014,79(1):1-6.
-
[62] Abdalla K,Chivenge P,Ciais P,et al.No-tillage lessens soil CO2 emissions the most under arid and sandy soil conditions:Results from a meta-analysis[J].Biogeosciences,2016,13(12):3619-3633.
-
[63] Al-Kaisi M M,Yin X.Tillage and crop residue effects on soil carbon and carbon dioxide emission in corn-soybean rotations[J]. Journal of Environmental Quality,2005,34(2):437-445.
-
[64] Amami R,Ibrahimi K,Znouda A,et al.Influence of tillage systems on soil bulk density and carbon dioxide emissions in the Mediterranean context[J].Euro-Mediterranean Journal for Environmental Integration,2021,6(16):1-9.
-
[65] 唐光木,徐万里,盛建东,等.新疆绿洲农田不同开垦年限土壤有机碳及不同粒径土壤颗粒有机碳变化[J].土壤学报,2010,47(2):279-285.
-
[66] Fatumah N,Munishi L K,Ndakidemi P A.The effect of landuse systems on greenhouse gas production and crop yields in Wakiso District,Uganda[J].Environmental Development,2021,37:100607.
-
[67] Rastogi M,Singh S,Pathak H.Emission of carbon dioxide from soil[J].Current Science,2002,82(5):510-517.
-
[68] Bauer P J,Frederick J R,Novak J M,et al.Soil CO2 flux from a norfolk loamy sand after 25 years of conventional and conservation tillage[J].Soil & Tillage Research,2006,90(1-2):205-211.
-
[69] Radicetti E,Campiglia E,Langeroodi A S,et al.Soil carbon dioxide emissions in eggplants based on cover crop residue management[J].Nutrient Cycling in Agroecosystems,2020,118(1):39-55.
-
[70] Gesch R W,Reicosky D C,Gilbert R A,et al.Influence of tillage and plant residue management on respiration of a Florida Everglades Histosol[J].Soil & Tillage Research,2007,92(1-2):156-166.
-
[71] 杨小东,曾希柏,文炯,等.猪粪施用量对红壤旱地理化性质及酶活性的影响[J].土壤学报,2020,57(3):739-749.
-
[72] Hayakawa A,Akiyama H,Sudo S,et al.N2O and NO emissions from an Andisol field as influenced by pelleted poultry manure[J].Soil Biology and Biochemistry,2009,41(3):521-529.
-
[73] Reicosky D C,Gesch R W,Wagner S W,et al.Tillage and wind effects on soil CO2 concentrations in muck soils[J].Soil & Tillage Research,2008,99(2):221-231.
-
[74] Ellert B H,Janzen H H.Short-term influence of tillage on CO2 fluxes from a semi-arid soil on the Canadian Prairies[J].Soil & Tillage Research,1999,50(1):21-32.
-
[75] Silva-Olaya A M,Cerri C E P,La Scala,et al.Carbon dioxide emissions under different soil tillage systems in mechanically harvested sugarcane[J].Environmental Research Letters,2013,8(1):015014.
-
[76] Dong W,Hu C,Chen S,et al.Tillage and residue management effects on soil carbon and CO2 emission in a wheat-corn double-cropping system[J].Nutrient Cycling in Agroecosystems,2009,83(1):27-37.
-
[77] Melling L,Hatano R,Goh K J.Soil CO2 flux from three ecosystems in tropical peatland of Sarawak,Malaysia[J]. Tellus,Series B:Chemical and Physical Meteorology,2005,57(1):1-11.
-
[78] Harrison-Kirk T,Beare M H,Meenken E D,et al.Soil organic matter and texture affect responses to dry/wet cycles:Effects on carbon dioxide and nitrous oxide emissions[J].Soil Biology and Biochemistry,2013,57:43-55.
-
[79] Lenka N K,Lal R.Soil aggregation and greenhouse gas flux after 15 years of wheat straw and fertilizer management in a no-till system[J].Soil & Tillage Research,2013,126:78-89.
-
[80] Pratibha G,Srinivas I,Rao K V,et al.Identification of environment friendly tillage implement as a strategy for energy efficiency and mitigation of climate change in semiarid rainfed agro ecosystems[J].Journal of Cleaner Production,2019,214:524-535.
-
[81] La Scala Jr N,Lopes A,Marques Jr J,et al.Carbon dioxide emissions after application of tillage systems for a dark red latosol in southern Brazil[J].Soil & Tillage Research,2001,62(3-4):163-166.
-
[82] Sarauskis E,Buragiene S,Masilionyte L,et al.Energy balance,costs and CO2 analysis of tillage technologies in maize cultivation[J].Energy,2014,69:227-235.
-
[83] Sarauskis E,Romaneckas K,Jasinskas A,et al.Improving energy efficiency and environmental mitigation through tillage management in faba bean production[J].Energy,2020,209:118453.
-
[84] Dec D,Dörner J,Horn R.Effect of soil management on their thermal properties[J].Revista de la Ciencia del Sueloy Nutricion Vegetal,2009,9(1):26-39.
-
[85] Smith K A,Ball T,Conen F,et al.Exchange of greenhouse gases between soil and atmosphere:Interactions of soil physical factors and biological processes[J].European Journal of Soil Science,2003,54(4):779-791.
-
[86] Šimek M,Brůček P,Hynšt J.Diurnal fluxes of CO2 and N2O from cattle-impacted soil and implications for emission estimates [J].Plant,Soil and Environment,2010,56(10):451-457.
-
[87] Bogužas V,Sinkevičienė A,Romaneckas K,et al.The impact of tillage intensity and meteorological conditions on soil temperature,moisture content and CO2 efflux in maize and spring barley cultivation[J].Zemdirbyste,2018,105(4):307-314.
-
[88] Negassa W,Price R F,Basir A,et al.Cover crop and tillage systems effect on soil CO2 and N2O fluxes in contrasting topographic positions[J].Soil & Tillage Research,2015,154:64-74.
-
[89] 张俊丽,张锦丽,赵晓进,等.不同耕作方式下旱作玉米田土壤 CO2 排放量及其与土壤水热的关系[J].干旱地区农业研究,2018,36(4):88-93.
-
[90] Hendrix P F,Han C R,Groffman P M.Soil respiration in conventional and no-tillage agroecosystems under different winter cover crop rotations[J].Soil & Tillage Research,1988,12(2):135-148.
-
[91] Oorts K,Merckx R,Gréhan E,et al.Determinants of annual fluxes of CO2 and N2O in long-term no-tillage and conventional tillage systems in northern France[J].Soil & Tillage Research,2007,95(1-2):133-148.
-
[92] Giacomo G,Angelo F,Fabio B,et al.Measurements of soil carbon dioxide emissions from two maize agroecosystems at harvest under different tillage conditions[J].Scientific World Journal,2014,2014:141345.
-
[93] Dutaur L,Verchot L V.A global inventory of the soil CH4 sink [J].Global Biogeochemical Cycles,2007,21(4):1-9.
-
[94] Oremland R S.Biogeochemistry of methanogenic bacteria[M]. New York:John Wiley & Sons,Inc.,1988:641-705.
-
[95] Waldo N B,Chistoserdova L,Hu D,et al.Impacts of the wetland sedge carex aquatilis on microbial community and methane metabolisms[J].Plant and Soil,2022,471:491-506.
-
[96] Le Mer J,Roger P.Production,oxidation,emission and consumption of methane by soils:A review[J].European Journal of Soil Biology,2001,37(1):25-50.
-
[97] Yao H,Conrad R,Wassmann R,et al.Effect of soil characteristics on sequential reduction and methane production in sixteen rice paddy soils from China,the Philippines,and Italy [J].Biogeochemistry,1999,47(3):269-295.
-
[98] Chu H,Hosen Y,Yagi K.NO,N2O,CH4 and CO2 fluxes in winter barley field of Japanese Andisol as affected by N fertilizer management[J].Soil Biology and Biochemistry,2007,39(1):330-339.
-
[99] Conrad R.Microbial ecology of methanogens and methanotrophs [J].Advances in Agronomy,2007,96:1-63.
-
[100] Ball B C,Scott A,Parker J P.Field N2O,CO2 and CH4 fluxes in relation to tillage,compaction and soil quality in Scotland[J]. Soil & Tillage Research,1999,53(1):29-39.
-
[101] Jensen S,Olsen R A.Atmospheric methane consumption in adjacent arable and forest soil systems[J].Soil Biology and Biochemistry,1998,30(8-9):1187-1193.
-
[102] Hütsch B.Tillage and land use effects on methane oxidation rates and their vertical profiles in soil[J].Biology and Fertility of Soils,1998,27(3):284-292.
-
[103] Sitaula B K,Hansen S,Sitaula J I B,et al.Methane oxidation potentials and fluxes in agricultural soil:Effects of fertilisation and soil compaction[J].Biogeochemistry,2000,48(3):323-339.
-
[104] Oyediran G,Adachi K,Senboku T.Effect of application of rice straw and cellulose on methane emission and biological nitrogen fixation in a subtropical paddy field:I.methane emission,soilara,and rice plant growth[J].Soil Science and Plant Nutrition,1996,42(4):701-711.
-
[105] Smartt A D,Brye K R,Norman R J.Methane emissions from rice production in the United States—A Review of controlling factors and summary of research[J].Greenhouse Gases,2016,30:179-207.
-
[106] Zhang Z S,Chen J,Liu T Q,et al.Effects of nitrogen fertilizer sources and tillage practices on greenhouse gas emissions in paddy fields of central China[J].Atmospheric Environment,2016,144:274-281.
-
[107] Saha M K,Mia S,Abdul Ahad Biswas A K M,et al.Potential methane emission reduction strategies from rice cultivation systems in Bangladesh:A critical synthesis with global metadata[J].Journal of Environmental Management,2022,310:114755.
-
[108] Aulakh M S,Wassmann R,Bueno C,et al.Impact of root exudates of different cultivars and plant development stages of rice(Oryza sativa L.)on methane production in a paddy soil[J]. Plant and Soil,2001,230(1):77-86.
-
[109] Lu Y,Wassmann R,Neue H U,et al.Methanogenic responses to exogenous substrates in anaerobic rice soils[J].Soil Biology and Biochemistry,2000,32(11-12):1683-1690.
-
[110] Wassmann R,Aulakh M S.The role of rice plants in regulating mechanisms of methane missions[J].Biology and Fertility of Soils,2000,31(1):20-29.
-
[111] Li D,Liu M,Cheng Y,et al.Methane emissions from double-rice cropping system under conventional and no tillage in southeast China [J].Soil & Tillage Research,2011,113(2):77-81.
-
[112] Ahmad S,Li C,Dai G,et al.Greenhouse gas emission from direct seeding paddy field under different rice tillage systems in central China[J].Soil & Tillage Research,2009,106(1):54-61.
-
[113] Zhao Z,Cao L,Deng J,et al.Modeling CH4 and N2O emission patterns and mitigation potential from paddy fields in Shanghai,China with the DNDC model[J].Agricultural Systems,2020,178:102743.
-
[114] Hwang W,Kim C,Cho K,et al.Characteristics of greenhouse gas emissions from rice paddy fields in South Korea under climate change scenario RCP-8.5 using the DNDC model [J].Pedosphere,2021,31(2):332-341.
-
[115] Abdalla M,Osborne B,Lanigan G,et al.Conservation tillage systems:A review of its consequences for greenhouse gas emissions[J].Soil Use and Management,2013,29(2):199-209.
-
[116] Omonode R A,Vyn T J,Smith D R,et al.Soil carbon dioxide and methane fluxes from long-term tillage systems in continuous corn and corn-soybean rotations[J].Soil & Tillage Research,2007,95(1-2):182-195.
-
[117] Mosier A,Schimel D,Valentine D,et al.Methane and nitrous oxide fluxes in native,fertilized and cultivated grasslands[J]. Nature,1991,350(6316):330-332.
-
[118] Dunfield P,Knowles R.Kinetics of inhibition of methane oxidation by nitrate,nitrite,and ammonium in a humisol[J]. Applied and Environmental Microbiology,1995,61(8):3129-3135.
-
[119] Xie B,Zheng X,Zhou Z,et al.Effects of nitrogen fertilizer on CH4 emission from rice fields:multi-site field observations [J].Plant and Soil,2010,326(1):393-401.
-
[120] Watanabe A,Kimura M.Effect of rice straw application on CH4 emission from paddy fields:IV.Influence of rice straw incorporated during the previous cropping period[J].Soil Science and Plant Nutrition,1998,44(4):507-512.
-
[121] Xiong Z Q,Xing G X,Zhu Z L.Nitrous oxide and methane emissions as affected by water,soil and nitrogen[J]. Pedosphere,2007,17(2):146-155.
-
[122] Zou J,Huang Y,Jiang J,et al.A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China:Effects of water regime,crop residue,and fertilizer application[J].Global Biogeochemical Cycles,2005,19(2):1-9.
-
[123] Liu X,Zhou T,Liu Y,et al.Effect of mid-season drainage on CH4 and N2O emission and grain yield in rice ecosystem:A metaanalysis[J].Agricultural Water Management,2019,213:1028-1035.
-
[124] Tyagi L,Kumari B,Singh S N.Water management-A tool for methane mitigation from irrigated paddy fields[J].Science of the Total Environment,2010,408(5):1085-1090.
-
[125] Akter M,Deroo H,Kamal A M,et al.Impact of irrigation management on paddy soil N supply and depth distribution of abiotic drivers[J].Agriculture,Ecosystems and Environment,2018,261:12-24.
-
[126] Jiang C,Wang Y,Zheng X,et al.Methane and nitrous oxide emissions from three paddy rice based cultivation systems in Southwest China[J].Advances in Atmospheric Sciences,2006,23(3):415-424.
-
[127] Bhattacharyya P,Roy K S,Neogi S,et al.Impact of elevated CO2 and temperature on soil C and N dynamics in relation to CH4 and N2O emissions from tropical flooded rice(Oryza sativa L.)[J].Science of the Total Environment,2013,461-462:601-611.
-
[128] Fetzer S,Bak F,Conrad R.Sensitivity of methanogenic bacteria from paddy soil to oxygen and desiccation[J].FEMS Microbiology Ecology,1993,12(2):107-115.
-
[129] Fukui M,Takii S.Survival of sulfate-reducing bacteria in oxic surface sediment of a seawater lake[J].FEMS Microbiology Letters,1990,73(4):317-322.
-
[130] Jugsujinda A,Delaune R D,Lindau C W,et al.Factors controlling carbon dioxide and methane production in acid sulfate soils[J].Water,Air,and Soil Pollution,1996,87(1-4):345-355.
-
[131] Ussiri D,Lal R.Soil emission of nitrous oxide and its mitigation [M].Dordrecht:Springer,2012:1-378.
-
[132] Verhoeven E,Pereira E,Decock C,et al.N2O emissions from California farmlands:A review[J].California Agriculture,2017,71(3):148-159.
-
[133] Lemke R L,Izaurralde R C,Nyborg M,et al.Tillage and N source influence soil-emitted nitrous oxide in the Alberta Parkland region[J].Canadian Journal of Soil Science,1999,79(1):15-24.
-
[134] Robertson G P,Paul E A,Harwood R R.Greenhouse gases in intensive agriculture:Contributions of individual gases to the radiative forcing of the atmosphere[J].Science,2000,289(5486):1922-1925.
-
[135] Elmi A A,Madramootoo C,Hamel C,et al.Denitrification and nitrous oxide to nitrous oxide plus dinitrogen ratios in the soil profile under three tillage systems[J].Biology and Fertility of Soils,2003,38(6):340-348.
-
[136] Rochette P.No-till only increases N2O emissions in poorlyaerated soils[J].Soil & Tillage Research,2008,101(1-2):97-100.
-
[137] Venterea R T,Burger M,Spokas K A.Nitrogen oxide and methane emissions under varying tillage and fertilizer management [J].Journal of Environmental Quality,2005,34(5):1467-1477.
-
[138] Chatskikh D,Olesen J E.Soil tillage enhanced CO2 and N2O emissions from loamy sand soil under spring barley[J].Soil & Tillage Research,2007,97(1):5-18.
-
[139] Cavigelli M A,Robertson G P.The functional significance of denitrifier community composition in a terrestrial ecosystem[J]. Ecology,2000,81(5):1402-1414.
-
[140] Baggs E M,Stevenson M,Pihlatie M,et al.Nitrous oxide emissions following application of residues and fertiliser under zero and conventional tillage[J].Plant and Soil,2003,254(2):361-370.
-
[141] Zhang J S,Zhang F P,Yang J H,et al.Emissions of N2O and NH3,and nitrogen leaching from direct seeded rice under different tillage practices in central China[J].Agriculture,Ecosystems and Environment,2011,140(1-2):164-173.
-
[142] 冯珺珩,黄金凤,刘天奇,等.耕作与秸秆还田方式对稻田 N2O 排放、水稻氮吸收及产量的影响[J].作物学报,2019,45(8):1250-1259.
-
[143] Jacinthe P A,Dick W A.Soil management and nitrous oxide emissions from cultivated fields in southern Ohio[J].Soil & Tillage Research,1997,41(3-4):221-235.
-
[144] Grant R F,Pattey E.Modelling variability in N2O emissions from fertilized agricultural fields[J].Soil Biology and Biochemistry,2003,35(2):225-243.
-
[145] Six J,Ogle S M,Breidt F J,et al.The potential to mitigate global warming with no-tillage management is only realized when practised in the long term[J].Global Change Biology,2004,10(2):155-160.
-
[146] Mosier A R,Parton W J,Valentine D W,et al.CH4 and N2O fluxes in the Colorado shortgrass steppe:1.Impact of landscape and nitrogen addition[J].Global Biogeochemical Cycles,1996,10(3):387-399.
-
[147] Li C,Frolking S,Butterbach-Bahl K.Carbon sequestration in arable soils is likely to increase nitrous oxide emissions,offsetting reductions in climate radiative forcing[J].Climatic Change,2005,72(3):321-338.
-
[148] Novoa R S A,Tejeda H R.Evaluation of the N2O emissions from N in plant residues as affected by environmental and management factors[J].Nutrient Cycling in Agroecosystems,2006,75(1-3):29-46.
-
[149] Jensen E S.Nitrogen immobilization and mineralization during initial decomposition of 15N-labelled pea and barley residues [J].Biology and Fertility of Soils,1997,24(1):39-44.
-
[150] Sanchez-Martin L,Dick J,Bocary K,et al.Residual effect of organic carbon as a tool for mitigating nitrogen oxides emissions in semi-arid climate[J].Plant and Soil,2010,326(1):137-145.
-
[151] Rudaz A O,Wälti E,Kyburz G,et al.Temporal variation in N2O and N2 fluxes from a permanent pasture in Switzerland in relation to management,soil water content and soil temperature [J].Agriculture,Ecosystems and Environment,1999,73(1):83-91.
-
[152] Cosentino V R N,Figueiro A S A,Taboada M A.Hierarchy of factors driving N2O emissions in non-tilled soils under different crops[J].European Journal of Soil Science,2013,64(5):550-557.
-
[153] Skiba U,van Dijk S,Ball B C.The influence of tillage on NO and N2O fluxes under spring and winter barley[J].Soil Use and Management,2002,18(4):340-345.
-
摘要
深耕作为农业耕作措施的同时,也是重要的土壤污染修复方法,然而,其对土壤温室气体排放的影响尚不明确。总结了深耕条件下土壤二氧化碳(CO2)、甲烷(CH4)和氧化亚氮(N2O)排放规律的相关研究。深耕主要通过影响土壤物理性质(如容重、团聚体稳定性)进而影响其化学和生物学性质,从而导致温室气体排放通量发生变化。深耕可显著增加土壤 CO2 的排放量。土壤团聚体稳定性和容重是影响 CO2 排放的重要因子。旱地土壤是 CH4 的“汇”,水田是 CH4 的“源”。深耕可降低旱地土壤对 CH4 的吸收,增加水田土壤 CH4 的排放。土壤通气性能以及产甲烷菌和甲烷氧化菌的大小和活性是影响 CH4 排放的重要因素。深耕对 N2O 的影响主要与土壤通气性能有关,在通气性较好的土壤中,深耕可显著增加 N2O 的排放,但在通气性不良的土壤中则表现为降低趋势,土壤硝化和反硝化作用是影响 N2O 排放的重要过程。此外,土壤改良方式、水分管理、气候因素和其他土壤性质等可进一步对土壤温室气体的排放产生影响。从农业可持续发展和土壤绿色低碳修复的角度出发,采用深耕方法进行农业耕作和土壤修复对气候变化的潜在影响值得进一步审慎商榷。
Abstract
Deep tillage is an important agricultural farming practice and soil remediation measure;however,its impact on soil greenhouse gas(GHG)emissions remains unclear. This review summarized current research on the emissions of soil carbon dioxide(CO2),methane(CH4)and nitrous oxide(N2O)under deep tillage conditions. The results showed that deep tillage mainly affects soil chemical and biological properties by affecting its physical properties(e.g.,bulk density and aggregate stability),thus causing changes in GHG emissions. Deep tillage significantly increased soil CO2 emissions, which was mainly affected by aggregate stability and bulk density. Dryland soil was the sink of CH4,while paddy field was the source of CH4. Deep tillage reduced the absorption of CH4 by dryland soil and increased the emission of CH4 from paddy field,which was mainly due to changes in size and activity of methanogens and methane-oxidizing microbes in soil and soil aeration. The effect of deep tillage on N2O was mainly related to soil aeration. In soils with good aeration conditions,deep tillage significantly increased N2O emission;but in soils with poor aeration conditions,it showed a decreasing trend. Soil nitrification and denitrification were important processes affecting N2O emission. In addition,soil amendment,water management,climatic factors and other soil properties could further affect GHG emissions in deep tillage soils. In conclusion, effects of deep tillage on GHG emissions should be taken into serious consideration for both agricultural and green and low-carbon remediation practices.
Keywords
deep tillage ; green and low-carbon remediation ; methane ; carbon dioxide ; nitrous oxide