-
硫(S)是继氮(N)、磷(P)和钾(K)之后的“第四大必需营养素”,在作物生产中有重要作用[1]。在植物中,硫被用来合成许多蛋白质和氨基酸,因此,硫在土壤中的有效性影响作物的产量和质量[2]。据报道,缺硫植株表现出株高降低、生长受阻和成熟延迟等现象[3]。缺硫在过去几十年中变得更加普遍,这是由于大气沉降和化肥造成的附带输入减少和作物移除量的增加[4]。最近,越来越多的人认为硫是一种限制性养分,这促进了含硫肥料的发展,以最大限度地减少作物产量损失[5]。有各种各样的含硫肥料可以缓解缺硫[6],最常用的硫肥料含有硫酸盐硫或硫磺作为硫源。与硫酸盐硫相比,硫磺更具成本效益,且不易浸出。硫磺在被氧化成硫酸盐之前不易为植物所获得,土壤中硫磺的氧化主要是由微生物介导的,通过环境条件和土壤理化性质的影响,进而影响微生物种群大小和活性[7]。硫磺氧化过程中硫酸盐的释放速率受硫磺颗粒的细度控制,土壤硫酸盐浓度的增加表明,氧化速率在硫颗粒较细的混合物中比硫颗粒逐渐粗的混合物中更大[8]。为了有效地促进硫磺在土壤里的氧化,了解土壤中硫磺的氧化因素至关重要。本文通过分析土壤中影响硫磺氧化的土壤性质和肥料性质两个方面,为含硫肥料的研发提供依据。
-
1 土壤性质
-
土壤中的硫由无机硫和有机硫组成,在大多数农业土壤中,有机硫占总硫的主要比例[9]。无机硫在土壤中以下列形式存在:亚硫酸盐、硫代亚硫酸盐、连四硫酸盐、硫磺和硫化物、硫酸盐[10]。在排水良好的非石灰性土壤中,有机硫占总硫的 90% 以上。可以被氢碘酸(HI)还原成硫化物的有机硫被称为 HI 还原硫,而不能被 HI 还原成硫化物的有机硫被分类为 C 键合的硫[11]。硫磺的固定是通过土壤微生物将硫酸盐-S 转化为有机硫,而矿化是将有机结合的硫转化为无机硫(主要是硫酸盐-硫)[10],有机硫的矿化导致植物有效硫酸盐硫的释放,固定和矿化同时发生在土壤中,因此,硫酸盐-硫浓度随时间的变化取决于净矿化[12]。硫磺进入土壤后可转化为几种形态,即可溶性无机硫、酯键硫、碳键硫和未知态有机硫[13]。硫以不同的氧化态存在,其氧化过程为 S → S2O3 2- → S4O6 2- → SO4 2-[14]。硫磺的氧化主要是受土壤微生物、pH、温度、湿度的影响。
-
1.1 土壤微生物
-
作为一种生物介导的过程,硫磺氧化也被发现与土壤微生物生物量碳、呼吸作用和酶活性有关[15]。土壤中硫磺的非生物氧化尽管起到一部分作用[16],但微生物反应显然主导了该过程[6]。由于肥料颗粒中的硫释放取决于其氧化速率,因此,控制硫磺表面的微生物定殖程度的因素是最重要的[17]。许多不同的微生物在土壤中氧化硫磺,可分为以下几类:(a)化能无机营养生物(自养生物);(b)光合自养生物;(c)异养生物。在大多数需氧土壤中,(a)和(c)类的成员在氧化硫磺过程中起主要作用[6]。最有效的是化能自养细菌嗜酸氧化硫硫杆菌和嗜酸氧化亚铁硫杆菌[18]。硫杆菌一直被认为是土壤中最重要的硫氧化细菌,但从农业土壤中分离这些细菌的尝试并不十分成功[6]。Lawrence 等[19] 未能在加拿大萨斯喀彻温省的 40 多个土壤中检测到嗜酸性氧化硫硫杆菌。嗜中性硫杆菌,如排硫硫杆菌,经常在土壤中被检测到,并且在有施用硫肥历史的土壤中可能相当活跃。据报道,真菌在粉质土壤中的单质硫磺(ES)氧化不如细菌有效[20]。
-
硫氧化是一个生物过程,取决于影响微生物种群大小(遗传潜力)和活性的许多因素。土壤碳、氮、硫含量与 soxB 和 16S 核糖体脱氧核糖核酸 (rRNA)的基因丰度呈正相关,表明硫氧化细菌的丰度与土壤碳和养分供应有关,但硫氧化菌的多样性与元素硫氧化速率之间没有直接联系[21]。
-
1.2 pH
-
植物对硫磺的有效性取决于它被氧化成可溶的硫酸盐形式。由于硫磺的氧化主要是由硫杆菌属的土壤细菌和异养微生物介导的,氧化速率取决于影响它们在土壤中的活性因素,特别是湿度和温度,并且通常随着土壤 pH 值和有机质含量的增加而进行得更快[6]。Janzen 等[22]在一项对39 种不同土壤的研究中发现,氧化速率与土壤有机质之间存在高度显著的正相关性。硫磺氧化和有机质之间的正相关关系可能是由于异养微生物对能量的响应,土壤 pH 值通常与硫磺氧化速率呈正相关[23]。硫磺的氧化速率随土壤 pH 的降低而降低[24],但在酸性土壤中温度升高对氧化速率的影响比其他土壤更明显。例如,在酸性土壤中, 36℃的速率比 12℃的速率快 3.5 倍,而在中性和碱性土壤中则为 2.5 倍,这说明了 pH 值不同的土壤相互交织影响[25]。高 pH 值对硫磺氧化速率的积极影响可能是与土壤的缓冲能力有关[26]。
-
1.3 温度
-
Watkinson 等[27]在新西兰使用固定元素硫源进行了大约 80 个现场试验,发现温度是影响氧化速率的最重要因素。在土壤表层正常温度下,元素硫氧化速率与土壤温度之间呈指数关系,可通过范霍夫法确定[6]。硫磺氧化反应比土壤中的许多生物过程对温度变化更敏感。在温度低于 5℃ 时,氧化是微不足道的或非常缓慢的,然而,大多数研究表明,最大氧化速率发生在 30~40℃[28]。据报道,在 3~30℃的温度范围内,温度每升高 1℃,ES 的氧化速率增加 14%[29]。硫磺氧化对温度的高度敏感性对田间条件下肥料的有效性有很强的影响。ES 氧化对温度的高度敏感性表明,不同气候地区硫磺肥料的农艺性能存在较大差异[6]。
-
1.4 湿度
-
土壤含水量是生物介导硫磺氧化的关键变量。当土壤含水量较低时,薄水膜限制了细菌的运动,细菌不能接近硫磺颗粒的表面。当土壤含水量较高时,氧气有效性成为一个限制因素[30]。氧的氧化速率通常与水势呈抛物线关系[31]。在低水势(低土壤湿度)下,氧化受到微生物活动水分不足和疏水的颗粒可及性降低的限制。相反,在高水势 (高土壤水分含量)时,有效水分是有利的,但氧化受到不充分曝气的限制。由于氧在水中的扩散速度非常缓慢,土壤含水量的增加逐渐降低了氧化部位的氧补充速度[6]。细结构的土壤具有小孔隙,即使含水率很低,孔隙也会被填满,在水相中形成连续的通道。相比之下,粗粒土的大孔隙中容易形成孤立水膜[32]。土壤水分显著影响硫磺的氧化,一般认为,接近田间持水量的条件下氧化速率最大[33]。
-
2 肥料性质
-
硫磺可以作为土壤调理剂改良土壤的 pH,并且和其他元素的交互作用也大于其营养功能。而其作为肥料的利用率不高,据统计,目前硫肥的利用率非常低,仅为 5%~15%[34]。硫磺粒径与施用方式是提高其利用率的关键。
-
2.1 硫磺粒径
-
如果施用细粒度的硫,土壤中硫的氧化很快就会发生。然而,使用细分割的硫磺是不方便的,易造成火灾危险[6]。在土壤中施用细硫磺颗粒是不现实的,与土壤混合也不适合免耕做法[9]。考虑到硫磺作为细粉施用到土壤中不切实际,颗粒剂或锭剂形式是土壤施肥的更合适方式[4]。
-
硫磺氧化过程中硫酸盐的释放速率受硫磺颗粒的细度控制,不同硫磺混合物制备方法所产生的差异与颗粒分散时释放的硫磺粒径有关。硫磺氧化速率与粒径呈反比[35]。在一个实验中还发现,作为尿素的氮以及作为磷酸二铵(DAP)的氮和磷增强了对硫的响应,尽管程度低于单独的磷。这些观察结果归因于硫氧化微生物对磷和氮的营养需求。因此,载体造粒也影响氧化速率,从肥料硫回收率推断,对于给定的硫磺浓度,该效应与颗粒的平均直径呈反比[36]。硫磺的可用性可以通过设计成减小粒度和增加暴露于微生物活性表面积的制剂来增强。因此,改变硫磺的粒径是加速氧化速率的最有力工具[37]。
-
Fox 等[38]证明,硫磺对作物的可用性直接取决于其比表面积,因此间接取决于粒度。较小的粒度导致较大的释放速率,粒度 <0.150 mm 直径与硫酸盐源一样有效。Hu 等[39]发现,根据 SO4 2-的释放估计,硫磺氧化过程中,由小硫磺颗粒(直径 <75 mm)组成的完整肥料颗粒(95% 硫磺)比这些颗粒分散后得到的硫磺颗粒要慢得多。与粗 (150~250 μm)元素硫相比,当使用细(50~150 μm)粒度元素硫时,元素硫的氧化更高。研磨和重结晶元素硫之间的氧化速率没有明显差异[40]。
-
硫氧化是一种表面过程,仅限于直接暴露于生物活性的原子。因此,任何时候的氧化速率都取决于硫的总表面积。许多研究表明,硫酸盐产量与硫的总表面积之间存在很强的线性关系[41]。由于球体的表面积与质量的比值最小,因此,任何偏离球形度的情况都会增加比表面积[42]。硫的氧化主要是表面反应。因此,在特定时间内 SO 4 2-的释放量与单质硫颗粒的总表面积有关,而与质量无关。许多研究已经证实了所释放的硫酸盐量与所施加的元素硫总表面积之间的线性关系[6]。石灰性土壤中施用硫磺遇到了一些障碍,包括硫的氧化不充分,这主要是因为硫磺颗粒的有效表面积不足,无法使硫氧化微生物活动[43]。当硫磺与土壤之比大于 1∶50 时,氧化会受到限制。这可能是氧化过程中硫磺颗粒周围积累大量酸性物质或氧供应不足的抑制作用[33]。
-
2.2 硫磺施用方式
-
硫磺氧化依赖于土壤中的分散程度,且受肥料类型和施用方式的影响较大,事实上,硫磺颗粒在土壤表面的分散可能会影响氧化速率,因为与土壤微生物接触的表面积有所增加[44]。Solberg 等[1]发现,ES 肥料的性能差异很大,这取决于肥料是掺入、散布、带状还是嵌套。
-
硫磺颗粒在土壤中的分散不足抑制了硫磺氧化速率[6]。以硫浸渍尿素形式应用的硫氧化也被发现由于颗粒分散不足而受到抑制。已发现在尿素溶解后翻耕土壤可以提高氧化速率,这可能是由于分散了释放的硫磺颗粒[45]。在土壤表面施用颗粒可能会受到降水和其他气候因素的破坏作用,从而促进更好的分散和更高的氧化速率[46]。
-
诸如重过磷酸钙(TSP)与颗粒形式的硫磺的混合物可以对来自产品的硫的可用性具有有益和有害的影响。积极的一面是,TSP 可能会提高硫磺氧化的速率[47]。不利的方面是,相对于掺入的硫磺粉末,硫磺无论以任何形式的造粒方式,在通过土壤介质时都具有较差的分散性,这可能导致降低硫磺的氧化速率[48]。
-
Janzen 等[48]的研究表明,硫磺粉末的氧化取决于与其混合的土壤体积。Chien 等[49-50]认为,硫磺颗粒形式可能无法充分氧化,在施用的季节内可能不利于作物生长。即使在颗粒崩解后,颗粒位置周围的局部硫磺颗粒也限制了与土壤氧化微生物接触的表面积,因此,与粉状硫磺颗粒应用于土壤相比,限制了硫磺氧化。将元素硫与膨润土矿物混合可以增加硫的氧化,因为膨润土在吸收水之后为硫颗粒提供更好的分散条件[51]。细碎的硫磺通常与膨润土一起造粒以改善处理特性。润湿后这些颗粒会分解,从而使细硫磺颗粒的高表面积暴露于微生物活动之下。硫磺-膨润土产品中硫的氧化速率通常小于相同比表面积的硫磺粉体。其延缓氧化的原因是产物在土壤中的分散延迟或分散不足[52]。氧化过程可能因为氧向氧化部位扩散不足而减慢,另外,可能是硫氧化合物的疏水性,在紧密聚集的颗粒中可能会阻止充分的水合作用以支持氧化。
-
3 展望
-
为提高硫磺氧化速率,应根据不同 pH 土壤摸索出适合硫氧化细菌生长的温度、湿度。而对于肥料本身,更应关注合适的粒径及肥料在土壤里的扩散性能,其主要目的是增加硫氧化细菌定殖于肥料颗粒的表面积。
-
但从现在已有的研究来看,硫氧化异养微生物和自养微生物在硫氧化过程中的作用比重尚不清楚,不同质地土壤均有较大的差异。目前市面上主流的硫肥产品其添加硫量、添加方式各不相同且差异较大,没有较为权威的理论依据。从企业角度,过高和过低的硫添加量分别会导致成本增加,效果不显著,不利于肥料的销售;从农民的角度,优质的硫肥产品在保证低本增效的同时,还会改善土壤质地及作物的产量。
-
因此,未来在硫磺氧化机理方面,应根据针对性的应用场景、应用作物,明确硫磺在土壤里的氧化机制;在工艺方面,应探明硫磺在不同添加环节上的效果差异;在产品创新方面,应根据农业和市场需求,以节本增效为核心目标,以绿色为约束条件,创造出实用高效型肥料产品。
-
参考文献
-
[1] Solberg E D,Malhi S S,Nyborg M,et al.Source,application method,and cultivation effects on recovery of elemental sulfur as sulfate‐S in incubated soils[J].Communications in Soil Science and Plant Analysis,2005,36(7-8):847-862.
-
[2] 吴宇,高蕾,曹民杰,等.植物硫营养代谢、调控与生物学功能[J].植物学通报,2007(6):735-761.
-
[3] Kumar R,Singh V K,Sharma R P,et al.Impact of nitrogen,phosphorus,potash and sulphur on productivity of rice-wheat system in sub-humid region[J].Journal of Agricultural Physics,2012,12(1):84-88.
-
[4] Mattiello E M,Da S R C,Degryse F,et al.Sulfur and zinc availability from co-granulated Zn-enriched elemental sulfur fertilizers[J].Journal of Agricultural and Food Chemistry,2017,65(6):1108-1115.
-
[5] Haneklaus S,Bloem E,Schnug E,et al.Sulphur in agroecosystems[J].Folia Universitatis Agriculturae Stetinensis,Agricultura,2000,81:17-31.
-
[6] Germida J J,Janzen H H.Factors affecting the oxidation of elemental sulfur in soils[J].Fertilizer Research,1993,35:101-114.
-
[7] Skiba U,Wainwright M.Oxidation of elemental-S in coastaldune sands and soils[J].Plant and Soil,1984,77:87-95.
-
[8] Boswell C C,Swanney B,Braithwaite A C.The effects of different manufacturing techniques on the availability of sulfate to pasture from mixtures of elemental sulfur with either triple superphosphate or partially acidulated reactive phosphate rock [J].Fertilizer Research,1995,44:255-263.
-
[9] Zhao C,Degryse F,Gupta V,et al.Elemental sulfur oxidation in Australian cropping soils[J].Soil Science Society of America Journal,2015,79(1):89-96.
-
[10] Schoenau J J,Malhi S S.Sulfur forms and cycling processes in soil and their relationship to sulfur fertility[J].Sulfur:A Missing Link Between Soils,Crops,and Nutrition,2008,50:1-10.
-
[11] Biederbeck V O.Soil organic sulfur and fertility[M]//Freney J R.Soil sulphate changes in the presence and absence of growing plants.Australian:Australian Journal of Agricultural Research,1960:339-345.
-
[12] Eriksen J,Mortensen J V,Nielsen J D,et al.Sulphur mineralisation in five Danish soils as measured by plant uptake in a pot experiment[J].Agriculture,Ecosystems & Environment,1995,56(1):43-51.
-
[13] 王凡,朱云集,路玲.土壤中的硫素及其转化研究综述[J]. 中国农学通报,2007(5):249-253.
-
[14] 林葆,李书田,周卫.影响硫磺在土壤中氧化的因素[J]. 土壤肥料,2000(5):3-8.
-
[15] Dick R P,Deng S.Multivariate factor analysis of sulfur oxidation and rhodanese activity in soils[J].Biogeochemistry,1991,12:87-101.
-
[16] MacIntire W H,Gray F J,Shaw W M.The non-biological oxidation of elemental sulfur in quartz media:a preliminary report [J].Soil Science,1921,11(4):249-254.
-
[17] Friesen D K.Influence of co-granulated nutrients and granule size on plant responses to elemental sulfur in compound fertilizers [J].Nutrient Cycling in Agroecosystems,1996,46:81-90.
-
[18] Yang Z H,Stöven K,Haneklaus S,et al.Elemental sulfur oxidation by Thiobacillus spp.and aerobic heterotrophic sulfuroxidizing bacteria[J].Pedosphere,2010,20(1):71-79.
-
[19] Lawrence J R,Germida J J.Relationship between microbial biomass and elemental sulfur oxidation in agricultural soils[J]. Soil Science Society of America Journal,1988,52(3):672-677.
-
[20] Czaban J,Kobus J.Oxidation of elemental sulfur by bacteria and fungi in soil[J].Acta Microbiologica Polonica,2000,49(2):135-147.
-
[21] Zhao C,Gupta V V S R,Degryse F,et al.Abundance and diversity of sulphur-oxidising bacteria and their role in oxidising elemental sulphur in cropping soils[J].Biology and Fertility of Soils,2017,53:159-169.
-
[22] Janzen H H,Bettany J R.Measurement of sulfur oxidation in soils[J].Soil Science,1987,143(6):444-452.
-
[23] Lawrence J R,Germida J J.Relationship between microbial biomass and elemental sulfur oxidation in agricultural soils[J]. Soil Science Society of America Journal,1988,52(3):672-677.
-
[24] Kulczycki G.The effect of elemental sulfur fertilization on plant yields and soil properties[J].Advances in Agronomy,2021,167:105-181.
-
[25] Jaggi A F F R C,Aulakh M S,Sharma R.Temperature effects on soil organic sulphur mineralization and elemental sulphur oxidation in subtropical soils of varying pH[J].Nutrient Cycling in Agroecosystems,1999,54:175-182.
-
[26] Barrow N J.Slowly available sulphur fertilizers in south-western Australia.1.Elemental sulphur[J].Australian Journal of Experimental Agriculture,1971,11(49):211-216.
-
[27] Watkinson J H,Lee A.Kinetics of field oxidation of elemental sulfur in New Zealand pastoral soils and the effects of soil temperature and moisture[J].Fertilizer Research,1994,37:59-68.
-
[28] Skiba U,Wainwright M.Oxidation of elemental-S in coastaldune sands and soils[J].Plant and Soil,1984,77:87-95.
-
[29] Kemmitt S J,Wright D,Goulding K W T,et al.pH regulation of carbon and nitrogen dynamics in two agricultural soils[J].Soil Biology and Biochemistry,2006,38(5):898-911.
-
[30] Zhao C,Wang J,Zang F,et al.Water content and communities of sulfur-oxidizing bacteria affect elemental sulfur oxidation in silty and sandy loam soils[J].European Journal of Soil Biology,2022,111:103419.
-
[31] Nevell W,Wainwright M.Influence of soil moisture on sulphur oxidation in brown earth soils exposed to atmospheric pollution [J].Biology and Fertility of Soils,1987,5:209-214.
-
[32] Chau J F,Bagtzoglou A C,Willig M R.The effect of soil texture on richness and diversity of bacterial communities[J]. Environmental Forensics,2011,12.4:333-341.
-
[33] 雷利斌.加硫尿素 N、S 在土壤中的转化及其作物效应研究 [D].合肥:安徽农业大学,2006.
-
[34] 袁福生,李祖章,刘光荣,等.硫在旱地土和水稻土中氧化的初步研究[J].江西农业学报,2002(1):56-60.
-
[35] Li P,Caldwell A C.The oxidation of elemental sulfur in soil [J].Soil Science Society of America Journal,1966,30(3):370-372.
-
[36] Friesen D K.Influence of co-granulated nutrients and granule size on plant responses to elemental sulfur in compound fertilizers [J].Nutrient Cycling in Agroecosystems,1996,46:81-90.
-
[37] Goyal D,Franzen D W,Chatterjee A.Do crops’responses to sulfur vary with its forms?[J/OL].America:Agrosystems,Geosciences & Environment,2021,4:e20201.
-
[38] Fox R L,Atesalp H M,Kampbell D H,et al.Factors influencing the availability of sulfur fertilizers to alfalfa and corn [J].Soil Science Society of America Journal,1964,28(3):406-408.
-
[39] Hu Z Y,Beaton J D,Cao Z H.Sulfate formation and extraction from red soil treated with micronized elemental sulfur fertilizer and incubated in closed and open systems[J].Communications in Soil Science and Plant Analysis,2002,33(11-12):1779-1797.
-
[40] Lefroy R D B,Blair G J.Effect of nutrients and elemental sulfur particle size on elemental sulfur oxidation and the growth of Thiobacillus thiooxidans[J].Australian Journal of Agricultural Research,1997,48(4):497-502.
-
[41] Janzen H H,Bettany J R,Stewart J W B,et al.Sulfur oxidation and fertilizer sources[C].Edmonton,Alberta.:Proceedings of the Alberta Soil Science Workshop,1982:229-240.
-
[42] McCaskill M R,Blair G J.Particle size and soil texture effects on elemental sulfur oxidation1[J].Agronomy Journal,1987,79(6):1079-1083.
-
[43] Bouranis D L,Gasparatos D,Zechmann B,et al.The effect of granular commercial fertilizers containing elemental sulfur on wheat yield under mediterranean conditions[J].Plants,2018,8(1):2.
-
[44] Fontaine D,Eriksen J,Sørensen P,et al.Application method influences the oxidation rate of biologically and chemically produced elemental sulfur fertilizers[J].Soil Science Society of America Journal,2021,85(3):746-759.
-
[45] Janzen H H,Bettany J R.Release of available sulfur from fertilizers[J].Canadian Journal of Soil Science,1986,66(1):91-103.
-
[46] Solberg E D,Nyborg M,Laverty D,et al.Effects of rainfall,wet-dry,and freeze-thaw cycles on the oxidation of elemental sulphur fertilizers[C].Alberta:Proceedings of 24th Annual Alberta Soil Science Workshop,1987:120-126.
-
[47] Watkinson J H.Measurement of the oxidation rate of elemental sulfur in soil[J].Soil Research,1989,27(2):365-375.
-
[48] Janzen H H,Karamanos R E.Short-term and residual contribution of selected elemental S fertilizers to the S fertility of two Luvisolic soils[J].Canadian Journal of Soil Science,1991,71(2):203-211.
-
[49] Chien S H,Teixeira L A,Cantarella H,et al.Agronomic effectiveness of granular nitrogen/phosphorus fertilizers containing elemental sulfur with and without ammonium sulfate:A review [J].Agronomy Journal,2016,108(3):1203-1213.
-
[50] Chien S H,Singh U,Ruiz D D A.Evaluation of biosolids-enriched ammonium sulfate vs.ammonium sulfate in soils and for plant growth[J].Agronomy Journal,2021,113(4):3578-3585.
-
[51] Souri B,Sayadi Z.Efficiency of sulfur-bentonite granules to improve uptake of nutrient elements by the crop plant cultivated in calcareous soil[J].Communications in Soil Science and Plant Analysis,2021,52(20):2414-2430.
-
[52] Boswell C C,Swanney B,Owers W R.Sulfur/sodium bentonite prills as sulfur fertilizers.2.Effect of sulfur-sodium bentonite ratios on the availability of sulfur to pasture plants in the field [J].Fertilizer Research,1988,15:33-45.
-
摘要
通过综述影响硫磺氧化的土壤性质、肥料性质两部分内容,为进一步解决硫磺在土壤中氧化率低的问题,同时也为高效硫肥的研制提供理论依据。植物对于硫的需求日益增高,硫是作物必须的营养元素,被用来合成许多蛋白质和氨基酸,对植物的产量和品质有极大的影响,同时也在防治害虫、改良土壤性质方面发挥着巨大的作用。由于大气沉降、径流损失以及大量元素肥的过量施用导致硫元素附带输入减少和作物移除量的增加,土壤中硫含量供需不平衡,因此,硫肥添加成为未来的主流趋势。现有硫肥里的硫主要由两种形态组成,分别为单质态的硫磺和化合态的硫酸盐。硫磺廉价易得,在氧化过程中可以产生酸,改良碱性土壤 pH,为更加科学地进行硫肥的研发设计,现需对硫磺在土壤里的主要氧化因素(微生物、pH、温度、湿度、粒径)进行系统的梳理。得到以下主要结论:微生物活性对硫磺的氧化作用要远大于数量,因此,影响微生物活性的土壤 pH、温度、湿度等是极为重要的因素,微生物的种类在其中发挥的作用比重尚无绝对的定论。大多数研究表明,硫磺的氧化速率随土壤 pH 的降低而降低,在 30 ~ 40℃且土壤含水量接近田间持水量时硫磺氧化速率最快。而硫磺粒径与氧化速率呈反比是确定的,其本质是微生物定殖于肥料颗粒的表面积起主导作用,并且受在土壤里的扩散影响,粉状硫磺相对于颗粒状硫磺更易于氧化。
Abstract
The properties of soil and fertilizer affecting sulfur oxidation were reviewed to further solve the problem of low sulfur oxidation rate in soil,and to provide theoretical basis for the development of high efficiency sulfur fertilizer. Plant demand for sulfur is increasing. Sulfur is a necessary nutrient element for crops,it’s used to synthesize many proteins and amino acids, and has a great impact on the yield and quality of plants. It also plays a huge role in controlling pests and improving soil properties. Due to atmospheric subsidence,runoff loss,and excessive application of nitrogen,phosphorus and potassium fertilizers,the incidental input of sulfur is reduced and the amount of crop absorption is increased,and the supply and demand of sulfur content in soil is unbalanced. Therefore,the addition of sulfur fertilizer has become the mainstream trend in the future. The sulfur in existing sulfur fertilizers is mainly composed of two forms,namely,elemental sulfur and combined sulfate. Sulfur is cheap and easy to obtain,and can produce acid in the oxidation process to improve the pH of alkaline soil. In order to conduct more scientific research on the development and design of sulfur fertilizer,it is necessary to systematically review the main oxidation factors of sulfur in soil(microorganisms,pH,temperature,humidity,particle size). The main conclusions were as follows:The oxidation effect of microbial activity on sulfur was much greater than that of quantity. Therefore,soil pH,temperature and humidity that affect microbial activity were extremely important factors,and there was no absolute conclusion on the role of microbial species in the proportion. Most studies showed that the sulfur oxidation rate decreased with the decrease of soil pH,and the sulfur oxidation rate was the fastest when the soil moisture was close to the field water capacity at 30-40℃ . The inverse relationship between sulfur particle size and oxidation rate was confirmed,the essence of which was that microorganisms colonization on the surface area of fertilizer particles played a leading role,and affected by diffusion in the soil. Powdered sulfur was easier to oxidize than granular sulfur.
Keywords
elemental sulfur ; microorganism ; pH ; temperature ; humidity ; particle size