en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
基金信息:

国家重点研究与开发计划(2023YFD190100);  

作者简介:

王梓钰(1998-),硕士研究生,主要从事肥料减施增效相关研究。E-mail: ziyuwang_ahau@163.com。

通讯作者:

王擎运,E-mail: qywang@ahau.edu.cn。

参考文献 1
Kaur H,Kaur H,Kaur H,et al.The benefcial roles of trace and ultratrace elements in plants[J].Plant Growth Regulation,2023,100:219-236.
参考文献 2
Aubert H,Pinta M.Trace elements in soils[J].Soil Science,1978,125(5):334.
参考文献 3
谢佰承,张春霞,薛绪掌.土壤中微量元素的环境化学特性 [J].农业环境科学学报,2007,26(增刊):132-135.
参考文献 4
Steinnes E,Lierhagen S.Geographical distribution of trace elements in natural surface soils:atmospheric influence from natural and anthropogenic sources[J].Applied Geochemistry,2018,88:2-9.
参考文献 5
汪金舫,刘月娟,李本银.秸秆还田对砂姜黑土理化性质与锰、锌、铜有效性的影响[J].中国生态农业学报,2016,14(3):49-51.
参考文献 6
Yan Y,Ji W J,Li B G,et al.Quantification of the effects of long-term straw return on soil organic matter spatiotemporal variation:a case study in typical black soil region[J].Soil,2023,9(1):351-364.
参考文献 7
黄婷苗,王朝辉,侯仰毅,等.氮肥对关中平原玉米秸秆分解和养分释放的影响[J].应用生态学报,2017,28(7):2261-2268.
参考文献 8
Liu Y L,Zhang M,Li Y,et al.Influence of nitrogen fertilizer application on soil acidification characteristics of tea plantations in karst areas of Southwest China[J].Agriculture,2023,13(4):849.
参考文献 9
Liu P X,Ma X F,Wan H S,et al.Effects of differential nitrogen application on wheat grain proteome[J].Journal of Cereal Science,2021,102:103367.
参考文献 10
Sharafi S.Effectiveness of different methods of zinc application to increase grain micronutrients of rainfed wheat under reduced nitrogen application rate[J].Journal of Crop Science and Biotechnology,2023,26:265-274.
参考文献 11
王君婵,王慧,李曼,等.不同品质类型小麦籽粒产量与品质对氮肥运筹和叶面肥的响应[J].扬州大学学报(农业与生命科学版),2021,42(6):23-28.
参考文献 12
薛林,陆卫平,陆虎华,等.氮肥运筹对玉米苏玉19产量形成的作用[J].扬州大学学报(农业与生命科学版),2006,27(1):58-61.
参考文献 13
周俊,朱江,查世新,等.安徽省土壤微量元素状况与地质背景的关系[J].南京农业大学学报,2001,24(1):59-64.
参考文献 14
王擎运,陈景,杨远照.长期秸秆还田对典型砂姜黑土胀缩特性的影响机制[J].农业工程学报,2019,14:119-124.
参考文献 15
鲁如坤.土壤农业化学分析方法[M].北京:中国农业科学技术出版社,1999.
参考文献 16
Jalali M,Beygi M,Jalali M,et al.Background levels of DTPAextractable trace elements in calcareous soils and prediction of trace element availability based on common soil properties[J]. Journal of Geochemical Exploration,2022,214:107073.
参考文献 17
Moor C,Lymberopoulou T,Dietrich V J.Determination of heavy metals in soils,sediments and geological materials by ICPAES and ICP-MS[J].Microchimica Acta,2001,136:123-128.
参考文献 18
Zhang X X,Shi Z Q,Jiang D,et al.Independent and combined effects of elevated CO2 and post-anthesis heat stress on protein quantity and quality in spring wheat grains[J].Food Chemistry,2019,277:524-530.
参考文献 19
Luo L C,Hui X L,Wang Z H,et al.Multi-site evaluation of plastic film mulch and nitrogen fertilization for wheat grain yield,protein content and its components in semiarid areas of China[J]. Field Crops Research,2019,240:86-94.
参考文献 20
丁燕芳,赵凤霞,米琳,等.豫中植烟土壤有效态微量元素与pH和有机质的关系[J].土壤,2022,54(1):88-94.
参考文献 21
Zhou B J,Zhu H J.Effects of rapeseed straw incorporation on the availability of heavy metals in soil[J].Arabian Journal of Geosciences,2020,13:558.
参考文献 22
Liu X,Xu S S,Zhang J W,et al.Effect of continuous reduction of nitrogen application to a rice-wheat rotation system in the middle-lower Yangtze River region(2013—2015)[J].Field Crops Research,2016,196:348-356.
参考文献 23
Rasuli F,Owliaie H,Najafi-Ghiri M,et al.Effect of biochar on potassium fractions and plant-available P,Fe,Zn,Mn and Cu concentrations of calcareous soils[J].Arid Land Research and Management,2021,1:1-26.
参考文献 24
王擎运,张佳宝,赵炳梓,等.不同施肥方式对典型壤质潮土中微量元素提高及其有效性的影响[J].土壤学报,2012,49(6):1104-1113.
参考文献 25
Gerritse R G,Driel W V,Smilde K W,et al.Uptake of heavy metals by crops in relation to their concentration in the soil solution [J].Plant and Soil,1983,75:393-404.
参考文献 26
Vatansever R,Ozyigit I I,Filiz E.Essential and beneficial trace elements in plants,and their transport in roots:a review [J] . Applied Biochemistry and Biotechnology,2017,181(1):464-482.
参考文献 27
Nworie O E,Qin J H,Lin C X.Trace element uptake by herbaceous plants from the soils at a multiple trace elementcontaminated site [J] .Toxics,2019,7(3):1-14.
参考文献 28
Barunawati N,Hettwer Giehl R F,Bauer B,et al.The influence of inorganic nitrogen fertilizer forms on micronutrient retranslocation and accumulation in grains of winter wheat [J] . Frontiers in Plant Science,2013,4:320.
参考文献 29
Hamnér K,Hamnér M W,Weih M,et al.Influence of nitrogen supply on macro-and micronutrient accumulation during growth of winter wheat [J] .Field Crops Research,2017,213:118-129.
参考文献 30
Tiwari R C,Adinarayana J.The effect of rate of application of nitrogen fertilizer on soil copper uptake by barley under unirrigated conditions [J] .The Journal of Agricultural Science,2009,104(3):583-587.
参考文献 31
Zhang Y,Gladyshev V N.General trends in trace element utilization revealed by comparative genomic analyses of Co,Cu,Mo,Ni,and Se [J] .Journal of Biological Chemistry,2010,285(5):3393-3405.
参考文献 32
张鑫尧,张敏,朱远艽,等.巢湖流域磷肥减量施用对稻麦轮作体系作物产量和品质的影响[J] .中国农业科学,2022,55(19):3791-3806.
参考文献 33
张鑫尧,王箫璇,陈磊,等.钾肥减施对稻麦轮作区作物产量和品质的影响[J] .植物营养与肥料学报,2022,28(4):575-588.
参考文献 34
Schütte K H,Schendel H E.Influence of trace elements upon plant protein composition [J] .Nature,1995,182:958-959.
参考文献 35
Kozera W,Barczak B,Knapowski T,et al.Total and fractional contents of proteins in bean seeds under the conditions of varied fertilisation with microelements [J] .Journal of Central European Agriculture,2013,14(1):319-327.
参考文献 36
Xiang M T,Li Y,Yang J Y,et al.Heavy metal contamination risk assessment and correlation analysis of heavy metal contents in soil and crops [J] .Environmental Pollution,2021,278:116911.
参考文献 37
Meena V,Sharma S,Kaur G,et al.Diverse functions of plant zinc-induced facilitator-like transporter for their emerging roles in crop trait enhancement [J] .Plants,2021,11(1):102.
参考文献 38
李延,黄毅斌.缺锌对水稻蛋白质合成的影响[J] .福建农业学报,1996,11(1):22-24.
参考文献 39
Obata H,Umebayashi M.Effect of zinc deficiency on protein synthesis in cultured tobacco plant cells [J] .Soil Science and Plant Nutrition,1988,34(3):351-357.
参考文献 40
Li W,Qiao Y Q,Chen H,et al.Effects of combined straw and N application on the physicochemical properties of lime concretion black soil and crop yields(In Chinese)[J] .Acta Ecologica Sinica,2014,34(17):5052-5061.
参考文献 41
Cedeño J,Cedeño G,Alcívar J,et al.Increase of yield and nutritional quality of rice with NPK fertilization complemented with micronutrients [J] .Scientia Agropecuaria,2018,9(4):503-509.
目录contents

    摘要

    依托长期秸秆还田定位试验研究了氮肥减施对典型砂姜黑土微量元素及作物品质的影响。田间试验设置 4 个处理:小麦和玉米秸秆双季还田下氮磷钾常量(N100PK)、氮肥减施 30%(N70PK)和不施氮(N0PK)处理,以不施肥为对照处理(CK)。结果显示,微量元素全量在耕层(0 ~ 20 cm)土壤无显著变化;微量元素铁、锰、铜、锌有效态含量分别为 8.5 ~ 11.0、15.5 ~ 19.0、1.6 ~ 2.0、0.1 ~ 0.4 mg·kg-1。随着氮肥减施,有效铁、有效锰含量分别下降 26.04%、9.46%,有效铜、有效锌无显著变化。在氮肥减施导致的产量降低下,小麦籽粒内锌含量在减氮 30% 处理中降至最低,玉米籽粒内铜含量下降 12.5% ~ 24.9%,两种作物秸秆内铁含量降低 50.0% ~ 71.1%。小麦醇溶蛋白约降低 25.6%,玉米清蛋白约降低 14.0%。综上,秸秆还田模式下氮肥减施会降低土壤有效态铁、有效锰含量及其生物有效性,并有可能通过抑制蛋白合成影响作物品质。

    Abstract

    The effect of reduced nitrogen fertilizer application on trace elements and crop quality in typical lime concretion black soil was studied through long-term straw returning field positioning test. Four treatments were set up:nitrogen, phosphorus and potassium conventional(N100PK),reduced nitrogen fertilizer application by 30%(N70PK),no nitrogen application(N0PK)and no fertilization(CK)under double cropping of wheat and corn with straw returning to the field. The results showed that there was no significant change in the total amount of trace elements in the topsoil(0-20 cm). The avaible Fe content was 8.5-11.0 mg·kg-1 ,the avaible Mn content was 15.5-19.0 mg·kg-1 ,the avaible Cu content was 1.6- 2.0 mg·kg-1 ,and the avaible Zn content was extremely low,ranging from 0.1 to 0.4 mg·kg-1 . With the reduction of nitrogen fertilizer application,the content of available Fe and Mn decreased by 26.04% and 9.46%,respectively,while there was no significant change in available Cu and Zn. The Cu content in corn grains decreased by 12.5%-24.9% with the reduction of nitrogen fertilizer application,while the Fe content in corn straw decreased by 50.0%-61.4% due to the absence of nitrogen fertilizer application. The Zn content in wheat grains showed a trend of first decreasing and then increasing,while the Fe content in wheat straw decreased by 63.7% to 71.1%. Nitrogen fertilizer reduced corn albumin by 14.0% and wheat prolamin by 25.6%. In conclusion,under the straw returning mode,reducing nitrogen fertilizer application reduced soil available Fe and available Mn trace elements and their bioavailability,and might affect crop quality by inhibiting protein synthesis.

  • 微量元素是作物生长不可缺少的营养成分,主要通过根系从土壤中吸收,对农田产量具有重要影响[1-3]。土壤中的微量元素变化受自然因素影响外,还受到秸秆还田、灌溉、肥料施用、农业生产等人工因素的影响[4]。在农业生产条件下,土壤中的微量元素通过多种途径流失,若得不到补充,会导致微量元素缺乏,并对作物的生长发育产生负面影响。秸秆还田能够有效维持农田生态系统中微量元素平衡,并通过土壤有机质含量提高、土壤结构改善,间接影响土壤微量元素有效性[5-6]。近年来,氮肥减量施用是化肥减量增效、作物优质生产的手段之一,可通过调节土壤碳氮比影响秸秆腐解,促进秸秆中微量元素的释放[7]。此外,有研究发现氮肥施用会导致土壤 pH 降低。与此同时,大量研究发现氮肥减施影响作物内蛋白质合成过程,导致作物蛋白质降低,因此,探究氮肥减施与作物品质之间的关系有助于判断氮肥减施的合理性[8-12]

  • 砂姜黑土是中国主要的中低产田类型之一,其有效态微量元素含量普遍较低,且锌含量处于极低水平[13]。由于该类型土壤黏土矿物以 2∶1 蒙脱石为主,易于湿胀干缩,秸秆还田能够通过有机质提升改善土壤结构、实现障碍因子消减和水养增容的需求,在淮河流域砂姜黑土区应用较广,但在此基础上氮肥减施对土壤微量元素有效性和作物品质的影响研究明显不足[14]

  • 基于当前研究进展,本研究依托始于 2017 年的秸秆还田长期定位试验,研究氮肥减施与微量元素有效性以及作物品质之间的关系。研究结果可为该类型土壤科学减施增效、优化施肥结构提供依据。

  • 1 材料与方法

  • 1.1 田间试验设计

  • 田间试验设置于安徽农业大学皖北综合试验站 (33°41′ N,117°4′ E),年均气温 13.8℃,年均降水量 850 mm。土壤类型为砂姜黑土,采用小麦、玉米一年两熟轮作制。供试小麦和玉米品种分别为‘烟农 19’和‘郑单 958’。作物收获后,采用秸秆还田机直接粉碎还田。磷、钾肥以基肥为主,播种前一次施入。氮肥分为基肥与追肥,小麦和玉米季基追比分别为 6∶4 和 5∶5。常规氮肥用量为 225 kg·hm-2[以尿素 CO(NH22 计算],磷肥用量为 P2O5 120 kg·hm-2,钾肥用量为 K2O 90 kg·hm-2

  • 田间试验始于 2017 年,供试土壤背景值分别为 pH 8.20、有机质 18.61 g·kg-1、全氮 1.13 g·kg-1、全磷 0.37 g·kg-1、全钾 18.43 g·kg-1、碱解氮 91.82 mg·kg-1、有效磷 5.13 mg·kg-1、速效钾 177.53 mg·kg-1。设置 4 个施氮水平,分别为施全量氮肥 (N100PK)、氮肥减施 30%(N70PK)、不施氮(N0PK) 与不施肥对照(CK)。单个小区面积 45 m2。2020 年 10 月玉米收获后,按五点法随机采集耕层(0~20 cm)土壤样本。土壤样本带回实验室风干后过 2 mm 筛,备用。

  • 1.2 测定项目与方法

  • 土壤基本理化性质测定参阅文献[15]:pH 值采用电位计法测定,水土比为 5∶1;有机质采用丘林法测定;全氮采用半微量凯氏法测定;全磷采用酸溶,钼锑抗比色法测定;全钾采用浓硝酸-高氯酸-氢氟酸消解,电感耦合等离子体发射光谱仪检验法(ICP-OES)测定;碱解氮采用碱解扩散法测定;有效磷采用碳酸氢钠浸提,钼锑抗比色法测定;速效钾采用乙酸铵浸提,火焰光度法测定。

  • 土壤微量元素全量采用浓硝酸-高氯酸-氢氟酸消解,ICP-OES 测定;有效微量元素采用 DTPA 浸提,ICP-OES 测定[16]。植株微量元素采用微波消解,ICP-OES 测定[17]。植株蛋白质分级采用超纯水、混合盐、70% 乙醇、2% 氢氧化钠溶液浸提,双缩脲显色,紫外分光光度计测定[18-19]

  • 1.3 数据处理

  • 本研究均采用 SPSS 25 和 Excel 2010 进行统计分析,对试验数据进行方差分析和 LSD 法显著性检验(P<0.05)。所有数据使用 Excel 2010 作图。

  • 2 结果与分析

  • 2.1 氮肥减施对土壤基本理化性质的影响

  • 典型砂姜黑土耕作层 pH 在 8.2 左右。秸秆还田模式下氮肥施用对土壤 pH 影响较小,但有提高土壤有机质的趋势(表1)。2017 年砂姜黑土有机质含量均值 18.16 g·kg-1。经过长期秸秆还田,即使不施肥情况下作物维持了相对较低的产量,但依然通过秸秆还田提升了土壤有机质含量达到 22.81 g·kg-1(CK)。氮肥减量对土壤全氮影响不明显,但均高于 CK 处理。磷、钾施用提高了土壤中磷、钾的含量,但在相同施用水平下随着氮肥减量土壤中磷、钾含量有增加趋势。

  • 表1 耕层(0~20 cm)土壤基本理化性质

  • 注:同列不同小写字母表示处理间差异显著(P<0.05)。

  • 土壤中碱解氮、有效磷、速效钾含量分别为 104.07、15.61、144.69 mg·kg-1。其中,根据第二次土壤普查标准,碱解氮处于较高水平;有效磷含量较高,总体处于高水平;速效钾总体处于较高水平。不同施肥处理对土壤速效氮磷钾影响同于其全量变化,且处理间的差异呈现显著水平。

  • 2.2 氮肥减施对产量的影响

  • 氮肥减量对作物产量影响较大,尤其对小麦影响较为显著。图1 结果显示,在秸秆还田模式下氮肥减量 30% 有降低玉米产量趋势,但对小麦产量的影响不显著;氮肥不施用显著降低了作物尤其是小麦产量,与氮磷钾常规用量相比减产 75% 以上。图1 结果同样显示,氮肥缺失的情况下,磷钾的大量施用并未显著提高作物产量。N0PK 与 CK 相比两种典型作物籽粒产量、小麦秸秆产量差异不明显,玉米秸秆产量显著提高。秸秆还田模式下氮肥减量施用同样对作物谷草比有显著影响,随着氮肥减量施用谷草比得到明显提高。

  • 图1 小麦、玉米产量(2021 年)

  • 注:同一项目柱上字母不同表示处理间差异显著(P<0.05)。下同。

  • 表2 小麦玉米谷草比

  • 注:谷草比 = 籽粒产量 / 秸秆产量。

  • 2.3 氮肥减施对土壤中全量与有效态微量元素的影响

  • 经过 6 年减量施氮,耕层的铁、锰、铜、锌 4 种微量元素全量均无显著差异。有效态微量元素表现出良好的趋势性:随着氮肥施用量的减少,有效态铁、有效锰呈单一下降趋势,有效铁下降幅度在 20%~25% 之间,有效锰下降幅度在 8.5%~8.7% 之间;有效铜含量随氮肥水平降低有逐渐升高的趋势,但差异不显著;随氮肥水平下降,氮肥减施有降低有效锌含量的趋势,但并未达到显著水平(表3)。

  • 2.4 氮肥减施对作物内微量元素的影响

  • 小麦秸秆中 N100PK 的铁含量最高,氮肥减施后铁含量大幅下跌;N100PK、N70PK 中的锰含量显著高于 N0PK 与 CK 处理,氮肥减施可能会抑制小麦秸秆对锰的吸收;小麦秸秆中的铜、锌含量极低,均在 1 mg·kg-1 以下(表4)。

  • 表3 耕层(0~20 cm)土壤全量与有效态微量元素

  • 注:同列不同小写字母表示处理间及处理与背景值间差异显著(P<0.05)。

  • 表4 小麦秸秆与籽粒微量元素分布

  • 注:同列不同小写字母表示处理间差异显著(P<0.05)。表5 同。

  • 氮肥减施处理间,小麦籽粒中铁、锰含量无显著变化,其中铁含量与 CK 处理含量接近且无显著差异,氮肥减施处理的锰含量则显著低于 CK 处理。N100PK 中的铜含量显著高于 N70PK、N0PK 处理,锌含量随着氮肥减施先下降后上升。

  • 玉米秸秆中,N100PK、N70PK 处理的铁含量显著高于 N0PK 与 CK 处理。锰含量随氮肥施用水平降低而提高,且差异显著。玉米秸秆中铜含量变化较小,随氮肥减施有逐渐提高的趋势。锌含量随氮肥施用水平降低而提高,且各处理间差异显著。

  • 玉米籽粒中铁含量无显著差异,但 N100PK、 N70PK、N0PK 处理的籽粒铁含量均低于 CK 处理。锰含量差异不显著,在氮肥减施处理中,N70PK 处理的锰含量略微高于其他处理。铜含量随氮肥施用水平下降而降低,氮肥减施会降低玉米籽粒中的铜含量。籽粒中锌含量无显著差异,N70PK 处理的锌含量最低。

  • 表5 玉米秸秆与籽粒微量元素分布

  • 2.5 氮肥减施对作物蛋白质组分的影响

  • 小麦籽粒的蛋白质含量在 13% 左右,4 种蛋白总量占比在 12% 以上。清蛋白随着氮肥减施有上升趋势,球蛋白与谷蛋白随着氮肥减施在整体上有下降趋势,醇溶蛋白随着氮肥减施显著下降,下降幅度在 20%~33% 之间;在 4 种蛋白质中,谷蛋白在小麦籽粒中占比最高(图2)。

  • 图2 小麦玉米蛋白质分级

  • 玉米籽粒的蛋白质含量在 8% 左右,4 种蛋白总量占比在 10% 以上。清蛋白含量随着氮肥减施有下降趋势,醇溶蛋白含量随着氮肥减施而提高,N70PK 与 N0PK 的醇溶蛋白含量接近,相较于不施氮处理高出 75% 左右,球蛋白与谷蛋白则没有显著变化;在 4 种蛋白质中,清蛋白在玉米籽粒中占比最高。

  • 3 讨论

  • 3.1 氮肥减施对土壤微量元素的影响

  • 在秸秆还田长期定位试验田中,微量元素全量无显著变化,有效态微量元素受氮肥水平影响显著。

  • 大量研究表明,土壤 pH 会影响土壤微量元素的有效性,降低 pH 能有效提高金属元素的生物有效性,但也有研究表明,在土壤 pH>8.0 时,降低土壤 pH 反而使有效态铁、铜、锌等的含量降低[20]。试验结果表明,氮肥施用仅让土壤 pH 在 7.88~7.98 之间小幅度波动,但随氮肥施用水平下降,有效态铁、锰、锌均呈现下降趋势,有效铜呈现上升趋势,因此,除 pH 因素外,还需要考虑其他影响微量元素有效性的因素。

  • 结果显示,在秸秆还田模式下施用氮肥能够在提升土壤有机质含量的同时降低其 pH。有研究表明,有效锰、有效铜等元素与有土壤机质含量呈极显著正相关,这是因为有机质能够为微量元素提供结合点位,提高有机质含量增加了结合点位的数量,从而提高了有效态微量元素的含量[21-23]

  • 有研究显示,降尘、降雨、灌溉和肥料施用等方式是土壤中微量元素的提高途径,有效态微量元素还可以通过全量微量元素活化获得补充;作物收获产生的地上部分损失以及降雨、灌溉产生的淋溶作用等方式则是微量元素的流失途径,这两者构成了农田生态系统中的输入-输出平衡结果[24]。根据试验结果,N100PK、N70PK 处理通过作物收获流失的铁、锰、铜均高于 N0PK、CK 处理,锌则相反;玉米秸秆占据的微量元素是最多的,但通过秸秆还田的方式,玉米秸秆中的微量元素大部分都返回到土壤中,小麦秸秆含有的微量元素相较于玉米秸秆极低,同样通过秸秆还田的方式返回到农田中。因此,在秸秆还田模式下,作物收获导致的微量元素流失主要归根于作物籽粒,秸秆中的微量元素大部分都回归到土壤中。而无论是玉米籽粒还是小麦籽粒,微量元素最高差距均不超过 5 mg·kg-1,产量是主要影响因素,因此,N100PK、N70PK 处理的微量元素流失量接近,且均高于 N0PK 与 CK 处理。

  • 3.2 氮肥减施对作物微量元素分布的影响

  • 作物对微量元素的吸收除了受作物品种、生长阶段的影响,大量元素肥料特别是氮肥会显著影响作物的品质与产量,从而改变作物对微量元素的吸收量。同时,氮肥的施入为土壤中带来了铵根离子与硝酸根离子,增加了土壤溶液的浓度,土壤溶液的浓度变化会直接影响作物吸收养分的难易程度[25-27]

  • 小麦秸秆中铁含量变化与氮磷钾施用比例有关,不均衡的施肥会降低小麦秸秆对铁的吸收,降低小麦秸秆中铁的分布;施氮对小麦秸秆锰的吸收有抑制作用,降低锰在小麦秸秆中的分布[28-29]。玉米秸秆中的铁元素含量远大于籽粒,氮肥不足导致玉米产量降低时,玉米秸秆中的铁含量降低,玉米籽粒中的铁含量比例升高;氮肥施用降低了玉米秸秆中铜的含量,这与 Tiwari 等[30]的研究结果类似,玉米籽粒中的铜没有因为施氮量产生变化,因此,氮的施用降低了玉米秸秆中铜的分布[30-31]

  • 3.3 氮肥减施对作物品质的影响

  • 蛋白质组分是评价作物营养品质的重要指标之一,能为氮肥减量增效、作物优质生产提供理论依据[32-33]。在测定的蛋白质组分中,清蛋白与球蛋白属于结构蛋白,醇溶蛋白与谷蛋白属于储存蛋白。小麦的蛋白质含量一般而言高于玉米,氮肥减施所导致的肥料结构变化会降低小麦中醇溶蛋白的含量,这说明氮肥减施会使小麦的储存蛋白含量下降,降低小麦的品质;氮肥减施对玉米的蛋白质组分影响较小,清蛋白随氮肥水平下降有降低趋势,结构蛋白与储存蛋白含量没有显著差异,这说明氮肥减施对玉米的蛋白质含量影响较小 [34-36]。大量研究表明,锌参与作物蛋白的合成过程,例如主要协同转运蛋白超家族中的锌诱导类辅助因子在铁元素外流、生长稳态中具有特殊作用;在水稻中,缺锌会使核糖核酸酶活性提高,从而导致核糖核酸降解,是缺锌水稻蛋白合成受阻的原因;在烟草中,细胞内锌浓度降低至低于 50 μg·g-1 会导致蛋白质含量降低,可见锌对作物蛋白质合成的重要性[37-39]。在氮肥减施的同时增施锌肥是有效提高作物内锌生物有效性的方式,这可以改善砂姜黑土锌含量低的缺点,以起到优化施肥结构,保持产量,提升作物品质的作用[1040-41]

  • 4 结论

  • 经过 4 年(2017—2021 年)的氮肥减施试验,得出以下结论:

  • 氮肥减施 30% 对小麦和玉米籽粒产量影响较小,土壤养分没有出现显著下降。

  • 土壤微量元素全量无显著变化,氮肥施用有助于有效铁和有效锰的提高,全量施氮分别使有效铁、有效锰达到 10.80 和 18.74 mg·kg-1,氮肥减施 30% 分别使有效铁、有效锰达到 8.52 和 17.15 mg·kg-1,有效铜和有效锌则没有因氮肥减施而产生显著变化。

  • 氮肥减施对作物内微量元素分布的影响主要体现在铁、锰元素上,秸秆中的微量元素远高于籽粒中的微量元素含量,且秸秆微量元素分布总量与产量趋势一致。

  • 小麦籽粒中醇溶蛋白含量随氮肥施用量减少而下降,平均下降幅度为 35.54%,降低了小麦籽粒的品质;玉米中清蛋白随着氮肥减施有下降的趋势,但并未达到显著水平,未使玉米籽粒的品质产生较大变化。

  • 参考文献

    • [1] Kaur H,Kaur H,Kaur H,et al.The benefcial roles of trace and ultratrace elements in plants[J].Plant Growth Regulation,2023,100:219-236.

    • [2] Aubert H,Pinta M.Trace elements in soils[J].Soil Science,1978,125(5):334.

    • [3] 谢佰承,张春霞,薛绪掌.土壤中微量元素的环境化学特性 [J].农业环境科学学报,2007,26(增刊):132-135.

    • [4] Steinnes E,Lierhagen S.Geographical distribution of trace elements in natural surface soils:atmospheric influence from natural and anthropogenic sources[J].Applied Geochemistry,2018,88:2-9.

    • [5] 汪金舫,刘月娟,李本银.秸秆还田对砂姜黑土理化性质与锰、锌、铜有效性的影响[J].中国生态农业学报,2016,14(3):49-51.

    • [6] Yan Y,Ji W J,Li B G,et al.Quantification of the effects of long-term straw return on soil organic matter spatiotemporal variation:a case study in typical black soil region[J].Soil,2023,9(1):351-364.

    • [7] 黄婷苗,王朝辉,侯仰毅,等.氮肥对关中平原玉米秸秆分解和养分释放的影响[J].应用生态学报,2017,28(7):2261-2268.

    • [8] Liu Y L,Zhang M,Li Y,et al.Influence of nitrogen fertilizer application on soil acidification characteristics of tea plantations in karst areas of Southwest China[J].Agriculture,2023,13(4):849.

    • [9] Liu P X,Ma X F,Wan H S,et al.Effects of differential nitrogen application on wheat grain proteome[J].Journal of Cereal Science,2021,102:103367.

    • [10] Sharafi S.Effectiveness of different methods of zinc application to increase grain micronutrients of rainfed wheat under reduced nitrogen application rate[J].Journal of Crop Science and Biotechnology,2023,26:265-274.

    • [11] 王君婵,王慧,李曼,等.不同品质类型小麦籽粒产量与品质对氮肥运筹和叶面肥的响应[J].扬州大学学报(农业与生命科学版),2021,42(6):23-28.

    • [12] 薛林,陆卫平,陆虎华,等.氮肥运筹对玉米苏玉19产量形成的作用[J].扬州大学学报(农业与生命科学版),2006,27(1):58-61.

    • [13] 周俊,朱江,查世新,等.安徽省土壤微量元素状况与地质背景的关系[J].南京农业大学学报,2001,24(1):59-64.

    • [14] 王擎运,陈景,杨远照.长期秸秆还田对典型砂姜黑土胀缩特性的影响机制[J].农业工程学报,2019,14:119-124.

    • [15] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科学技术出版社,1999.

    • [16] Jalali M,Beygi M,Jalali M,et al.Background levels of DTPAextractable trace elements in calcareous soils and prediction of trace element availability based on common soil properties[J]. Journal of Geochemical Exploration,2022,214:107073.

    • [17] Moor C,Lymberopoulou T,Dietrich V J.Determination of heavy metals in soils,sediments and geological materials by ICPAES and ICP-MS[J].Microchimica Acta,2001,136:123-128.

    • [18] Zhang X X,Shi Z Q,Jiang D,et al.Independent and combined effects of elevated CO2 and post-anthesis heat stress on protein quantity and quality in spring wheat grains[J].Food Chemistry,2019,277:524-530.

    • [19] Luo L C,Hui X L,Wang Z H,et al.Multi-site evaluation of plastic film mulch and nitrogen fertilization for wheat grain yield,protein content and its components in semiarid areas of China[J]. Field Crops Research,2019,240:86-94.

    • [20] 丁燕芳,赵凤霞,米琳,等.豫中植烟土壤有效态微量元素与pH和有机质的关系[J].土壤,2022,54(1):88-94.

    • [21] Zhou B J,Zhu H J.Effects of rapeseed straw incorporation on the availability of heavy metals in soil[J].Arabian Journal of Geosciences,2020,13:558.

    • [22] Liu X,Xu S S,Zhang J W,et al.Effect of continuous reduction of nitrogen application to a rice-wheat rotation system in the middle-lower Yangtze River region(2013—2015)[J].Field Crops Research,2016,196:348-356.

    • [23] Rasuli F,Owliaie H,Najafi-Ghiri M,et al.Effect of biochar on potassium fractions and plant-available P,Fe,Zn,Mn and Cu concentrations of calcareous soils[J].Arid Land Research and Management,2021,1:1-26.

    • [24] 王擎运,张佳宝,赵炳梓,等.不同施肥方式对典型壤质潮土中微量元素提高及其有效性的影响[J].土壤学报,2012,49(6):1104-1113.

    • [25] Gerritse R G,Driel W V,Smilde K W,et al.Uptake of heavy metals by crops in relation to their concentration in the soil solution [J].Plant and Soil,1983,75:393-404.

    • [26] Vatansever R,Ozyigit I I,Filiz E.Essential and beneficial trace elements in plants,and their transport in roots:a review [J] . Applied Biochemistry and Biotechnology,2017,181(1):464-482.

    • [27] Nworie O E,Qin J H,Lin C X.Trace element uptake by herbaceous plants from the soils at a multiple trace elementcontaminated site [J] .Toxics,2019,7(3):1-14.

    • [28] Barunawati N,Hettwer Giehl R F,Bauer B,et al.The influence of inorganic nitrogen fertilizer forms on micronutrient retranslocation and accumulation in grains of winter wheat [J] . Frontiers in Plant Science,2013,4:320.

    • [29] Hamnér K,Hamnér M W,Weih M,et al.Influence of nitrogen supply on macro-and micronutrient accumulation during growth of winter wheat [J] .Field Crops Research,2017,213:118-129.

    • [30] Tiwari R C,Adinarayana J.The effect of rate of application of nitrogen fertilizer on soil copper uptake by barley under unirrigated conditions [J] .The Journal of Agricultural Science,2009,104(3):583-587.

    • [31] Zhang Y,Gladyshev V N.General trends in trace element utilization revealed by comparative genomic analyses of Co,Cu,Mo,Ni,and Se [J] .Journal of Biological Chemistry,2010,285(5):3393-3405.

    • [32] 张鑫尧,张敏,朱远艽,等.巢湖流域磷肥减量施用对稻麦轮作体系作物产量和品质的影响[J] .中国农业科学,2022,55(19):3791-3806.

    • [33] 张鑫尧,王箫璇,陈磊,等.钾肥减施对稻麦轮作区作物产量和品质的影响[J] .植物营养与肥料学报,2022,28(4):575-588.

    • [34] Schütte K H,Schendel H E.Influence of trace elements upon plant protein composition [J] .Nature,1995,182:958-959.

    • [35] Kozera W,Barczak B,Knapowski T,et al.Total and fractional contents of proteins in bean seeds under the conditions of varied fertilisation with microelements [J] .Journal of Central European Agriculture,2013,14(1):319-327.

    • [36] Xiang M T,Li Y,Yang J Y,et al.Heavy metal contamination risk assessment and correlation analysis of heavy metal contents in soil and crops [J] .Environmental Pollution,2021,278:116911.

    • [37] Meena V,Sharma S,Kaur G,et al.Diverse functions of plant zinc-induced facilitator-like transporter for their emerging roles in crop trait enhancement [J] .Plants,2021,11(1):102.

    • [38] 李延,黄毅斌.缺锌对水稻蛋白质合成的影响[J] .福建农业学报,1996,11(1):22-24.

    • [39] Obata H,Umebayashi M.Effect of zinc deficiency on protein synthesis in cultured tobacco plant cells [J] .Soil Science and Plant Nutrition,1988,34(3):351-357.

    • [40] Li W,Qiao Y Q,Chen H,et al.Effects of combined straw and N application on the physicochemical properties of lime concretion black soil and crop yields(In Chinese)[J] .Acta Ecologica Sinica,2014,34(17):5052-5061.

    • [41] Cedeño J,Cedeño G,Alcívar J,et al.Increase of yield and nutritional quality of rice with NPK fertilization complemented with micronutrients [J] .Scientia Agropecuaria,2018,9(4):503-509.

  • 参考文献

    • [1] Kaur H,Kaur H,Kaur H,et al.The benefcial roles of trace and ultratrace elements in plants[J].Plant Growth Regulation,2023,100:219-236.

    • [2] Aubert H,Pinta M.Trace elements in soils[J].Soil Science,1978,125(5):334.

    • [3] 谢佰承,张春霞,薛绪掌.土壤中微量元素的环境化学特性 [J].农业环境科学学报,2007,26(增刊):132-135.

    • [4] Steinnes E,Lierhagen S.Geographical distribution of trace elements in natural surface soils:atmospheric influence from natural and anthropogenic sources[J].Applied Geochemistry,2018,88:2-9.

    • [5] 汪金舫,刘月娟,李本银.秸秆还田对砂姜黑土理化性质与锰、锌、铜有效性的影响[J].中国生态农业学报,2016,14(3):49-51.

    • [6] Yan Y,Ji W J,Li B G,et al.Quantification of the effects of long-term straw return on soil organic matter spatiotemporal variation:a case study in typical black soil region[J].Soil,2023,9(1):351-364.

    • [7] 黄婷苗,王朝辉,侯仰毅,等.氮肥对关中平原玉米秸秆分解和养分释放的影响[J].应用生态学报,2017,28(7):2261-2268.

    • [8] Liu Y L,Zhang M,Li Y,et al.Influence of nitrogen fertilizer application on soil acidification characteristics of tea plantations in karst areas of Southwest China[J].Agriculture,2023,13(4):849.

    • [9] Liu P X,Ma X F,Wan H S,et al.Effects of differential nitrogen application on wheat grain proteome[J].Journal of Cereal Science,2021,102:103367.

    • [10] Sharafi S.Effectiveness of different methods of zinc application to increase grain micronutrients of rainfed wheat under reduced nitrogen application rate[J].Journal of Crop Science and Biotechnology,2023,26:265-274.

    • [11] 王君婵,王慧,李曼,等.不同品质类型小麦籽粒产量与品质对氮肥运筹和叶面肥的响应[J].扬州大学学报(农业与生命科学版),2021,42(6):23-28.

    • [12] 薛林,陆卫平,陆虎华,等.氮肥运筹对玉米苏玉19产量形成的作用[J].扬州大学学报(农业与生命科学版),2006,27(1):58-61.

    • [13] 周俊,朱江,查世新,等.安徽省土壤微量元素状况与地质背景的关系[J].南京农业大学学报,2001,24(1):59-64.

    • [14] 王擎运,陈景,杨远照.长期秸秆还田对典型砂姜黑土胀缩特性的影响机制[J].农业工程学报,2019,14:119-124.

    • [15] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科学技术出版社,1999.

    • [16] Jalali M,Beygi M,Jalali M,et al.Background levels of DTPAextractable trace elements in calcareous soils and prediction of trace element availability based on common soil properties[J]. Journal of Geochemical Exploration,2022,214:107073.

    • [17] Moor C,Lymberopoulou T,Dietrich V J.Determination of heavy metals in soils,sediments and geological materials by ICPAES and ICP-MS[J].Microchimica Acta,2001,136:123-128.

    • [18] Zhang X X,Shi Z Q,Jiang D,et al.Independent and combined effects of elevated CO2 and post-anthesis heat stress on protein quantity and quality in spring wheat grains[J].Food Chemistry,2019,277:524-530.

    • [19] Luo L C,Hui X L,Wang Z H,et al.Multi-site evaluation of plastic film mulch and nitrogen fertilization for wheat grain yield,protein content and its components in semiarid areas of China[J]. Field Crops Research,2019,240:86-94.

    • [20] 丁燕芳,赵凤霞,米琳,等.豫中植烟土壤有效态微量元素与pH和有机质的关系[J].土壤,2022,54(1):88-94.

    • [21] Zhou B J,Zhu H J.Effects of rapeseed straw incorporation on the availability of heavy metals in soil[J].Arabian Journal of Geosciences,2020,13:558.

    • [22] Liu X,Xu S S,Zhang J W,et al.Effect of continuous reduction of nitrogen application to a rice-wheat rotation system in the middle-lower Yangtze River region(2013—2015)[J].Field Crops Research,2016,196:348-356.

    • [23] Rasuli F,Owliaie H,Najafi-Ghiri M,et al.Effect of biochar on potassium fractions and plant-available P,Fe,Zn,Mn and Cu concentrations of calcareous soils[J].Arid Land Research and Management,2021,1:1-26.

    • [24] 王擎运,张佳宝,赵炳梓,等.不同施肥方式对典型壤质潮土中微量元素提高及其有效性的影响[J].土壤学报,2012,49(6):1104-1113.

    • [25] Gerritse R G,Driel W V,Smilde K W,et al.Uptake of heavy metals by crops in relation to their concentration in the soil solution [J].Plant and Soil,1983,75:393-404.

    • [26] Vatansever R,Ozyigit I I,Filiz E.Essential and beneficial trace elements in plants,and their transport in roots:a review [J] . Applied Biochemistry and Biotechnology,2017,181(1):464-482.

    • [27] Nworie O E,Qin J H,Lin C X.Trace element uptake by herbaceous plants from the soils at a multiple trace elementcontaminated site [J] .Toxics,2019,7(3):1-14.

    • [28] Barunawati N,Hettwer Giehl R F,Bauer B,et al.The influence of inorganic nitrogen fertilizer forms on micronutrient retranslocation and accumulation in grains of winter wheat [J] . Frontiers in Plant Science,2013,4:320.

    • [29] Hamnér K,Hamnér M W,Weih M,et al.Influence of nitrogen supply on macro-and micronutrient accumulation during growth of winter wheat [J] .Field Crops Research,2017,213:118-129.

    • [30] Tiwari R C,Adinarayana J.The effect of rate of application of nitrogen fertilizer on soil copper uptake by barley under unirrigated conditions [J] .The Journal of Agricultural Science,2009,104(3):583-587.

    • [31] Zhang Y,Gladyshev V N.General trends in trace element utilization revealed by comparative genomic analyses of Co,Cu,Mo,Ni,and Se [J] .Journal of Biological Chemistry,2010,285(5):3393-3405.

    • [32] 张鑫尧,张敏,朱远艽,等.巢湖流域磷肥减量施用对稻麦轮作体系作物产量和品质的影响[J] .中国农业科学,2022,55(19):3791-3806.

    • [33] 张鑫尧,王箫璇,陈磊,等.钾肥减施对稻麦轮作区作物产量和品质的影响[J] .植物营养与肥料学报,2022,28(4):575-588.

    • [34] Schütte K H,Schendel H E.Influence of trace elements upon plant protein composition [J] .Nature,1995,182:958-959.

    • [35] Kozera W,Barczak B,Knapowski T,et al.Total and fractional contents of proteins in bean seeds under the conditions of varied fertilisation with microelements [J] .Journal of Central European Agriculture,2013,14(1):319-327.

    • [36] Xiang M T,Li Y,Yang J Y,et al.Heavy metal contamination risk assessment and correlation analysis of heavy metal contents in soil and crops [J] .Environmental Pollution,2021,278:116911.

    • [37] Meena V,Sharma S,Kaur G,et al.Diverse functions of plant zinc-induced facilitator-like transporter for their emerging roles in crop trait enhancement [J] .Plants,2021,11(1):102.

    • [38] 李延,黄毅斌.缺锌对水稻蛋白质合成的影响[J] .福建农业学报,1996,11(1):22-24.

    • [39] Obata H,Umebayashi M.Effect of zinc deficiency on protein synthesis in cultured tobacco plant cells [J] .Soil Science and Plant Nutrition,1988,34(3):351-357.

    • [40] Li W,Qiao Y Q,Chen H,et al.Effects of combined straw and N application on the physicochemical properties of lime concretion black soil and crop yields(In Chinese)[J] .Acta Ecologica Sinica,2014,34(17):5052-5061.

    • [41] Cedeño J,Cedeño G,Alcívar J,et al.Increase of yield and nutritional quality of rice with NPK fertilization complemented with micronutrients [J] .Scientia Agropecuaria,2018,9(4):503-509.

  • 《中国土壤与肥料》招聘启事
    关闭