en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

龚民(1996-),硕士研究生,研究方向为微生物种子包衣剂的研发。E-mail: 15650090557@163.com。

通讯作者:

吕国华,E-mail: lvguohua@caas.cn。

参考文献 1
Masuda Y,Shiratori Y,Ohba H,et al.Enhancement of the nitrogen-fixing activity of paddy soils owing to iron application[J]. Soil Science and Plant Nutrition,2021,67(3):243-247.
参考文献 2
Clúa J,Roda C,Zanetti M E,et al.Compatibility between legumes and rhizobia for the establishment of a successful nitrogenfixing symbiosis[J].Genes,2018,9(3):9093125.
参考文献 3
Yang J,Lan L,Jin Y,et al.Mechanisms underlying legumerhizobium symbioses[J].Journal of Integrative Plant Biology,2021,64(2):244-267.
参考文献 4
索炎炎,张翔,司贤宗,等.AM 真菌和根瘤菌对连作花生养分吸收及土壤微生物特性的影响[J].中国土壤与肥料,2023(2):106-112.
参考文献 5
Chen K,Li N,Zhang S,et al.Biochar-induced changes in the soil diazotroph community abundance and structure in a peanut field trial[J].Biochar,2022,4(1):26.
参考文献 6
Aftab T,Khan M M,Naeem M,et al.Effect of irradiated sodium alginate and phosphorus on biomass and artemisinin production in Artemisia annua[J].Carbohydrate Polymers,2014,110:396-404.
参考文献 7
Li X,Chen Q,Lei H,et al.Nutrient uptake and utilization by fragrant rosewood(Dalbergia odorifera)seedlings cultured with oligosaccharide addition under different lighting spectra[J]. Forests,2018,9(1):9010029.
参考文献 8
Yang W,Chen D,He Z,et al.NMR characterization and anticoagulant activity of the oligosaccharides from the fucosylated glycosaminoglycan isolated from Holothuria coluber[J]. Carbohydrate Polymers,2020,233:115844.
参考文献 9
Liaqat F,Eltem R.Chitooligosaccharides and their biological activities:a comprehensive review[J].Carbohydrate Polymers,2018,184(15):243-259.
参考文献 10
Kim S,Rajapakse N.Enzymatic production and biological activities of chitosan oligosaccharides(COS):review[J]. Carbohydrate Polymers,2005,62(4):357-368.
参考文献 11
Liu Y,Yang H,Wen F,et al.Chitooligosaccharide-induced plant stress resistance[J].Carbohydrate Polymers,2022,302:120344.
参考文献 12
Zarattini M,Choaibi A,Magri S,et al.The oxidized cellooligosaccharides confer thermotolerance in Arabidopsis by priming ethylene via heat shock factor A2[J].Physiologia Plantarum,2022,174(4):13737.
参考文献 13
罗志会,刘慕兰,张海军,等.壳聚糖在植物病害防治方面的研究[J].农业装备技术,2015,41(6):10-14.
参考文献 14
雷菲,张冬明,符传良,等.壳寡糖对辣椒产量、养分吸收和土壤理化性质的影响[J].湖南农业科学,2021(5):23-26.
参考文献 15
Dzung P D,Phu D V,Du B D,et al.Effect of foliar application of oligochitosan with different molecular weight on growth promotion and fruit yield enhancement of chili plant[J].Plant Production Science,2017,20(4):389-395.
参考文献 16
Ou L,Zhang Q,Ji D,et al.Physiological,transcriptomic investigation on the tea plant growth and yield motivation by chitosan oligosaccharides[J].Horticulturae,2022,8(1):68.
参考文献 17
Chen P,Shrotri A,Fukuoka A.Synthesis of cellooligosaccharides by depolymerization of cellulose:a review[J]. Applied Catalysis A:General,2021,621:118177.
参考文献 18
Shibuya N,Minami E.Oligosaccharide signalling for defence responses in plant[J].Physiological and Molecular Plant Pathology,2001,59(5):223-233.
参考文献 19
He J,Han W,Wang J,et al.Functions of oligosaccharides in improving tomato seeding growth and chilling resistance[J]. Journal of Plant Growth Regulation,2022,41:535-545.
参考文献 20
钱远超,何久兴,孔梦,等.寡糖对土壤微生物多样性及群落结构的调节作用[J].中国农业气象,2022,43(6):464-473.
参考文献 21
Desvaux M.Clostridium cellulolyticum:model organism of mesophilic cellulolytic clostridia[J].FEMS Microbiology Reviews,2005,29(4):741-764.
参考文献 22
Cheng D W,Lin H,Andrew Walker M,et al.Effects of grape xylem sap and cell wall constituents on in vitro growth,biofilm formation and cellular aggregation of Xylella fastidiosa[J]. European Journal of Plant Pathology,2009,125(2):213-222.
参考文献 23
Na X,Xu T,Li M,et al.Variations of bacterial community diversity within the rhizosphere of three phylogenetically related perennial shrub plant species across environmental gradients[J]. Frontiers in Microbiology,2018,9:709.
参考文献 24
鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
参考文献 25
Rösch C,Mergel A,Bothe H.Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil[J].Applied and Environmental Microbiology,2002,68(8):3818-3829.
参考文献 26
Edgar R C.UPARSE:highly accurate OTU sequences from microbial amplicon reads[J].Nature Methods,2013,10(10):996-998.
参考文献 27
Abdel Latef A A H,Abu Alhmad M F,Kordrostami M,et al. Inoculation with Azospirillum lipoferum or Azotobacter chroococcum reinforces maize growth by improving physiological activities under saline conditions[J].Journal of Plant Growth Regulation,2020,39(3):1293-1306.
参考文献 28
Sumbul A,Ansari R A,Rizvi R,et al.Azotobacter:a potential bio-fertilizer for soil and plant health management[J]. Saudi Journal of Biological Sciences,2020,27(12):3634-3640.
参考文献 29
张小倩.基于多组学研究单一聚合度壳寡糖对小麦的代谢调控机制[D].北京:中国科学院大学(中国科学院海洋研究所),2018.
参考文献 30
罗晓峰,代宇佳,宋艳,等.三种植物生长调节剂对大豆生长发育及产量的影响[J].核农学报,2021,35(4):980-988.
参考文献 31
何久兴,赵解春,白文波,等.叶面喷施寡糖对生菜生长和品质的调节作用[J].中国农业气象,2019,40(12):783-792.
参考文献 32
孟静静,张佳蕾,刘应炜,等.壳寡糖对高产花生叶片衰老及产量和品质的影响[J].中国油料作物学报,2017,39(4):483-487.
参考文献 33
李映龙,单守明,刘成敏,等.叶面喷施壳寡糖对华脆苹果光合作用和果实品质的影响[J].农业科学研究,2019,40(3):19-22.
参考文献 34
Haas B J,Gevers D,Earl A M,et al.Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons[J].Genome Research,2011,21(3):494-504.
参考文献 35
赵辉,周运超.不同母岩发育马尾松土壤固氮菌群落结构和丰度特征[J].生态学报,2020,40(17):6189-6201.
参考文献 36
Hu H Y,Li H,Hao M M,et al.Nitrogen fixation and crop productivity enhancements co-driven by intercrop root exudates and key rhizosphere bacteria[J].Journal of Applied Ecology,2021,58(10):2243-2255.
参考文献 37
Pereira L C,Bertuzzi Pereira C,Correia L V,et al.Corn responsiveness to Azospirillum:accessing the effect of root exudates on the bacterial growth and its ability to fix nitrogen[J]. Plants,2020,9(7):923.
参考文献 38
Shih P M,Wu D,Latifi A,et al.Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing [J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(3):1053-1058.
参考文献 39
Speck J J,James E K,Sugawara M,et al.An alkane sulfonate monooxygenase is required for symbiotic nitrogen fixation by Bradyrhizobium diazoefficiens(syn.Bradyrhizobium japonicum)USDA110T[J].Applied and Environmental Microbiology,2019,85(24):e01552-19.
参考文献 40
Chen W,Gao Y,Zhang W G,et al.Taxonomical and functional bacterial community selection in the rhizosphere of the rice genotypes with different nitrogen use efficiencies[J].Plant and Soil,2022,470:111-125.
参考文献 41
曹艳丽,朱兵峰,时明星,等.透明颤菌血红蛋白的结构与功能及其在生物医药生产中的应用[J].中国医药工业杂志,2022,53(1):37-47.
参考文献 42
Fujin X,Jie W,Liyang R,et al.Characteristics of soil nitrogen and nitrogen cycling microbial communities in different alfalfa planting years[J].Archives of Agronomy and Soil Science,2023,69(14):3087-3101.
参考文献 43
Dobbelaere S,Vanderleyden J,Okon Y.Plant growthpromoting effects of diazotrophs in the rhizosphere[J].Critical Reviews in Plant Sciences,2003,22(2):107-149.
参考文献 44
Malhotra M,Srivastava S.Stress-responsive indole-3-acetic acid biosynthesis by Azospirillum brasilense SM and its ability to modulate plant growth[J].European Journal of Soil Biology,2009,45(1):73-80.
参考文献 45
李斌,黄进,王丽,等.环境胁迫及相关植物激素在水稻根毛发育过程中的作用[J].中国水稻科学,2020,34(4):287-299.
参考文献 46
王艳宇,向君亮,周妍,等.耐盐碱细菌DQSA1的分离鉴定及盐碱胁迫下对绿豆的促生作用[J].微生物学通报,2021,48(8):2653-2664.
参考文献 47
Zhang S,Liao S,Yu X,et al.Microbial diversity of mangrove sediment in Shenzhen Bay and gene cloning,characterization of an isolated phytase-producing strain of SPC09 B.cereus [J].Applied Microbiology and Biotechnology,2015,99(12):5339-5350.
参考文献 48
Sanni D M,Lawal O T,Enujiugha V N.Purification and characterization of phytase from Aspergillus fumigatus isolated from African giant snail(Achatina fulica)[J].Biocatalysis and Agricultural Biotechnology,2019,9(1):3.
参考文献 49
张燕英,董俊德,张偲,等.海洋固氮蓝藻 Calothrix sp.与 Lyngbya sp.固氮生理的研究[J].热带海洋学报,2006,25(4):46-50.
参考文献 50
刘敏,边伟杰,车文学,等.海南高隆湾红树林及其近岸海域沉积物的弗兰克氏菌(Frankia)多样性分布及其与环境因子的关系[J].微生物学杂志,2023,43(1):9-19.
参考文献 51
Barnett M J,Long S R.Novel genes and regulators that influence production of cell surface exopolysaccharides in Sinorhizobium meliloti[J].Journal of Bacteriology,2017,200(3):JB.00501-17.
目录contents

    摘要

    研究施用壳寡糖和纤维寡糖对花生根区土壤固氮菌群落结构及产量的影响。通过田间试验,以清水处理作为对照(CK),叶面喷施浓度为 50 mg/L 的壳寡糖(CSOS)和纤维寡糖(COS),利用高通量测序技术,研究土壤中固氮菌群落结构组成及多样性分布特征,分析 2 种寡糖对土壤理化性质和花生产量指标的影响。 (1)与 CK 相比,CSOS 处理慢生根瘤菌属(Bradyrhizobium)、透明颤菌属(Vitreoscilla)、固氮氢自养单胞菌属 (Azohydromonas)、固氮螺菌属(Azospirillum)、假单胞菌属(Pseudomonas)、眉藻属(Calothrix)和弗兰克氏菌属(Frankia),相对丰度显著增加分别为 10.99%、45.63%、29.88%、23.24%、181.13%、27.75% 和 36.61%。COS 处理固氮螺菌属(Azospirillum)、中华根瘤菌属(Sinorhizobium)和眉藻属(Calothrix)相对丰度显著增加分别为 86.12%、664.41% 和 277.97%。(2)与 CK 相比,CSOS 处理显著提高土壤中全氮和铵态氮含量,平均增幅分别为 15.50% 和 20.19%。COS 处理显著增加土壤中全氮、硝态氮和铵态氮,分别为 17.05%、18.68% 和 27.58%;此外, CSOS 和 COS 处理相较于 CK,土壤 pH 均显著下降,分别下降了 0.08 和 0.06。(3)CSOS 和 COS 处理均显著增加花生产量,分别为 19.3% 和 22.0%。因此,叶面喷施壳寡糖和纤维寡糖,可以调节花生根区土壤不同固氮菌属的相对丰度和影响土壤的理化因子(全氮、硝态氮和铵态氮),最终均显著提高花生产量。

    Abstract

    Field experiment was conducted to study the effects of chitosan oligosaccharides and cello-oligosaccharide on the community structure of azotobacter in the rhizosphere and the yield of peanut. The experiment included three treatments on the surface of leaf:clean water(CK),chitosan oligosaccharides 50 mg/L(CSOS)and cello-oligosaccharide 50 mg/L(COS). High throughput sequencing technology was used to analyze the community structure and diversity of azotobacter in the rhizosphere.(1)Compared to CK,the relative abundance of BradyrhizobiumVitreoscillaAzohydromonasAzospirillumPseudomonasCalothrix and Frankia,significantly increased of CSOS treatment by 10.99%,45.63%,29.88%,23.24%,181.13%,27.75% and 36.61%,respectively. The relative abundance of AzospirillumSinorhizobium and Calothrix of COS treatment significantly increased by 86.12%,664.41% and 277.97%,respectively.(2)Compared with CK,the CSOS treatment significantly increased the content of total nitrogen and ammonium nitrogen in the soil with an average increase of 15.50% and 20.19%,respectively. COS treatment significantly increased total nitrogen,nitrate nitrogen and ammonium nitrogen in the soil by 17.05%,18.68% and 27.58%,respectively;In addition,soil pH decreased significantly by 0.08 and 0.06 for both CSOS and COS treatments compared to CK,respectively.(3)Both CSOS and COS treatments significantly increased peanut yield by 19.3% and 22.0%,respectively. Therefore,foliar sprays of chitosan oligosaccharides and cellooligosaccharide regulated the relative abundance of different nitrogen-fixing bacterial genera and affected soil physicochemical factors(total nitrogen,nitrate nitrogen and ammonium nitrogen)in the root zone of peanut,all of which ultimately significantly increased peanut yield.

    关键词

    壳寡糖纤维寡糖固氮菌花生产量

  • 花生(Arachis hypogaea L.)是一种重要的豆科油料作物,含有丰富的油、蛋白质和碳水化合物,对农业和经济发展具有重要意义[1]。在土壤生态环境中,固氮微生物群落多样性和结构的改变对土壤中氮素的固定和利用起着重要作用,能够有效提高豆科植物结瘤固氮能力,促进豆科植物的生长发育,提高豆科作物产量[2-3]。因此,研究土壤固氮菌群落结构的变化对于建立合理的种植模式、维持土壤质量和提高豆科作物养分利用能力具有重要意义[4-5]。寡糖类制剂不仅能起到抗逆、防病、提高产量和改善农产品品质的作用,还具有调控土壤微生物群落结构的作用[6-8]。目前在作物生产中普遍使用的壳寡糖主要来自几丁质和壳聚糖的物理、化学或酶解聚反应[9],具有促进作物生长、提高作物品质、诱导植物抗性和免疫调节等生物学活性[10-12]。罗志会等[13]研究发现,壳寡糖可以促进植物生长、优化根际微生物、提高油菜产量。有研究报道,壳寡糖可以改善土壤理化性质和促进植物对土壤中矿物质养分的吸收[14]。另外,壳寡糖可作为生物刺激剂,通过参与植物激素信号转导促进植物生长发育,最终提高植物产量[15-16]。纤维寡糖主要是来源于纤维素通过部分水解而衍生的化合物分子[17],在植物的抗病抗逆、品质调控和生长发育等方面发挥着重要作用[1218-19]。钱远超等[20] 研究发现,纤维寡糖可以调节土壤微生物群落结构,增加土壤中有益菌属,抑制有害菌属。另外,纤维寡糖有利于促进微生物细胞膜的形成或作为碳源促进微生物的生长[21-22]。此外,纤维寡糖处理还可以增加植物生长素含量,诱导相关基因表达,在侧根发育中起着至关重要的作用,最终影响产量[19]。寡糖能调节土壤微生物群落结构和提高作物产量,但不同寡糖如壳寡糖和纤维寡糖对土壤固氮菌的调控差异有待于进一步深入研究。揭示壳寡糖和纤维寡糖对花生根际土壤固氮菌多样性和群落结构的影响差异及其对花生生长的影响,有助于正确、高效及安全使用寡糖,为寡糖产品在农业上的开发和推广应用提供新的理论依据。

  • 1 材料与方法

  • 1.1 试验地点和材料

  • 本试验地点为北京市顺义农业环境综合试验基地(40°10′ N,116°92′ E),该区土壤质地为壤土,属于暖温带半湿润大陆性气候,本试验选用的花生品种为潍花 8 号。壳寡糖聚合度为 3~7,平均分子量为 1159;纤维寡糖的聚合度为 2~6,平均分子量为 827。根据课题组前期试验结果 2 种寡糖浓度均采用 50 mg/L。基地土壤基本特征见表1。

  • 表1 顺义试验基地土壤基本特性

  • 1.2 试验设计

  • 本试验采用覆膜、施肥和播种一体机进行田间作业,共设置清水(CK)、壳寡糖(CSOS)和纤维寡糖(COS)3 个处理对花生的叶面进行喷施,每个处理 3 次重复,起垄种植,垄上覆盖聚乙烯地膜,小区面积 15 m × 0.8 m = 12 m2,播种深度约为 3 cm,垄距 80 cm,垄高 10 cm,垄面宽 50 cm,垄上小行距 30 cm、穴距 20 cm。基施复合肥料 (N-P2O5-K2O:15-15-15)500 kg/hm2。除喷施寡糖外(表2),不进行其他化控药剂处理。于第 5 次喷施后的第 2 d 采集花生根区土壤样品,花生成熟期测定产量性状。寡糖施用方法见表2。

  • 表2 寡糖施用方法

  • 注:每个处理 3 个小区共施用 3 L 寡糖溶液。

  • 1.3 土壤样品采集与指标测定

  • 于喷施 5 次后的第 2 d 采集土壤样品,选择代表性花生植株 3 穴,先松动花生根部附近的土壤,将花生连根拔起,小心除去根系周围大块土,收集 0~20 cm 耕层花生根系周围的土壤,向装有植物根系样品的离心管内加入 2.5 mL 无菌 0.9% NaCl 溶液,12000 r/min、4℃离心 10 min,吸去上清液,收集离心管底部的沉淀,该步骤重复 3 次,即为根际土壤样品[23]。3 个重复,共 9 个土壤样品。同时,将该土壤样品带回实验室后,自然风干、过筛,用于土壤理化性质的测定,包括土壤 pH 及全氮、硝态氮、铵态氮、有效磷和速效钾含量。具体操作步骤参考鲍士旦[24]的方法。

  • 1.4 土壤微生物 DNA 的提取及测序

  • 土壤固氮菌微生物组 DNA 提取方法参照 Power Soil DNA Isolation Kit(MoBio Laboratories,Carlsbad, CA)试剂盒说明书。提取得到的 DNA 用 1% 琼脂糖凝胶电泳和分光光度法进行 DNA 质量和浓度检测。质检合格的样本储存在-20℃以供使用。固氮菌 nifH 基因测序引物 F(5’-AAAGGYGGWATCGGYAARTCCACCAC-3’)和 R(5’-TTGTTSGCSGCRTACATSGCCATCAT-3’)[25]。合成带有条形码序列的上述引物进行 PCR 扩增。PCR 产物使用 1% 琼脂糖凝胶电泳检测扩增目的条带大小,并用 Agencourt AMPure XP 核酸纯化试剂盒纯化。PCR 产物用于构建微生物多样性测序文库,基于 Illumina Miseq 高通量测序平台进行 Paired-end 测序,测序服务委托北京奥维森基因科技有限公司完成。

  • 1.5 花生产量及相关性状的测定

  • 花生成熟时每个小区选定 10 株,测定主茎高 (从第一对侧枝分生处到顶叶节的长度)、第一对侧枝长(第一对侧枝中最长的一条侧枝长度,即由与主茎连接处到侧枝顶叶节的长度)、分枝数(有效分枝数,长度大于 20 cm)及主茎粗(地上部和地下部结合处)。晾干后收获计产,同时测定每穴的荚果数、每穴的荚果干重和百果干重。

  • 1.6 测序数据的分析方法

  • 使用 QⅠⅠME1 软件将下机的数据根据 Barcode 序列进行拆分,再使用 Pear 软件对数据过滤、拼接。拼接后使用 Vsearch 软件 UPARSE 算法对相似度阀值 97% 序列进行聚类[26]。用 Silva128 数据库比对序列。在 FunGene 平台上把固氮菌数据获得的代表性 OTUs 序列进行筛选,剔除不能翻译成 nifH 氨基酸的序列,剩下的在 GeneBank 功能基因数据库上进行最低相似度为 0.7 序列比对。

  • 1.7 统计分析方法

  • 使用 Excel 2016 分析数据并制作表格,α 多样性指数和花生农艺性状等数据的方差分析用 SPSS 20.0 完成。

  • 2 结果与分析

  • 2.1 寡糖对花生根区土壤固氮菌丰度和群落结构的影响

  • 由表3 可知,各样本覆盖度指数均达到 99.9%,说明测序数据量合理,足以代表样本中微生物的真实情况。表中各项指数对比显示,与 CK 相比,喷施 2 种寡糖后,Chao1 指数、Shannon 指数、观测物种数和谱系多样性均有不同程度的增加,但均无显著差异。

  • 表3 不同处理土壤固氮菌 α 多样性指数评估结果

  • 注:同列中不同小写字母表示处理间的显著性差异(P<0.05)。下同。

  • 高通量测序结果表明,除未分类外,检测得到了 13 个门、20 个纲、47 个目、77 个科、131 个属和 855 个 OTU。在门分类水平上(图1),检测出的优势菌门有变形菌门(Proteobacteria)、疣微菌门 (Verrucomicrobia)、蓝藻菌门(Cyanobacteria)和厚壁菌门(Firmicutes)。变形菌门(90.96%~94.40%) 是所有样品中相对丰度最高的固氮菌门,其次是疣微菌门(2.32%~3.32%),蓝藻菌门(0.40%~1.46%)和厚壁菌门(0.11%~0.38%)的相对丰度占比很少。与 CK 相比,虽然 COS 处理显著降低了变形菌门的相对丰度 3.65%,但是增加了蓝藻菌门的相对丰度 43.12%。CSOS 处理相较于 CK,在固氮菌门水平上均无显著性差异。

  • 在属水平上(图2),选择相对丰度排名前十的固氮菌属进行比较,分别为慢生根瘤菌属(Bradyrhi-zobium,相对丰度 7.71%~8.89%)、固氮菌属(Azotobacter, 3.42%~6.75%)、透明颤菌属(Vitreoscilla,相对丰度 3.84%~7.08%)、固氮弯曲菌属(Azoarcus,相对丰度 1.73%~2.33%)、固氮螺菌属(Azospirillum,相对丰度 1.30%~2.41%)、固氮氢自养单胞菌属 (Azohydromonas,相对丰度 1.21%~2.34%)、假单胞菌属(Pseudomonas,相对丰度 0.60%~1.70%)、中华根瘤菌属(Sinorhizobium,相对丰度 0.24%~1.93%)、眉藻属(Calothrix,相对丰度 0.32%~1.22%)和弗兰克氏菌属(Frankia,相对丰度 0.001%~0.002%)。发现 CSOS 处理相对丰度有显著增加的固氮菌属有慢生根瘤菌属、透明颤菌、固氮氢自养单胞菌属、固氮螺菌属、假单胞菌属、眉藻属和弗兰克氏菌属。与 CK 相比,显著增加相对丰度分别为 10.99%、45.63%、29.88%、2 3.24%、181.13%、27.75% 和 36.61%。COS 处理相对丰度显著增加的固氮菌属有固氮螺菌属、中华根瘤菌属和眉藻属,与 CK 相比,显著增加相对丰度分别为 86.12%、664.41% 和 277.97%。

  • 图1 不同寡糖条件下各土壤固氮菌群落在门水平的相对丰度

  • 注:同组不同小写字母代表处理间差异显著(P<0.05)。

  • 图2 不同寡糖条件下各土壤固氮菌群落在属水平的相对丰度

  • 2.2 喷施寡糖对花生土壤理化性质的影响

  • 从表4 中可以看出,CSOS 处理较 CK 相比,显著提高全氮和铵态氮含量,平均增幅分别为 15.50% 和 20.19%。与 CK 相比,COS 处理全氮、硝态氮和铵态氮均有不同程度增加,分别增加 17.05%、18.68% 和 27.58%。此外,CSOS 和 COS 处理下花生土壤 pH 均显著下降,分别下降了 0.08 和 0.06。

  • 表4 喷施寡糖对土壤理化性质的影响

  • 2.3 喷施寡糖对花生农艺性状及产量的影响

  • 如表5 所示,与 CK 相比,2 种寡糖处理的花生农艺性状主茎高、侧枝长、分枝数和主茎粗均有不同程度的增加,其中,CSOS 处理的花生每穴分枝数和主茎粗均显著增高(P<0.05),平均增幅分别为 19.6% 和 31.3%;COS 处理的花生主茎高、侧枝长、每穴分枝数和主茎粗均显著增高(P<0.05),平均增幅分别为 13.5%、13.0%、15.8% 和 31.3%。说明喷施寡糖有利于增加花生分枝数和主茎粗,在一定程度增加了花生主茎高和侧枝长。

  • 表5 喷施寡糖对花生农艺性状的影响

  • 如表6 所示,与 CK 相比,CSOS 和 COS 处理均显著增加花生的产量及其构成因子,花生荚果数、荚果重、百果重和产量均显著提高(P<0.05),其中,CSOS 处理平均增幅分别为 16.7%、20.3%、 8.3% 和 19.3%,COS 处理平均增幅分别为 17.5%、 22.6%、10.2% 和 22.0%。说明 2 种寡糖均可以提高花生产量。可见,荚果数、荚果重和百果重增加都是花生产量提高的重要原因。

  • 表6 喷施寡糖对花生产量及产量构成因子的影响

  • 3 讨论

  • 土壤固氮菌群是一类重要的土壤微生物类群,在改善土壤质量、促进植物生长和提高作物产量等方面发挥着重要作用[27-28]。有研究表明,叶面喷施寡糖可以加强植物的光合作用,调整作物蛋白质差异表达,诱导植物在代谢过程中产生更多的有机酸、氨基酸和可溶性糖含量,并促进植物生长[29-30]。何久兴等[31]研究表明,叶片喷施纤维寡糖可以提高叶绿素、可溶性糖和维生素 C 含量,对生菜的生长提供更多能量,最终增加生菜的生物量。孟静静等[32]研究发现,叶面喷施壳寡糖可以显著提高花生的荚果数,提高荚果产量。这与本试验研究结果一致(表4)。李映龙等[33]研究发现壳寡糖能促进叶绿体发育、气孔运动和叶片光合作用等生理过程,产生的光合产物运输到新梢和果实,一部分为植物的生长发育提供物质和能量,另一部分将产生的淀粉或糖等营养物质贮藏起来,最终影响植物的生长和产量。总之,叶面喷施的寡糖可以直接促进植物生理代谢等过程来促进植物生长,进而增加植物生物量。

  • 叶面喷施寡糖有利于植物地上部和地下部的生长,花生作为一种豆科类作物,可以在根部形成根瘤,这些根瘤的产生可以为固氮菌提供居住和固氮场所。根瘤中存在大量的固氮菌细胞,可以固定空气中的氮气供植物利用。而本试验在喷施壳寡糖后,土壤中全氮和铵态氮有显著性的增加;喷施纤维寡糖后,土壤中全氮、硝态氮和铵态氮均有显著性的增加(表4)。有研究表明,土壤中全氮、硝态氮和铵态氮均能显著影响土壤固氮菌的多样性和群落结构[34-35]。发达的根系会分泌出更多的根系渗出物,为固氮菌提供营养物质,如碳源和多种微量元素。这些营养物质有利于促进固氮菌的生长,从而增加固氮效率[36]。根系还会分泌有机酸,有机酸的产生会降低根系周围土壤的 pH,大多数固氮菌对较酸性的环境更适应,因此,pH 的降低有利于固氮菌的生长[37]。本试验在施加 2 种寡糖后, pH 均显著性降低,有利于固氮菌的生长。发达的根系也为固氮菌提供了更多的定殖位点,有利于固氮菌与根系的相互作用。通过叶面喷施寡糖,促进花生根系的生长,根系通过根瘤形成、分泌营养物质、调节土壤 pH 和提供更多根瘤菌定殖位点,对土壤固氮菌的生长和活性产生重要影响。而更多的固氮菌又可以促进植物对氮素的吸收和利用,最终促进植物的生长,增加作物产量。

  • 综上所述,一方面,通过叶面喷施寡糖溶液,寡糖直接对植物的生长具有促进作用;另一方面,寡糖通过促进植物根系的生长,使根系产生更多根系分泌物,促进固氮菌的生长、增殖和活性,而固氮菌数量和活性的增加又可以促进植物根系对土壤中营养物质的吸收,进而提高植物的产量。

  • CSOS 和 COS 处理影响固氮菌群落结构不同,门水平上,COS 处理能够显著增加蓝藻菌门的相对丰度,有研究表明,蓝藻菌门中包括很多能够进行含氧光合原核生物,它们在全球碳和氮循环中发挥着关键作用。另外,具有光合能力的真核生物叶绿体都可以将其祖先追溯到蓝藻门生物[38]。属水平上,CSOS 处理能够显著增加慢生根瘤菌属、透明颤菌属、固氮氢自养单胞菌属、固氮螺菌属、假单胞菌属、眉藻属和弗兰克氏菌属的相对丰度。硫元素在固氮中起着关键作用,慢生根瘤菌属可以同化硫酸盐参与固氮[39]。透明颤菌属具有自生固氮能力,含有的 nosZ 基因可以将硝酸盐、亚硝酸盐和一氧化二氮还原成植物可利用的氮[40],含有的透明颤菌血红蛋白能够提高植物的叶绿素含量,并且增强植物的光合作用能力,进而促进植物生长[41]。有研究表明,在种植苜蓿的土壤中,固氮氢自养单胞菌属与土壤中全氮和硝态氮含量呈显著正相关,固氮氢自养单胞菌属与土壤中的氮循环密切相关[42],与本研究结果一致(表4)。固氮螺菌属具有共生固氮能力,能与花生根部共生形成根瘤,固定大气中的氮气,为花生提供氮素养分[43],同时可以产生吲哚乙酸,促进侧根和顶端分生组织分裂并有益于植物根系延长[44],增加根系长度和侧根数量,加快植物对土壤养分的吸收转化效率[45-46];假单胞菌属产生的化学物质会影响宿主根的呼吸速率和代谢,同时刺激根毛和次生根的形成,使根毛和次生根数量增加,促进植物生长。假单胞菌属能够产生植酸酶,植酸酶可以水解植酸盐使其释放螯合的金属矿质元素,为植物提供磷素等矿质元素,促进植物生长[47-48];眉藻属作为一种自生固氮菌,其自身具有的独特异型胞含有丰富的固氮酶,其形成的环境能够保护固氮酶不被失活,从而能够在此细胞中进行固氮并可以保持较高的固氮效率[49]。弗兰克氏菌属既能以游离态存在于土壤中,也能与植物形成共生体存在于根瘤中,2 种生活状态下都具有固氮能力,而独特的泡囊结构又可以加快其固氮效率[50]。COS 处理中,中华根瘤菌属、固氮螺菌属和眉藻属的相对丰度显著增加。有研究表明,接种了中华根瘤菌属后,增加根部结瘤量,植物产量有显著提高,中华根瘤菌属的细胞表面存在多糖,对于适应土壤环境和植物共生结瘤都很重要[51]。综上所述,不同固氮菌通过改善土壤状况、与植物根部共生结瘤和分泌化学物质等多种途径提高植物固氮能力。本试验施用的 2 种寡糖(壳寡糖与纤维寡糖)能够改变植物根际土壤固氮菌群落结构和相对丰度,从而改善土壤养分状况并促进花生的生长发育,最终提高花生产量。但是,不同固氮菌属的差异也反映了壳寡糖和纤维寡糖对土壤固氮微生物和作物生长的调控途径不同。

  • 4 结论

  • 施用 2 种寡糖对土壤中固氮菌属的相对丰度影响不同。喷施壳寡糖显著增加土壤中慢生根瘤菌属、透明颤菌属、固氮氢自养单胞菌属、固氮螺菌属、假单胞菌属、眉藻属和弗兰克氏菌属的相对丰度。喷施纤维寡糖显著增加中华根瘤菌属、固氮螺菌属和眉藻属的相对丰度。

  • 2种寡糖对土壤部分理化因子产生影响。喷施壳寡糖能够显著增加土壤中的全氮和铵态氮;施用纤维寡糖显著增加土壤中全氮、硝态氮和铵态氮。 2 种寡糖均显著降低土壤 pH。

  • 与清水对照相比,施用壳寡糖显著增加花生产量 19.3%,施纤维寡糖显著增加花生产量 22.0%。因此,2 种寡糖的施用均有助于提高花生产量。

  • 参考文献

    • [1] Masuda Y,Shiratori Y,Ohba H,et al.Enhancement of the nitrogen-fixing activity of paddy soils owing to iron application[J]. Soil Science and Plant Nutrition,2021,67(3):243-247.

    • [2] Clúa J,Roda C,Zanetti M E,et al.Compatibility between legumes and rhizobia for the establishment of a successful nitrogenfixing symbiosis[J].Genes,2018,9(3):9093125.

    • [3] Yang J,Lan L,Jin Y,et al.Mechanisms underlying legumerhizobium symbioses[J].Journal of Integrative Plant Biology,2021,64(2):244-267.

    • [4] 索炎炎,张翔,司贤宗,等.AM 真菌和根瘤菌对连作花生养分吸收及土壤微生物特性的影响[J].中国土壤与肥料,2023(2):106-112.

    • [5] Chen K,Li N,Zhang S,et al.Biochar-induced changes in the soil diazotroph community abundance and structure in a peanut field trial[J].Biochar,2022,4(1):26.

    • [6] Aftab T,Khan M M,Naeem M,et al.Effect of irradiated sodium alginate and phosphorus on biomass and artemisinin production in Artemisia annua[J].Carbohydrate Polymers,2014,110:396-404.

    • [7] Li X,Chen Q,Lei H,et al.Nutrient uptake and utilization by fragrant rosewood(Dalbergia odorifera)seedlings cultured with oligosaccharide addition under different lighting spectra[J]. Forests,2018,9(1):9010029.

    • [8] Yang W,Chen D,He Z,et al.NMR characterization and anticoagulant activity of the oligosaccharides from the fucosylated glycosaminoglycan isolated from Holothuria coluber[J]. Carbohydrate Polymers,2020,233:115844.

    • [9] Liaqat F,Eltem R.Chitooligosaccharides and their biological activities:a comprehensive review[J].Carbohydrate Polymers,2018,184(15):243-259.

    • [10] Kim S,Rajapakse N.Enzymatic production and biological activities of chitosan oligosaccharides(COS):review[J]. Carbohydrate Polymers,2005,62(4):357-368.

    • [11] Liu Y,Yang H,Wen F,et al.Chitooligosaccharide-induced plant stress resistance[J].Carbohydrate Polymers,2022,302:120344.

    • [12] Zarattini M,Choaibi A,Magri S,et al.The oxidized cellooligosaccharides confer thermotolerance in Arabidopsis by priming ethylene via heat shock factor A2[J].Physiologia Plantarum,2022,174(4):13737.

    • [13] 罗志会,刘慕兰,张海军,等.壳聚糖在植物病害防治方面的研究[J].农业装备技术,2015,41(6):10-14.

    • [14] 雷菲,张冬明,符传良,等.壳寡糖对辣椒产量、养分吸收和土壤理化性质的影响[J].湖南农业科学,2021(5):23-26.

    • [15] Dzung P D,Phu D V,Du B D,et al.Effect of foliar application of oligochitosan with different molecular weight on growth promotion and fruit yield enhancement of chili plant[J].Plant Production Science,2017,20(4):389-395.

    • [16] Ou L,Zhang Q,Ji D,et al.Physiological,transcriptomic investigation on the tea plant growth and yield motivation by chitosan oligosaccharides[J].Horticulturae,2022,8(1):68.

    • [17] Chen P,Shrotri A,Fukuoka A.Synthesis of cellooligosaccharides by depolymerization of cellulose:a review[J]. Applied Catalysis A:General,2021,621:118177.

    • [18] Shibuya N,Minami E.Oligosaccharide signalling for defence responses in plant[J].Physiological and Molecular Plant Pathology,2001,59(5):223-233.

    • [19] He J,Han W,Wang J,et al.Functions of oligosaccharides in improving tomato seeding growth and chilling resistance[J]. Journal of Plant Growth Regulation,2022,41:535-545.

    • [20] 钱远超,何久兴,孔梦,等.寡糖对土壤微生物多样性及群落结构的调节作用[J].中国农业气象,2022,43(6):464-473.

    • [21] Desvaux M.Clostridium cellulolyticum:model organism of mesophilic cellulolytic clostridia[J].FEMS Microbiology Reviews,2005,29(4):741-764.

    • [22] Cheng D W,Lin H,Andrew Walker M,et al.Effects of grape xylem sap and cell wall constituents on in vitro growth,biofilm formation and cellular aggregation of Xylella fastidiosa[J]. European Journal of Plant Pathology,2009,125(2):213-222.

    • [23] Na X,Xu T,Li M,et al.Variations of bacterial community diversity within the rhizosphere of three phylogenetically related perennial shrub plant species across environmental gradients[J]. Frontiers in Microbiology,2018,9:709.

    • [24] 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.

    • [25] Rösch C,Mergel A,Bothe H.Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil[J].Applied and Environmental Microbiology,2002,68(8):3818-3829.

    • [26] Edgar R C.UPARSE:highly accurate OTU sequences from microbial amplicon reads[J].Nature Methods,2013,10(10):996-998.

    • [27] Abdel Latef A A H,Abu Alhmad M F,Kordrostami M,et al. Inoculation with Azospirillum lipoferum or Azotobacter chroococcum reinforces maize growth by improving physiological activities under saline conditions[J].Journal of Plant Growth Regulation,2020,39(3):1293-1306.

    • [28] Sumbul A,Ansari R A,Rizvi R,et al.Azotobacter:a potential bio-fertilizer for soil and plant health management[J]. Saudi Journal of Biological Sciences,2020,27(12):3634-3640.

    • [29] 张小倩.基于多组学研究单一聚合度壳寡糖对小麦的代谢调控机制[D].北京:中国科学院大学(中国科学院海洋研究所),2018.

    • [30] 罗晓峰,代宇佳,宋艳,等.三种植物生长调节剂对大豆生长发育及产量的影响[J].核农学报,2021,35(4):980-988.

    • [31] 何久兴,赵解春,白文波,等.叶面喷施寡糖对生菜生长和品质的调节作用[J].中国农业气象,2019,40(12):783-792.

    • [32] 孟静静,张佳蕾,刘应炜,等.壳寡糖对高产花生叶片衰老及产量和品质的影响[J].中国油料作物学报,2017,39(4):483-487.

    • [33] 李映龙,单守明,刘成敏,等.叶面喷施壳寡糖对华脆苹果光合作用和果实品质的影响[J].农业科学研究,2019,40(3):19-22.

    • [34] Haas B J,Gevers D,Earl A M,et al.Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons[J].Genome Research,2011,21(3):494-504.

    • [35] 赵辉,周运超.不同母岩发育马尾松土壤固氮菌群落结构和丰度特征[J].生态学报,2020,40(17):6189-6201.

    • [36] Hu H Y,Li H,Hao M M,et al.Nitrogen fixation and crop productivity enhancements co-driven by intercrop root exudates and key rhizosphere bacteria[J].Journal of Applied Ecology,2021,58(10):2243-2255.

    • [37] Pereira L C,Bertuzzi Pereira C,Correia L V,et al.Corn responsiveness to Azospirillum:accessing the effect of root exudates on the bacterial growth and its ability to fix nitrogen[J]. Plants,2020,9(7):923.

    • [38] Shih P M,Wu D,Latifi A,et al.Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing [J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(3):1053-1058.

    • [39] Speck J J,James E K,Sugawara M,et al.An alkane sulfonate monooxygenase is required for symbiotic nitrogen fixation by Bradyrhizobium diazoefficiens(syn.Bradyrhizobium japonicum)USDA110T[J].Applied and Environmental Microbiology,2019,85(24):e01552-19.

    • [40] Chen W,Gao Y,Zhang W G,et al.Taxonomical and functional bacterial community selection in the rhizosphere of the rice genotypes with different nitrogen use efficiencies[J].Plant and Soil,2022,470:111-125.

    • [41] 曹艳丽,朱兵峰,时明星,等.透明颤菌血红蛋白的结构与功能及其在生物医药生产中的应用[J].中国医药工业杂志,2022,53(1):37-47.

    • [42] Fujin X,Jie W,Liyang R,et al.Characteristics of soil nitrogen and nitrogen cycling microbial communities in different alfalfa planting years[J].Archives of Agronomy and Soil Science,2023,69(14):3087-3101.

    • [43] Dobbelaere S,Vanderleyden J,Okon Y.Plant growthpromoting effects of diazotrophs in the rhizosphere[J].Critical Reviews in Plant Sciences,2003,22(2):107-149.

    • [44] Malhotra M,Srivastava S.Stress-responsive indole-3-acetic acid biosynthesis by Azospirillum brasilense SM and its ability to modulate plant growth[J].European Journal of Soil Biology,2009,45(1):73-80.

    • [45] 李斌,黄进,王丽,等.环境胁迫及相关植物激素在水稻根毛发育过程中的作用[J].中国水稻科学,2020,34(4):287-299.

    • [46] 王艳宇,向君亮,周妍,等.耐盐碱细菌DQSA1的分离鉴定及盐碱胁迫下对绿豆的促生作用[J].微生物学通报,2021,48(8):2653-2664.

    • [47] Zhang S,Liao S,Yu X,et al.Microbial diversity of mangrove sediment in Shenzhen Bay and gene cloning,characterization of an isolated phytase-producing strain of SPC09 B.cereus [J].Applied Microbiology and Biotechnology,2015,99(12):5339-5350.

    • [48] Sanni D M,Lawal O T,Enujiugha V N.Purification and characterization of phytase from Aspergillus fumigatus isolated from African giant snail(Achatina fulica)[J].Biocatalysis and Agricultural Biotechnology,2019,9(1):3.

    • [49] 张燕英,董俊德,张偲,等.海洋固氮蓝藻 Calothrix sp.与 Lyngbya sp.固氮生理的研究[J].热带海洋学报,2006,25(4):46-50.

    • [50] 刘敏,边伟杰,车文学,等.海南高隆湾红树林及其近岸海域沉积物的弗兰克氏菌(Frankia)多样性分布及其与环境因子的关系[J].微生物学杂志,2023,43(1):9-19.

    • [51] Barnett M J,Long S R.Novel genes and regulators that influence production of cell surface exopolysaccharides in Sinorhizobium meliloti[J].Journal of Bacteriology,2017,200(3):JB.00501-17.

  • 参考文献

    • [1] Masuda Y,Shiratori Y,Ohba H,et al.Enhancement of the nitrogen-fixing activity of paddy soils owing to iron application[J]. Soil Science and Plant Nutrition,2021,67(3):243-247.

    • [2] Clúa J,Roda C,Zanetti M E,et al.Compatibility between legumes and rhizobia for the establishment of a successful nitrogenfixing symbiosis[J].Genes,2018,9(3):9093125.

    • [3] Yang J,Lan L,Jin Y,et al.Mechanisms underlying legumerhizobium symbioses[J].Journal of Integrative Plant Biology,2021,64(2):244-267.

    • [4] 索炎炎,张翔,司贤宗,等.AM 真菌和根瘤菌对连作花生养分吸收及土壤微生物特性的影响[J].中国土壤与肥料,2023(2):106-112.

    • [5] Chen K,Li N,Zhang S,et al.Biochar-induced changes in the soil diazotroph community abundance and structure in a peanut field trial[J].Biochar,2022,4(1):26.

    • [6] Aftab T,Khan M M,Naeem M,et al.Effect of irradiated sodium alginate and phosphorus on biomass and artemisinin production in Artemisia annua[J].Carbohydrate Polymers,2014,110:396-404.

    • [7] Li X,Chen Q,Lei H,et al.Nutrient uptake and utilization by fragrant rosewood(Dalbergia odorifera)seedlings cultured with oligosaccharide addition under different lighting spectra[J]. Forests,2018,9(1):9010029.

    • [8] Yang W,Chen D,He Z,et al.NMR characterization and anticoagulant activity of the oligosaccharides from the fucosylated glycosaminoglycan isolated from Holothuria coluber[J]. Carbohydrate Polymers,2020,233:115844.

    • [9] Liaqat F,Eltem R.Chitooligosaccharides and their biological activities:a comprehensive review[J].Carbohydrate Polymers,2018,184(15):243-259.

    • [10] Kim S,Rajapakse N.Enzymatic production and biological activities of chitosan oligosaccharides(COS):review[J]. Carbohydrate Polymers,2005,62(4):357-368.

    • [11] Liu Y,Yang H,Wen F,et al.Chitooligosaccharide-induced plant stress resistance[J].Carbohydrate Polymers,2022,302:120344.

    • [12] Zarattini M,Choaibi A,Magri S,et al.The oxidized cellooligosaccharides confer thermotolerance in Arabidopsis by priming ethylene via heat shock factor A2[J].Physiologia Plantarum,2022,174(4):13737.

    • [13] 罗志会,刘慕兰,张海军,等.壳聚糖在植物病害防治方面的研究[J].农业装备技术,2015,41(6):10-14.

    • [14] 雷菲,张冬明,符传良,等.壳寡糖对辣椒产量、养分吸收和土壤理化性质的影响[J].湖南农业科学,2021(5):23-26.

    • [15] Dzung P D,Phu D V,Du B D,et al.Effect of foliar application of oligochitosan with different molecular weight on growth promotion and fruit yield enhancement of chili plant[J].Plant Production Science,2017,20(4):389-395.

    • [16] Ou L,Zhang Q,Ji D,et al.Physiological,transcriptomic investigation on the tea plant growth and yield motivation by chitosan oligosaccharides[J].Horticulturae,2022,8(1):68.

    • [17] Chen P,Shrotri A,Fukuoka A.Synthesis of cellooligosaccharides by depolymerization of cellulose:a review[J]. Applied Catalysis A:General,2021,621:118177.

    • [18] Shibuya N,Minami E.Oligosaccharide signalling for defence responses in plant[J].Physiological and Molecular Plant Pathology,2001,59(5):223-233.

    • [19] He J,Han W,Wang J,et al.Functions of oligosaccharides in improving tomato seeding growth and chilling resistance[J]. Journal of Plant Growth Regulation,2022,41:535-545.

    • [20] 钱远超,何久兴,孔梦,等.寡糖对土壤微生物多样性及群落结构的调节作用[J].中国农业气象,2022,43(6):464-473.

    • [21] Desvaux M.Clostridium cellulolyticum:model organism of mesophilic cellulolytic clostridia[J].FEMS Microbiology Reviews,2005,29(4):741-764.

    • [22] Cheng D W,Lin H,Andrew Walker M,et al.Effects of grape xylem sap and cell wall constituents on in vitro growth,biofilm formation and cellular aggregation of Xylella fastidiosa[J]. European Journal of Plant Pathology,2009,125(2):213-222.

    • [23] Na X,Xu T,Li M,et al.Variations of bacterial community diversity within the rhizosphere of three phylogenetically related perennial shrub plant species across environmental gradients[J]. Frontiers in Microbiology,2018,9:709.

    • [24] 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.

    • [25] Rösch C,Mergel A,Bothe H.Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil[J].Applied and Environmental Microbiology,2002,68(8):3818-3829.

    • [26] Edgar R C.UPARSE:highly accurate OTU sequences from microbial amplicon reads[J].Nature Methods,2013,10(10):996-998.

    • [27] Abdel Latef A A H,Abu Alhmad M F,Kordrostami M,et al. Inoculation with Azospirillum lipoferum or Azotobacter chroococcum reinforces maize growth by improving physiological activities under saline conditions[J].Journal of Plant Growth Regulation,2020,39(3):1293-1306.

    • [28] Sumbul A,Ansari R A,Rizvi R,et al.Azotobacter:a potential bio-fertilizer for soil and plant health management[J]. Saudi Journal of Biological Sciences,2020,27(12):3634-3640.

    • [29] 张小倩.基于多组学研究单一聚合度壳寡糖对小麦的代谢调控机制[D].北京:中国科学院大学(中国科学院海洋研究所),2018.

    • [30] 罗晓峰,代宇佳,宋艳,等.三种植物生长调节剂对大豆生长发育及产量的影响[J].核农学报,2021,35(4):980-988.

    • [31] 何久兴,赵解春,白文波,等.叶面喷施寡糖对生菜生长和品质的调节作用[J].中国农业气象,2019,40(12):783-792.

    • [32] 孟静静,张佳蕾,刘应炜,等.壳寡糖对高产花生叶片衰老及产量和品质的影响[J].中国油料作物学报,2017,39(4):483-487.

    • [33] 李映龙,单守明,刘成敏,等.叶面喷施壳寡糖对华脆苹果光合作用和果实品质的影响[J].农业科学研究,2019,40(3):19-22.

    • [34] Haas B J,Gevers D,Earl A M,et al.Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons[J].Genome Research,2011,21(3):494-504.

    • [35] 赵辉,周运超.不同母岩发育马尾松土壤固氮菌群落结构和丰度特征[J].生态学报,2020,40(17):6189-6201.

    • [36] Hu H Y,Li H,Hao M M,et al.Nitrogen fixation and crop productivity enhancements co-driven by intercrop root exudates and key rhizosphere bacteria[J].Journal of Applied Ecology,2021,58(10):2243-2255.

    • [37] Pereira L C,Bertuzzi Pereira C,Correia L V,et al.Corn responsiveness to Azospirillum:accessing the effect of root exudates on the bacterial growth and its ability to fix nitrogen[J]. Plants,2020,9(7):923.

    • [38] Shih P M,Wu D,Latifi A,et al.Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing [J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(3):1053-1058.

    • [39] Speck J J,James E K,Sugawara M,et al.An alkane sulfonate monooxygenase is required for symbiotic nitrogen fixation by Bradyrhizobium diazoefficiens(syn.Bradyrhizobium japonicum)USDA110T[J].Applied and Environmental Microbiology,2019,85(24):e01552-19.

    • [40] Chen W,Gao Y,Zhang W G,et al.Taxonomical and functional bacterial community selection in the rhizosphere of the rice genotypes with different nitrogen use efficiencies[J].Plant and Soil,2022,470:111-125.

    • [41] 曹艳丽,朱兵峰,时明星,等.透明颤菌血红蛋白的结构与功能及其在生物医药生产中的应用[J].中国医药工业杂志,2022,53(1):37-47.

    • [42] Fujin X,Jie W,Liyang R,et al.Characteristics of soil nitrogen and nitrogen cycling microbial communities in different alfalfa planting years[J].Archives of Agronomy and Soil Science,2023,69(14):3087-3101.

    • [43] Dobbelaere S,Vanderleyden J,Okon Y.Plant growthpromoting effects of diazotrophs in the rhizosphere[J].Critical Reviews in Plant Sciences,2003,22(2):107-149.

    • [44] Malhotra M,Srivastava S.Stress-responsive indole-3-acetic acid biosynthesis by Azospirillum brasilense SM and its ability to modulate plant growth[J].European Journal of Soil Biology,2009,45(1):73-80.

    • [45] 李斌,黄进,王丽,等.环境胁迫及相关植物激素在水稻根毛发育过程中的作用[J].中国水稻科学,2020,34(4):287-299.

    • [46] 王艳宇,向君亮,周妍,等.耐盐碱细菌DQSA1的分离鉴定及盐碱胁迫下对绿豆的促生作用[J].微生物学通报,2021,48(8):2653-2664.

    • [47] Zhang S,Liao S,Yu X,et al.Microbial diversity of mangrove sediment in Shenzhen Bay and gene cloning,characterization of an isolated phytase-producing strain of SPC09 B.cereus [J].Applied Microbiology and Biotechnology,2015,99(12):5339-5350.

    • [48] Sanni D M,Lawal O T,Enujiugha V N.Purification and characterization of phytase from Aspergillus fumigatus isolated from African giant snail(Achatina fulica)[J].Biocatalysis and Agricultural Biotechnology,2019,9(1):3.

    • [49] 张燕英,董俊德,张偲,等.海洋固氮蓝藻 Calothrix sp.与 Lyngbya sp.固氮生理的研究[J].热带海洋学报,2006,25(4):46-50.

    • [50] 刘敏,边伟杰,车文学,等.海南高隆湾红树林及其近岸海域沉积物的弗兰克氏菌(Frankia)多样性分布及其与环境因子的关系[J].微生物学杂志,2023,43(1):9-19.

    • [51] Barnett M J,Long S R.Novel genes and regulators that influence production of cell surface exopolysaccharides in Sinorhizobium meliloti[J].Journal of Bacteriology,2017,200(3):JB.00501-17.

  • 《中国土壤与肥料》招聘启事
    关闭