en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

白懿杭(1999-),硕士研究生,主要从事资源利用与植物保护研究。E-mail: b17736252656@163.com。

通讯作者:

王鑫鑫,E-mail: sywxx@hebau.edu.cn。

参考文献 1
Li X L,Zhong C,Li G Q,et al.The application and development trend of the permaculture under the background of rural construction and revitalization[J].Science Discovery,2022,3:181-185.
参考文献 2
Zhu Y,Huo C J.The impact of agricultural production efficiency on agricultural carbon emissions in China[J].Energies,2022,15(12):4464-4464.
参考文献 3
Alimu A,She D L,Liu Z P,et al.Application of biochar and polyacrylamide to revitalize coastal saline soil quality to improve rice growth[J].Environmental Science and Pollution Research International,2023,7:18731-18747.
参考文献 4
胡海清,罗斯生,罗碧珍,等.林火干扰对森林生态系统土壤有机碳的影响研究进展[J].生态学报,2020,40(6):1839-1850.
参考文献 5
Zhao X Y,Zhang W Q,Feng Y J,et al.Soil organic carbon primarily control the soil moisture characteristic during forest restoration in subtropical China[J].Frontiers in Ecology and Evolution,2022,10:976.
参考文献 6
Yahya K,Neda G,Rosa F.Soil carbon stocks can be negatively affected by land use and climate change in natural ecosystems of semi-arid environment of Iran[J].Geoderma Regional,2022:31:e00591.
参考文献 7
杜雪,王海燕,邹佳何,等.长白山北坡云冷杉阔叶混交林土壤有机碳分布特征及其影响因素[J].生态环境学报,2022,31(4):663-669.
参考文献 8
Liu W X,Wei Y X,Li R C,et al.Improving soil aggregates stability and soil organic carbon sequestration by no-till and legume-based crop rotations in the north china plain[J].The Science of the Total Environment,2022,847:157518.
参考文献 9
Wang F,Zhang X X,Neal A L,et al.Evolution of the transport properties of soil aggregates and their relationship with soil organic carbon following land use changes[J].Soil & Tillage Research,2022,215:105226.
参考文献 10
张维理,Kolbe H,张认连.土壤有机碳作用及转化机制研究进展[J].中国农业科学,2020,53(2):317-331.
参考文献 11
张雨萌,郭艳杰,张丽娟,等.生物炭配合深松对土壤团聚体及有机碳的影响[J].水土保持通报,2022,42(5):368-375,385.
参考文献 12
Xu P D,Wu J,Wang H T,et al.Combined application of chemical fertilizer with green manure increased the stabilization of organic carbon in the organo-mineral complexes of paddy soil[J]. Environmental Science and Pollution Research International,2023,30(2):2676-2684.
参考文献 13
Laub M,Schlichenmeier S,Vityakon P,et al.Litter quality and microbes explain aggregation differences in a tropical sandy soil[J].Journal of Soil Science and Plant Nutrition,2021,22(1):1191.
参考文献 14
Kottkamp A I,Nathan J C,Palmer M A,et al.Physical protection in aggregates and organo-mineral associations contribute to carbon stabilization at the transition zone of seasonally saturated wetlands[J].Wetlands,2022,42(5):1-17.
参考文献 15
何平,刘健,余坤勇,等.南方竹林地土壤有机碳空间异质性研究[J].土壤通报,2016,47(2):278-286.
参考文献 16
Lal R.Soil carbon sequestration impacts on global climate change and food security[J].Science,2004,304(5677):1623-1627.
参考文献 17
张健乐,曾小英,史东梅,等.生物炭对紫色土坡耕地侵蚀性耕层土壤有机碳的影响[J].环境科学,2022,43(4):2209-2218.
参考文献 18
Huys R,Poirier V,Bourget M Y,et al.Plant litter chemistry controls coarse-textured soil carbon dynamics[J].Journal of Ecology,2022,110(12):2911-2928.
参考文献 19
Wei L,Ge T D,Zhu Z K,et al.Comparing carbon and nitrogen stocks in paddy and upland soils:Accumulation,stabilization mechanisms,and environmental drivers[J].Geoderma,2021:398:115121.
参考文献 20
Wang L,Mandeep K,Zhang P,et al.Effect of different agricultural farming practices on microbial biomass and enzyme activities of celery growing field soil[J].International Journal of Environmental Research and Public Health,2021,18(23):12862.
参考文献 21
潘根兴,丁元君,陈硕桐,等.从土壤腐殖质分组到分子有机质组学认识土壤有机质本质[J].地球科学进展,2019,34(5):451-470.
参考文献 22
Li F L,Kong Q B,Zhang Q,et al.Spent mushroom substrates affect soil humus composition,microbial biomass and functional diversity in paddy fields[J].Applied Soil Ecology,2020,149(C):103489.
参考文献 23
Liu Y L,Ge T D,Zhu Z K,et al.Carbon input and allocation by rice into paddy soils:a review[J].Soil Biology and Biochemistry,2019,133:97-107.
参考文献 24
Xia Y S,McSweeney K,Wander M M.Digital mapping of agricultural soil organic carbon using soil forming factors:a review of current efforts at the regional and national scales[J].Frontiers in Soil Science,2022,2:890437.
参考文献 25
Geng N,Kang X R,Yan X X,et al.Biochar mitigation of soil acidification and carbon sequestration is influenced by materials and temperature[J].Ecotoxicology and Environmental Safety,2022,232:113241.
参考文献 26
Fang X,Zhu Y L,Liu J D,et al.Effects of moisture and temperature on soil organic carbon decomposition along a vegetation restoration gradient of subtropical china[J].Forests,2022,13(4):578.
参考文献 27
Mioko T,Vidya S.Warming and labile substrate addition alter enzyme activities and composition of soil organic carbon[J]. Frontiers in Forests and Global Change,2021,4:691302.
参考文献 28
Yu H,Sui Y Y,Chen Y M,et al.Soil organic carbon mineralization and its temperature sensitivity under different substrate levels in the mollisols of northeast china[J].Life,2022,12(5):712.
参考文献 29
Du W W,Wang D,Wu X D,et al.Effects of forest types on soc and doc in the permafrost region of the daxing’anling mountains[J].Processes,2022,10(7):1293.
参考文献 30
Murugan R,Djukic I,Keiblinger K,et al.Spatial distribution of microbial biomass and residues across soil aggregate fractions at different elevations in the central austrian alps[J].Geoderma,2019,339:331-338.
参考文献 31
Wilhelm R C,Lynch L,Webster T M,et al.Susceptibility of new soil organic carbon to mineralization during dry-wet cycling in soils from contrasting ends of a precipitation gradient[J].Soil Biology and Biochemistry,2022,169:108681.
参考文献 32
江熳,卜崇峰,郭琦,等.不同降水条件下生物结皮覆盖对沙地土壤有机碳的影响[J].应用生态学报,2022,33(7):1764-1772.
参考文献 33
Zheng P F,Wang D D,Yu X X,et al.Effects of drought and rainfall events on soil autotrophic respiration and heterotrophic respiration[J].Agriculture,Ecosystems and Environment,2021:308:107267.
参考文献 34
Mathieu S,Susana P,Thierry G,et al.Experimental precipitation reduction slows down litter decomposition but exhibits weak to no effect on soil organic carbon and nitrogen stocks in three mediterranean forests of southern france[J].Forests,2022,13(9):1485.
参考文献 35
叶思源,尚鹤,陈展,等.不同浓度 CO2 对马尾松幼苗光合特性及单萜烯释放的影响[J].南京林业大学学报(自然科学版),2020,44(6):71-78.
参考文献 36
Zhou X,Lu Y H,Liao Y L,et al.Substitution of chemical fertilizer by chinese milk vetch improves the sustainability of yield and accumulation of soil organic carbon in a double-rice cropping system[J].Journal of Integrative Agriculture,2019,18(10):2381-2392.
参考文献 37
任立军,李金,邹洪涛,等.生物有机肥配施化肥对设施土壤养分含量及团聚体分布的影响[J].土壤,2023,55(4):756-763.
参考文献 38
贾璇,赵冰,吴昊天,等.餐厨垃圾调理剂对果园土壤团聚体组成及分布的影响[J].环境科学研究,2020,33(9):2163-2168.
参考文献 39
Wang Q J,Zhang L,Zhang J C.Effects of compost on the chemical composition of SOM in density and aggregate fractions from rice-wheat cropping systems as shown by solid-state 13C-NMR spectroscopy[J].Zeitschrift Fuer Pflanzenernaehrung Und Bodenkunde,2012,175(6):920-930.
参考文献 40
Mao X L,Lu K P,Sun T,et al.Effect of Long-term fertilizer application on the stability of organic carbon in particle size fractions of a paddy soil in Zhejiang Province,China[J]. Environmental Science,2015,36(5):1827.
参考文献 41
张婧婷,石浩,田汉勤,等.1981—2019 年华北平原农田土壤有机碳储量的时空变化及影响机制[J].生态学报,2022,42(23):9560-9576.
参考文献 42
Xie M M,Zhang T Y,Liu S S,et al.Profile soil organic and inorganic carbon sequestration in maize cropland after long-term straw return[J].Frontiers in Environmental Science,2023,11:1095401.
参考文献 43
Gan J W,Qiu C,Han X Z,et al.Effects of 10 years of the return of corn straw on soil aggregates and the distribution of organic carbon in a mollisol[J].Agronomy,2022,12(10):2374.
参考文献 44
An S Q,Gong L,Li Y M,et al.Soil organic carbon components and their correlation with soil physicochemical factors in four different land use types of the northern tarim basin[J]. Environmental Science,2018,39(7):3382-3390.
参考文献 45
王永栋,武均,蔡立群,等.秸秆还田量对陇中旱作麦田土壤团聚体稳定性和有机碳含量的影响[J].干旱地区农业研究,2022,40(2):232-239,249.
参考文献 46
Alioum P S,Kouogueu G S,Mediesse F K,et al.Effect of organic and mineral fertilizers on the growth and production parameters of maize(zea mays L.)at djalingo in the north region of cameroon[J].International Journal of Plant & Soil Science,2022,34(11):152-161.
参考文献 47
李凯,窦森,韩晓增,等.长期施肥对黑土团聚体中腐殖物质组成的影响[J].土壤学报,2010,47(3):579-583.
参考文献 48
Zhang M,Cheng G,Feng H,et al.Effects of straw and biochar amendments on aggregate stability,soil organic carbon,and enzyme activities in the Loess Plateau,China[J].Environmental Science and Pollution Research International,2017,24(11):108-120.
参考文献 49
Liu C,Lu M,Cui J,et al.Effects of straw carbon input on carbon dynamics in agricultural soils:a meta-analysis[J]. Global Change Biology,2014,20(5):1366-1381.
参考文献 50
Xu P D,Wu J,Wang H,et al.Combined application of chemical fertilizer with green manure increased the stabilization of organic carbon in the organo-mineral complexes of paddy soil[J]. Environmental Science and Pollution Research International,2022,30(2):2627-2689.
参考文献 51
黄磊,张然,陈雅丽,等.氮肥施用和秸秆还田对东北地区褐土稳定性有机碳的影响[J].2024,43(3):581-589.
参考文献 52
翟龙波,章熙锋,陈靖,等.施肥对坡地土壤团聚体与磷素赋存形态的影响[J].西南大学学报(自然科学版),2019,41(7):105-115.
参考文献 53
Zhang Q Q,Duan P P,Anna G,et al.Mitigation of carbon dioxide by accelerated sequestration from long-term biochar amended paddy soil[J].Soil & Tillage Research,2021,209:104955.
参考文献 54
Xiang H M,Zhang L L,Wen D Z.Change of soil carbon fractions and water-stable aggregates in a forest ecosystem succession in south china[J].Forests,2015,6(8):2703-2718.
参考文献 55
Qiu S J,Nie J,Long S P,et al.Aggregate mass and carbon stocks in a paddy soil after long-term application of chemical or organic fertilizers[J].Soil Use and Management,2022,38(4):1564-1577.
参考文献 56
赵冬,许明祥,刘国彬,等.用显微CT研究不同植被恢复模式的土壤团聚体微结构特征[J].农业工程学报,2016,32(9):123-129.
参考文献 57
李新悦,李冰,莫太相,等.长期秸秆还田对水稻土团聚体及氮磷钾分配的影响[J].应用生态学报,2021,32(9):3257-3266.
参考文献 58
Yassine B,Aicha R,Rachid A,et al.Soil aggregate stability mapping using remote sensing and gis-based machine learning technique[J].Frontiers in Earth Science,2021(9):748859.
参考文献 59
Ghorbani M,Amirahmadi E,Neugschwandtner R W,et al. The impact of pyrolysis temperature on biochar properties and its effects on soil hydrological properties[J].Sustainability,2022,14(22):14722.
参考文献 60
Gupta V V S R,Germida J J.Soil aggregation:Influence on microbial biomass and implications for biological processes[J]. Soil Biology and Biochemistry,2015,80:A83-A89.
参考文献 61
Mouri G,Shinoda S,Golosov V,et al.Estimating the collapse of aggregated fine soil structure in a mountainous forested catchment[J].Journal of Environmental Management,2014,138:124-131.
参考文献 62
Yudina A V,Klyueva V V,Romanenko K A,et al.Microwithin macro:How micro-aggregation shapes the soil pore space and water-stability[J].Geoderma,2022,415:115771.
参考文献 63
马文明,刘超文,周青平,等.高寒草地灌丛化对土壤团聚体生态化学计量学及酶活性的影响[J].草业学报,2022,31(1):57-68.
参考文献 64
Barbfris E,Marsan F A,Boero V,et al.Aggregation of soil particles by iron oxides in various size fractions of soil b horizons [J].Journal of Soil Science,1991,42(4):535-542.
参考文献 65
Rillig M C,Muller L A,Lehmann A.Soil aggregates as massively concurrent evolutionary incubators[J].The ISME Journal,2017,11(9):1943-1948.
参考文献 66
徐香茹,汪景宽.土壤团聚体与有机碳稳定机制的研究进展 [J].土壤通报,2017,48(6):1523-1529.
参考文献 67
Li C,Yu Z Z,Lin J,et al.Forest conversion and soil depth can modify the contributions of organic and inorganic colloids to the stability of soil aggregates[J].Forests,2022,13(4):546.
参考文献 68
Li Y,Shen Q,An X C,et al.Organomineral fertilizer application enhances perilla frutescens nutritional quality and rhizosphere microbial community stability in karst mountain soils [J].Frontiers in Microbiology,2022,13:1058067.
参考文献 69
Kofi A C,Huang J,Han T F,et al.Fertilizer combination effects on aggregate stability and distribution of aluminum and iron oxides[J].Journal of Plant Nutrition and Soil Science,2022,185(2):251-263.
参考文献 70
Asmita G,Jose G,Peter K,et al.Manure and inorganic fertilization impacts on soil nutrients,aggregate stability,and organic carbon and nitrogen in different aggregate fractions[J].Archives of Agronomy and Soil Science,2022,68(9):1261-1273.
参考文献 71
Sun L P,He L R,Wang G L,et al.Natural vegetation restoration of Liaodong oak(Quercus liaotungensis Koidz.)forests rapidly increased the content and ratio of inert carbon in soil macroaggregates[J].Journal of Arid Land,2019,11(3):928-938.
参考文献 72
肖玖军,邢丹,毛明明,等.AM 真菌对桑树根围土壤团聚体的影响机制[J].土壤学报,2020,57(3):773-782.
参考文献 73
郭金瑞,宋振伟,彭宪现,等.东北黑土区长期不同种植模式下土壤碳氮特征评价[J].农业工程学报,2015,31(6):178-185.
参考文献 74
Khan F U,Khan A A,Li K,et al.Influences of long-term crop cultivation and fertilizer management on soil aggregates stability and fertility in the loess plateau,northern china[J].Journal of Soil Science and Plant Nutrition,2022,22(2):1-12.
参考文献 75
Yan L,Jiang X X,Ji X N,et al.Distribution of water-stable aggregates under soil tillage practices in a black soil hillslope cropland in northeast china[J].Journal of Soils and Sediments,2020,20(3):24-31.
参考文献 76
孙文泰,马明.黄土高原长期覆膜苹果园土壤物理退化与细根生长响应[J].植物生态学报,2021,45(9):972-986.
参考文献 77
孙佳,夏江宝,苏丽,等.黄河三角洲盐碱地不同植被模式的土壤改良效应[J].应用生态学报,2020,31(4):1323-1332.
参考文献 78
Li K S,Geng Y H,Li Q X,et al.Characterization of the Microstructural Properties of Saline-Alkali Soils in the Yellow River Delta,China[J].Communications in Soil Science and Plant Analysis,2021,52(13):1527-1543.
参考文献 79
李媛媛,朱源山,郭长城,等.津冀3个盐渍化沼泽湿地土壤团聚体有机碳的分布特征[J].天津师范大学学报(自然科学版),2019,39(6):51-61.
参考文献 80
魏守才,谢文军,夏江宝,等.盐渍化条件下土壤团聚体及其有机碳研究进展[J].应用生态学报,2021,32(1):369-376.
参考文献 81
裴志福,红梅,兴安,等.秸秆还田条件下盐渍土团聚体中有机碳化学结构特征[J].应用生态学报,2021,32(12):4401-4410.
参考文献 82
Bronick C J,Lal R.Soil structure and management:a review[J]. Geoderma,2004,124(1):3-22.
参考文献 83
王纯,陈晓旋,陈优阳,等.水盐梯度对闽江河口湿地土壤水稳性团聚体分布及稳定性的影响[J].环境科学学报,2019,39(9):3117-3125.
参考文献 84
Ishiguro M,Nakajima T.Hydraulic conductivity of an allophanic andisol leached with dilute acid solutions[J].Soil Science Society of America Journal,2000,64(3):813-818.
参考文献 85
Tedeschi A,Dell A R.Effects of irrigation with saline waters,at different concentrations,on soil physical and chemical characteristics[J].Agricultural Water Management,2005,77(1-3):308-322.
参考文献 86
Haynes R J,Beare M H.Influence of six crop species on aggregate stability and some labile organic matter fractions[J]. Soil Biology & Biochemistry,1997,29(11-12):1647-1653.
参考文献 87
Bai Y,Xue W,Yan Y.The challenge of improving coastal mudflat soil:Formation and stability of organo-mineral complexes [J].Land Degradation & Development,2018,29(4):1074-1080.
参考文献 88
Sun Y M,Chen X L,Zhong A N,et al.Variations in microbial residue and its contribution to SOC between organic and mineral soil layers along an altitude gradient in the wuyi mountains[J]. Forests,2023,14(8):1678.
参考文献 89
Raza T,Qadir M F,Khan K S,et al.Unrevealing the potential of microbes in decomposition of organic matter and release of carbon in the ecosystem[J].Journal of Environmental Management,2023,344:118529-118529.
参考文献 90
龙静泓,雷琬莹,李娜,等.不同土地利用方式对黑土团聚体内有机碳红外光谱特征的影响[J].土壤与作物,2021,10(4):373-384.
参考文献 91
秦泽峰,谢沐希,张运龙,等.丛枝菌根真菌介导的土壤有机碳稳定机制研究进展[J].植物营养与肥料学报,2023,29(4):756-766.
参考文献 92
冯颖,温晓兰,石温慧,等.绿肥化肥配施对土壤团聚体及其有机碳分布的影响[J].南方农业,2021,15(19):11-13,21.
参考文献 93
陈超,宓文海,居静,等.长期不同施肥模式对中低产黄泥田土壤团聚体组成及碳组分的影响[J].华北农学报,2022,37(3):168-174.
参考文献 94
Rao K K,Samal S K,Kumar M,et al.Carbon sequestration potential of rice-based cropping systems under different tillage practices[J].Agrochimica,2021,65(3):229-246.
参考文献 95
Hati K M,Jha P,Dalal R C,et al.50 years of continuous no-tillage,stubble retention and nitrogen fertilization enhanced macro-aggregate formation and stabilisation in a Vertisol[J].Soil & Tillage Research,2021,214:105163.
参考文献 96
Rahman M M,Kamal M Z U,Ranamukhaarachchi S,et al. Effects of organic amendments on soil aggregate stability,carbon sequestration,and energy use efficiency in wetland paddy cultivation[J].Sustainability,2022,14(8):4475.
参考文献 97
Zhu K,Li W J,Yang S,et al.Intense wet-dry cycles weakened the carbon sequestration of soil aggregates in the riparian zone[J]. Catena,2022,212:106117.
参考文献 98
Niu Z R,Su Y Z,An F J,et al.Changes in soil carbon and nitrogen content,associated with aggregate fractions,after conversion of sandy desert to irrigation farmland,northwest china[J].Soil Use and Management,2021,38(1):396-410.
参考文献 99
张旭冉,张卫青.土壤团聚体研究进展[J].北方园艺,2020(21):131-137.
参考文献 100
Regelink I C,Stoof C R,Rousseva S,et al.Linkages between aggregate formation,porosity and soil chemical properties[J]. Geoderma,2015,247-248:224-237.
参考文献 101
Souza I F,Archanjo B S,Hurtarte L C C,et al.Al-/fe-(hydr)oxides-organic carbon associations in oxisols — from ecosystems to submicron scales[J].Catena,2017,154:163-172.
参考文献 102
Chen M M,Zhang S R,Liu L,et al.Organic fertilization increased soil organic carbon stability and sequestration by improving aggregate stability and iron oxide transformation in saline-alkaline soil[J].Plant and Soil,2022,474(1):233-249.
参考文献 103
Krause L,Klumpp E,Nofz I,et al.Colloidal iron and organic carbon control soil aggregate formation and stability in arable luvisols[J].Geoderma,2020,374:114421.
参考文献 104
王正伟,武均,李婉玲,等.不同土地利用方式对陇东黄土高原土壤团聚体稳定性的影响[J].作物研究,2022,36(3):238-244.
参考文献 105
李芳,陈林,李月,等.真菌对土壤团聚体形成的影响研究进展[J].河南农业大学学报,2021,55(5):800-806,905.
参考文献 106
Dahiya G,Bhardwaj K K,Ahlawat I,et al.Glomalin:a miracle protein for carbon sequestration[J].International Journal of Plant & Soil Science,2022,34(9):80-86.
参考文献 107
Javad V M,Sayyari Z M H,Azarmi A F,et al.The effect of biochars produced from barberry and jujube on erosion,nutrient,and properties of soil in laboratory conditions[J].Soil & Tillage Research,2022,219:105345.
参考文献 108
Yan M F,Li X R,Liu Y,et al.Biochar enhanced soil aggregation and c-related enzyme activity in post-mining land on the loess plateau,china[J].Land Degradation & Development,2022,33(7):1054-1061.
参考文献 109
Gu W Q,Zhang W M,Xiu L Q,et al.Soil aggregate variation in two contrasting rice straw recycling systems for paddy soil amendment over two years[J].Archives of Agronomy and Soil Science,2023,69(14):3044-3059.
参考文献 110
万连杰,李俊杰,张绩,等.有机肥替代化肥技术研究进展 [J].北方园艺,2021(11):133-142.
参考文献 111
张延,梁爱珍,张晓平,等.土壤团聚体对有机碳物理保护机制研究[J].土壤与作物,2015,4(2):85-90.
参考文献 112
宋丽萍,罗珠珠,李玲玲,等.苜蓿∶作物轮作模式对土壤团聚体稳定性及有机碳的影响[J].中国生态农业学报,2016,24(1):27-35.
参考文献 113
冷延慧,汪景宽,薛菁芳.连续施肥20年后棕壤团聚体分布和碳储量变化[J].土壤通报,2008,39(4):743-747.
参考文献 114
马文明,刘军,周青平,等.高寒草地灌丛化对土壤团聚体稳定性及有机碳分布特征的影响[J].土壤通报,2019,50(5):1108-1115.
参考文献 115
李建国,赵宴青,袁冯伟,等.滨海滩涂围垦对土壤团聚体分布及其有机碳富集的影响——以江苏省如东县垦区为例 [J].土壤通报,2018,49(3):552-559.
参考文献 116
Puget P,Chenu C,Balesdent J.Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates [J].European Journal of Soil Science,2000,51(4):595-605.
参考文献 117
Mustafa A,Xu M G,Shah S A A,et al.Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of southern china[J].Journal of Environmental Management,2020,270:110894.
参考文献 118
盛明,龙静泓,雷琬莹,等.秸秆还田对黑土团聚体内有机碳红外光谱特征的影响[J].土壤与作物,2020,9(4):355-366.
参考文献 119
潘英杰,何志瑞,刘玉林,等.黄土高原天然次生林植被演替过程中土壤团聚体有机碳动态变化[J].生态学报,2021,41(13):5195-5203.
参考文献 120
Abrar M M,Xu M G,Shah S A A,et al.Variations in the profile distribution and protection mechanisms of organic carbon under long-term fertilization in a Chinese Mollisol[J].Science of the Total Environment,2020,723:138181.
参考文献 121
Cates A M,Jilling A,Tfaily M M,et al.Temperature and moisture alter organic matter composition across soil fractions[J]. Geoderma,2022,409:115628.
参考文献 122
Liu K,Xu Y Z,Feng W T,et al.Modeling the dynamics of protected and primed organic carbon in soil and aggregates under constant soil moisture following litter incorporation[J]. Soil Biology and Biochemistry,2020,151(prepublish):108039.
参考文献 123
Li Y X,Yu P J,Shen L C.Changes in soil aggregate stability and aggregate-associated organic carbon during old-field succession in karst valley[J].Environmental Monitoring and Assessment,2021,194(1):15.
参考文献 124
Chen S Y,Cao Y Q,Zhang T T,et al.Improvement of soil aggregate-associated carbon sequestration capacity after 14 years of conservation tillage[J].Experimental Agriculture,2022,58:e55.
参考文献 125
Kan Z R,Liu W X,Liu W S,et al.Mechanisms of soil organic carbon stability and its response to no-till:A global synthesis and perspective[J].Global Change Biology,2021,28(3):693-710.
参考文献 126
Thai S,DavÃdek T Å,PavlÅ L.Causes clarification of the soil aggregates stability on mulched soil[J].Soil and Water Research,2022,17(2):91-99.
参考文献 127
Sun X L,Liu J T,Liu S T.Soil organic carbon fractions comparison after 40-year long-term fertilisation in  a wheatcorn rotation field[J].Soil and Water Research,2022,17(3):149-157.
参考文献 128
张家春,刘盈盈,贺红早,等.土壤团聚体与有机碳固定关系研究进展[J].福建农业学报,2016,31(3):319-325.
目录contents

    摘要

    土壤有机碳与土壤团聚体是评价土壤质量的重要指标,两者相互作用。土壤有机碳促进土壤团聚体的形成、土壤团聚体保护和固存土壤有机碳。回顾了近年来土壤有机碳与土壤团聚体的相关研究,分别梳理了土壤有机碳和土壤团聚体对土壤质量的意义以及影响因素,阐述了土壤有机碳与土壤团聚体间相互作用的机制。合理的施肥、耕作等农田管理措施能调控土壤微生物,改变土壤有机质物质的分解和有机碳固存及分解速率;同时影响土壤团聚体的结构和稳定性。土壤有机碳通过土壤有机和无机胶结作用、植物根系与菌丝作用以及有机物填充作用促进土壤团聚体的形成;反之,土壤团聚体通过将土壤有机碳进行包裹,减少土壤有机碳矿化,以实现对土壤有机碳的物理保护。综上,对未来提高土壤有机碳含量与增强土壤团聚体稳定性的研究重点进行了探讨,以期为提高土壤质量提供参考。

    Abstract

    Soil organic carbon and soil aggregates are important indexes for evaluating soil quality,and they interact with each other. Soil organic carbon promotes the formation of soil aggregates,and soil aggregates protect and sequester soil organic carbon. In this paper,the relevant studies on soil organic carbon and soil aggregates in recent years were reviewed, the significance and influencing factors of soil organic carbon and soil aggregates on soil quality were sorted out,and the interaction mechanism between soil organic carbon and soil aggregates was expounded. Reasonable fertilization,tillage and other farmland management measures could regulate soil microorganisms,change the decomposition of soil organic matter and the rate of organic carbon sequestration and decomposition. It also could affect the structure and stability of soil aggregates. Soil organic carbon promoted the formation of soil aggregates through soil organic and inorganic cementation,plant roots and mycelia and organic matter filling. On the contrary,soil aggregates could reduce soil organic carbon mineralization by wrapping soil organic carbon,so as to achieve physical protection of soil organic carbon. In summary,the research focus of increasing soil organic carbon content and enhancing soil aggregate stability in the future was discussed,in order to provide a reference for improving soil quality.

  • 近年来“三农问题”的提出使农业的可持续发展备受关注。农业可持续发展对解决农业自然资源短缺,提高粮食生产和改善农业生态环境极其重要[1-2]。而农业可持续发展、生态环境等与土壤质量密切相关[3]。土壤有机碳通过对土壤结构和功能的控制,调节土壤过程,提供土壤对生物量生产、生物多样性及水分储存等多种生态系统的服务。因此,土壤有机碳是评价土壤质量的重要指标[4-5]。土壤有机碳作为陆地生态系统中的最大碳库,其微小的变化会影响大气中 CO2 浓度的平衡和气候条件[6]。土壤有机碳还能够影响土壤中碳储量及土壤肥力[7]。土壤团聚体是土壤中重要的组成部分,土壤团聚体的变化能够引起土壤孔隙的结构变化,影响土壤物理、化学等循环过程,从而影响有机碳的周转。因此,土壤团聚体的形成和转化过程对增强土壤固碳和养分保持具有重要意义[8-9]

  • 土壤有机碳与团聚体对土壤肥力、作物产量、生态环境有着重要的影响[10]。土壤有机碳能促进团聚体的形成,当根系残留物、还田秸秆、有机肥等进入农田后,在土壤生物的作用下分解成一系列短链化合物,再与土壤矿物形成团聚体[11-12]。团聚体是土壤有机质的保持场所,土壤中大部分有机碳存在团聚体中[13]。其团聚过程是对土壤有机碳的物理保护,明确土壤有机碳与土壤团聚体的关系能够在一定程度上促进土壤质量的提高,对于提高农业生产和可持续发展及土壤学的深入研究具有重要的应用价值[14]

  • 1 土壤有机碳

  • 土壤有机碳是通过微生物作用所形成的腐殖质、动植物残体和微生物体的总称[15],是指土壤中各种形态的含碳有机物质[16]。土壤有机碳作为土壤中的重要组分,参与土壤碳循环过程[17]

  • 1.1 土壤碳循环

  • 在地球陆地碳循环中,约 80% 的碳以土壤有机碳形式存在于土壤中。因其占有量大,土壤有机碳微小的变化就可能会造成全球碳循环问题,也会带来气候问题[18-19]。土壤微生物分解、消耗进入到土壤中的动植物残体促进碳在土壤中的运转[20]。分解过程中产生的 CO2 释放到大气中供动植物利用。此外,在土壤微生物作用下形成的土壤腐殖质能够改良土壤,提高土壤保水、保肥等性能,促进土壤养分平衡[21-22]。同时,土壤有机碳经过土壤微生物作用,形成了地球生态系统中的碳、养分及其他物质的分解、转化与循环[23]

  • 1.2 土壤有机碳的影响因素

  • 自然环境中,温度、降水、光照等都是影响土壤有机碳的因素[24]。气温升高会增强土壤微生物的呼吸活性,导致细菌在土壤微生物中的比例上升,促进有机碳的分解[24-26]。另一方面,微生物群落的活性增强,从而产生更多的有机胶结物质,有机碳和胶结物质的进一步增加使得土壤中微团聚体更易于胶结,形成更多的土壤大团聚体[21]。同时,适宜的温度会影响植物的生长和土壤酶活性,植物生长速率的提升会加快土壤中有机碳的消耗,土壤酶活性增强也加速土壤有机碳的分解[27],最终会阻碍土壤团聚体的形成。Yu 等[28]研究发现,土壤有机碳矿化的温度敏感性在培养期间呈下降趋势,随着温度的升高,在较高的基碳水平上有较高的土壤有机碳矿化。如今绿色发展之路碳达峰、碳中和的开启,对解决全球变暖问题有促进作用,因此,更要对土壤碳库的变化提起重视。我国各地区气候、地形、水文等差异较大,因此,在探究土壤有机碳变化时还需考虑区域间的差异性[29]。降水能够堵塞土壤孔隙,在土壤内部造成厌氧环境,抑制微生物活性,减少有机碳的消耗[30]。Wilhelm 等[31] 研究发现,来自高雨区的土壤比暴露在少雨区的土壤具有更高的土壤有机碳。江熳等[32]也表明了随着降水量升高,藓类凋落物所需的分解时间逐渐减少,土壤有机碳总体上呈现递增的趋势。然而, Zheng 等[33]研究表明,降雨使土壤呼吸碳排放增加了 33%。Mathieu 等[34]研究发现随着降水量减少,森林有机层土壤有机碳减少了 74%。还有研究认为,降水会破坏表层土壤团聚体结构和土壤微生物的活性。由此可见,温度和降水对土壤有机碳有着正、负两面的影响,而正负影响的具体界限目前没有准确的研究结论。随着工业化进程加剧,酸雨问题日益严重,通常条件下,酸雨不利于土壤肥力的保持。叶思源等[35]通过原位试验模拟酸雨对马尾松幼苗土壤有机碳的影响,结果表明,酸雨能快速降低土壤中有效磷、速效钾、铵态氮、硝态氮含量,明显影响土壤团聚体分布,降低土壤有机碳、轻组有机碳和重组有机碳含量。可见,当下全球环境问题的加剧离不开温度、光照与水分等因素对有机碳循环的协同影响,未来还需进行深入研究。因此,在探究土壤有机碳变化时还需考虑区域间的差异性[29]

  • 化肥、有机肥和秸秆还田作为常见的农田管理措施,对农田土壤有机碳影响程度不同[36]。其中,有机肥最为显著,可提高 9.61%~54.28% 土壤有机碳[37],且随着有机肥投入量的增加,土壤有机碳增长速率会继续增大。研究发现,柑橘园施用有机肥可以改善土壤团聚体结构,增加土壤团聚体稳定性,进而促进土壤有机碳固定,改善团聚体中有机碳的分布状况,能够提升土壤有机碳含量 7.1%~10.6%[38-40]。氮磷钾无机肥可提高 23.3%~26.0% 的土壤有机碳增长速率[41]。秸秆还田平均增加 44% 土壤有机碳储量,并随着还田年限增加而增加[42]。Gan 等[43] 研究表明,连续 10 年秸秆还田后土壤总有机碳、轻组有机碳和重组有机碳含量均显著增加,且施用秸秆能提高当季白菜系统土壤有机碳 1.33 g/kg[44]。但是,当化肥、有机肥和秸秆还田的投入量超过农田作物及土壤微生物对碳的需求时,土壤有机碳的积累速率会显著下降。例如当秸秆还田量超过 7000 kg/hm2 时,使土壤碳氮比失衡,没有足够的氮素供应时,微生物繁殖活动被抑制,导致秸秆腐解率降低[45]。但有机肥的缓慢分解特性促使土壤微生物能够获得持久营养物质,最终能够显著增加农田土壤有机碳。

  • 随着探究的不断深入,发现单独多施化肥或有机肥比少施肥均可显著提高农田土壤有机碳含量,而化肥有机肥配施的固碳效果最好[46],前人指出,长期施用化肥或有机无机肥料配施会使土壤中富里酸、胡敏酸以及胡敏素的含量升高[47]。施用无机肥一般会使土壤中有机碳的含量明显增加[48-49]。并且研究表明,化肥配绿肥促进了土壤中难分解碳与 Fe/Al 氧化物的结合,显著提高了水稻土有机和无机复合体中有机碳的稳定性[50]。黄磊等[51]研究发现,氮肥和秸秆配施更有利于土壤有机碳的积累,增加了土壤中的植物残渣和矿质结合的胡敏素类有机质,减少了腐殖酸类有机质。翟龙波等[52]研究发现,长期施肥均能够在不同程度上提高土壤中有机碳及营养元素含量,但有机无机配合施肥能够最有效保持肥力,利于土壤有机碳的转化。因此,施肥能增强土壤固碳,但需要注意的是,生产过程中有机无机肥料的配比及有效性未能普及,仍需要更多研究来验证更高效的肥料配比,同时也要考虑到不同肥料之间的互作效应。

  • 2 土壤团聚体

  • 土壤团聚体分为 4 个组分:粗大团聚体 (>2000 μm)、细大团聚体(250~2000 μm)、微团聚体(53~250 μm)和粉黏粒(<53 μm)[53]。也可根据其抗外力作用分为稳定性团聚体和非稳性团聚体[54]。其中水稳性团聚体是一类关注度较高的稳定性团聚体[55]。但是,小粒径大团聚体是碳储量的主要粒级。

  • 2.1 土壤团聚体的作用和意义

  • 土壤团聚体是土壤重要组成部分[56]。土壤团聚体的大小、数量、比例和微形态反映土壤结构的稳定性,对于表征土壤质量有着重要的作用[57-58]。其对土壤的影响有以下几点:(1)土壤团聚体的自身结构影响土壤的孔隙状况,协调土壤使其维持在水、肥、气、热的平衡状态[59],而土壤孔隙进一步影响土壤通气透水性,团聚体良好则代表土体的通气性更强[60]。降水或灌溉条件下,水分通过空隙进入土层,有效减少了地表径流。同时,团聚体的保水能力能够改变土壤中水气含量,有利于植物水分和养分吸收[61]。(2)土壤团聚体分解的结构单元是评价土壤结构水稳性的因素,团聚体能够维持并且稳定土壤,使土壤疏松,提高土壤结构的稳定性[62]。(3)土壤团聚体影响土壤中酶的种类以及酶的活性[63]

  • 2.2 影响土壤团聚体形成的因素

  • 土壤团聚体的形成过程是由很多因素决定的, 包含物理、化学、生物等多方面因素。团聚体形成的基础是土壤矿物颗粒,一方面可与有机质、黏土、阳离子存在吸附和结合作用形成微团聚体[64]。 微团聚体再由多种土壤矿物、有机物和微生物及其代谢物共同组成后,经一系列作用下形成大团聚体;另一方面可以与植物微生物及其分泌物粘结形成细菌菌落微聚体,进行聚合形成大团聚体,再破碎成微团聚体[65]。团聚体的形成过程可分为两个阶段,第一阶段是在外界力的作用下或者植物生长过程中产生的压迫作用下,矿物质和次生黏土矿物颗粒粘结成团。第二阶段是黏团经团聚作用形成团聚体[66]。在形成过程中,有机质和铁铝氧化物作为重要胶结物质促进团聚体形成,包括有机质与矿物颗粒之间的键合作用和有机质与金属氧化物之间的相互作用[67]。而外源有机物的添加是形成土壤团聚体、提升土壤肥力和提高作物产量的有效方式[68]。植物生长所需的氮、磷、钾等营养元素,大多通过向土壤中施加肥料获得补充。当肥料施入土壤后,土壤中的微生物会与之发生化学作用,促进脱离结构的形成。Kofi 等[69]研究表明,肥料处理产生了更多的大团聚体(2~0.25 mm),这意味着更高的团聚体稳定性指标,如平均质量直径和几何平均直径。氮、磷和钾肥是农业生产中最常用的肥料。Asmita 等[70]研究表明,高氮量处理使团聚体相关土壤有机碳和总氮浓度提高了 40%~50%,土壤团聚体含量及稳定性随氮含量增加而增加,同时增强了土壤的固碳能力。

  • 团聚体的形成也依赖于凋落物、植物根际及微生物代谢。Sun 等[71] 研究表明,0.5~1.0 mm 直径根系和凋落叶的生物量影响表层土壤团聚体组分含量,表层土壤凋落物生物量对团聚体稳定性影响显著。可见,土壤团聚体的形成容易受到凋落物影响。肖玖军等[72]研究表明,丛枝菌根真菌在与桑树根系共生时,大团聚体较不稳定,容易在外界条件下分解,而微团聚体对土壤有机碳有着较强物理保护,增强对于土壤有机碳的固持作用。且丛枝菌根真菌作为分布广泛的微生物,能够利用自身丰富的菌丝网络将土壤固定在一起,促使土壤颗粒按顺序排列,提高土壤团聚体稳定性。

  • 种植方式以及种植模式通过对土壤的扰动,间接对土壤结构、土壤固碳能力和作物产量造成一定影响。郭金瑞等[73]研究表明,土壤碳变化与耕作方式、种植模式密切相关,如在轮作中插入豆科作物可显著提高土壤中的有机碳。Khan 等[74]研究表明,苜蓿样地的总氮和总磷在各深度均显著高于其他样地,长期豆科 / 苜蓿栽培显著提高了团聚体稳定性、土壤力学组成和土壤肥力。随着研究的不断深入,Yan 等[75]发现,免耕较其他两种耕作还能增加 0~20 cm 土层 >5 mm 粒级土壤团聚体含量和稳定性。北方地区覆膜技术能够影响微生物对碳的固定,具有增温保墒作用,短期覆膜对土壤团聚体有良好的保护作用,但连续覆膜会改变土壤质地组成和孔隙结构,降低土壤团聚力稳性和水稳性[76],因此,在种植过程中,应注重覆膜的覆盖时间,对膜内外温差做监测并适时揭膜。

  • 盐渍化对土壤团聚体及有机碳形成和稳定具有一定的阻碍作用。盐碱化土壤通常伴随着盐分离子含量高、土壤孔隙小,微生物活性低等特点[77-78]。李媛媛等[79]研究表明,津冀地区盐渍化梯度能抑制植物生长,并抑制微生物对有机质的矿化分解。盐渍化通过破坏团聚体以及分散土壤黏粒破坏土壤结构[80],其土壤胶体中含有较多的交换性钠,分散性较强,会破坏土壤团粒结构,加速土壤有机碳流失,最终导致盐渍化土壤碳库极不稳定[81]。盐渍化土壤遇水后,土壤盐溶液中的离子通过离子交换或阳离子桥作用改变土壤胶体的离子组成,分散破坏土壤中的胶结剂[82-83],使土壤发生湿胀、崩析等物理变化[84],增加团聚体的破碎及其有机碳的矿化分解。在盐渍化土壤中,多价阳离子往往被 Na+ 代替,而 Na+ 既是一种强的分散剂[85],又能加快有机碳的矿化分解; 此外,盐渍化土壤较高的 pH 值导致黏土颗粒表面负电荷增加,加剧了颗粒间的排斥作用。盐渍化土壤的这些特殊物理、化学性质都对团聚体的形成和稳定产生障碍作用[86]。而土壤团聚体的形成和稳定可以促进土壤孔隙结构的发育,增加盐分淋洗,减少盐分对微生物和植物的胁迫,促进土壤结构改善,增加土壤有机质含量,提高土壤肥力[87]

  • 3 土壤团聚体与有机碳的关系

  • 3.1 有机碳积累与稳定机制

  • 土壤有机碳稳定性由有机碳不同组分的构成及其与环境的相互作用决定。土壤有机碳组分来自不同来源且对影响因素有着不同的响应机制。其中,土壤有机碳的稳定主要受土壤团聚体、土壤矿物和土壤微生物等环境的影响[88-89]。土壤团聚体能产生物理隔离作用,将土壤有机碳进行包裹,避免受微生物分解利用。土壤中稳定性团聚体数量与土壤有机碳稳定性呈正相关,大团聚体保护作用低于微团聚体,在农田生态系统中,土壤团聚体稳定性主要受土地利用方式影响[90]。除物理隔离,矿物学保护机制在土壤有机碳稳定性过程中也有显著作用。微团聚体中有机碳与矿物的复合体也能够稳定保留在土壤中。总的来说,土壤有机碳的积累与稳定机制存在多样性是团聚体物理保护-土壤矿物-土壤微生物之间相互作用的结果[91]

  • 3.2 土壤有机碳促进团聚体形成

  • 不同地区不同试验处理下有机碳团聚体关系见表1。土壤有机碳是形成土壤团聚体的主要胶结物质之一,有机碳与土壤团聚体的形成及稳定性紧密相关,土壤中有机碳含量的升高一方面可以增加土壤对碳素的固定和保持,降低土壤的 CO2 排放量,促进土壤团聚体的固碳效应[97-98];另一方面也能够增强团聚体间的粘结力和抗张强度,并使其稳定性得到提升。土壤有机碳主要通过以下 3 种作用参与土壤团聚体的形成:

  • (1)有机无机胶结作用。土壤中的胶结物质分为有机胶结物质、无机胶结物质和有机无机复合体,均为土壤团聚体形成和稳定的基础。土壤有机碳作为有机胶结物质,不仅影响团聚体的形成和固碳能力,还影响团聚体稳定性[99]。铁铝氧化物是土壤中表面活性较强的无机胶结物质,在有机无机复合过程中起到连接作用,通过配位交换或者形成配位键,吸附或与有机碳、黏粒相结合,增强团聚体稳定性(图1)。而有机无机复合的过程即为团聚体形成的本质,钙离子和铝离子与有机质复合的过程是形成复合体的重要机制,对团聚体的形成和稳定起到了重要作用[100-101]。 Chen 等[102]研究表明,添加有机肥后,在团聚体中芳烃-C 可与土壤 FeO 形成芳烃-Fe 配合物,保留在团聚体中,并形成有机铁复合物,增加团聚体稳定性。不仅如此,形成的有机无机复合体也被认为是土壤碳库中的惰性碳库,增强土壤有机碳抗矿化和微生物分解能力,利于有机碳积累和固存[103]

  • 不同土地利用方式也能够通过影响土壤有机碳含量,进而影响团聚体的含量与团聚体结构的稳定性。林地、园地与耕地 0~20 cm 表层土相比,土壤的有机碳含量较多,主要原因是与耕地相比,林地、园地表层有较多植被凋落物,优先积累有机碳,故土壤有机质含量多。之后通过相互胶结形成土壤团聚体,因而易形成≥ 0.25 mm 机械稳定性团聚体和≥ 0.25 mm 水稳性团聚体,进而使土壤团聚体的稳定性增加,有利于团聚体的形成并提高其稳定性。弃耕种树可增加土壤团聚体含量,改善土壤结构[104]。由此可知,土壤中有机碳含量的增多,对于表土土壤团聚体含量有明显提高。那么,随着土壤深度的增加,有机碳的增加能否仍对土壤团聚体中水稳性团聚体含量有明显影响,这还有待研究。

  • 表1 不同地区不同试验处理下有机碳团聚体关系

  • 图1 铁铝氧化物与有机质胶结作用

  • (2)根系和菌丝作用。在种植过程中一些生物根系的生物特性、化学性质也会直接促进有机碳含量增加和土壤水稳性团聚体形成,一些豆科植物则通过根系分泌物增加微生物活性,分解有机物,促进团聚体形成。根系生物量和纤维素储量的降低推动了土壤有机碳组分储量的减少。促进团聚体形成的真菌种类主要包括丛枝菌根真菌、外生菌根真菌和腐生真菌[105]。Dahiya 等[106]研究发现,丛枝菌根真菌的菌丝分解释放相关土壤蛋白,可以有效提高土壤有机碳含量,进而促进土壤内不同团聚体结构的形成。因此,关注根系、菌丝与土壤有机碳的相互作用对团聚体形成有重要影响。

  • (3)有机物填充作用。含碳有机物进入农田图2 有机物填充作用后,在土壤生物作用下分解为一系列短链化合物,再通过生物构建作用与土壤矿物颗粒形成土壤团聚体,并以此对多项土壤肥力性状发挥积极作用(图2)。Javad 等[107]研究发现,添加生物炭后微生物呼吸、微生物量碳、土壤团聚体均有增加,有利于促进微生物活性和生长,可以提高大团聚体的比例和稳定性[108]。Gu 等[109]研究表明,生物炭与秸秆的添加改善了大团聚体,显著提高了土壤全碳和团聚体有机碳,对团聚体的形成和稳定具有持续的正向促进作用,且生物炭对促进大团聚体形成和土壤团聚体稳定性的作用更大。在农业生产过程中,施加化肥和有机肥通过直接补充土壤养分,促进根系生长提升有机碳含量。相比其他机制,有机物填充保留土壤养分更加高效和便捷,用有机肥部分替代无机肥料是具有可行性的[110]

  • 3.3 土壤团聚体对有机碳的物理保护

  • 土壤团聚体的物理保护导致的生物与有机碳的空间隔离是土壤有机碳主要的稳定机制之一[111-113]。土壤团聚体是储存土壤有机碳的主要场所,而土壤团聚体与土壤有机碳含量有明显的正相关性。马文明等[114]研究表明,草地灌丛化过程降低土壤碳库储量,导致土壤中团聚体的含量和稳定性降低。李建国等[115]研究发现,滨海滩涂垦区表层土壤中,有机碳含量在 0.2%~1.13%,亚表层土壤中,碳含量在 0.22%~0.85%,均低于全国有机碳的平均水平。稳定的土壤团聚体可以承受外界环境的干扰,能够保持自身结构的平衡。同时,土壤团聚体通过对土壤中有机碳包裹而实现物理保护,可以有效抑制其被土壤中微生物分解。

  • 图2 有机物填充作用

  • 不同粒径团聚体对有机碳有不同的保护效果。研究发现,土壤有机碳在大团聚体内的周转快,而在微团聚体内周转慢,可保存时间极长。大多数土壤有机碳在大团聚体内仅能存在几年,而在微团聚体内土壤有机碳最长能达到 1 个世纪[116]。土壤有机碳矿化率表明土壤中有机碳分解速度的快慢。对不同粒级团聚体中有机碳矿化率的研究表明, 2~0.25 mm 团聚体对土壤有机碳矿化率贡献最多,该粒径的团聚体中活性组分有机碳含量较高,稳定性差而易被分解;其次是 >2 mm 团聚体;最后是 <0.25 mm 团聚体。Mustafa 等[117]的研究也证实了这一观点,并发现大团聚体的碳矿化程度高于微团聚体,微团聚体对有机碳的保护能力更高。红外光谱解析研究结果显示,微团聚体中的稳定性有机碳含量高于大团聚体,且解析过程中发现有机碳含量随粒径减少而增大,微团聚体中含量较多的为稳定性有机碳,活跃性有机碳较少[90118]。因此,土壤有机碳主要分布在微团聚体中,可以有效保护土壤有机碳,减少其被分解的可能性。土壤团聚体对土壤有机碳库也有一定的调节功能,使其保持动态平衡[97]。潘英杰等[119]研究表明,土壤团聚体稳定性随着植被的演替显著提高,土壤有机碳含量也随着植被演替而增加,其中 0.25~2 mm 粒级团聚体含量占比最高。团聚体稳定性与团聚体中有机碳含量呈正相关,因此在一定程度上,土壤质量的改善取决于土壤碳储量的增加,这依赖于土壤团聚体的含量及其稳定性。

  • 整体来看,物理保护和物理保护机制下连同的生物、化学保护是土壤的主要固碳机制[120]。从团聚体自身来说,团聚体环境中的底物扩散和孔隙连通性驱动了团聚体中受保护的碳的组成。一般来说,简单的低分子量碳存储受到温度和水分的影响,而复杂碳存储主要受到水分的影响。温度和湿度对特定化合物类别的单变量影响因土壤馏分而异,但在不同馏分中,温度增加了冷凝和不饱和碳氢化合物、单宁和氨基糖类化合物的相对丰度,降低了蛋白质类化合物的相对丰度;水分增加了单宁酸,冷凝烃类化合物和整体芳香性,并且对大团聚体中封闭部分的影响最为显著[121]。其次,激发效应在保护机制中也存在一定影响,植物凋落物掺入土壤中可以通过物理保护机制补充土壤有机碳,比如形成矿物-有机复合物和团聚体。同时,植物凋落物输入可能会刺激天然土壤有机碳的分解,也属于一种激发效应。凋落物土壤有机碳在大团聚体中通过闭塞得到保护,而激发效应主要来源于大团聚体中的矿物伴生土壤有机碳[122]

  • 耕作方式对于维持土壤团聚体稳定性和保护土壤有机碳至关重要。耕作方式以及管理方式影响土壤团聚体的形成和稳定。目前,保护性耕作已被广泛应用于提高土壤有机碳含量,来减少土壤有机碳矿化。频繁翻动土地被认为是破坏土壤团聚体稳定的行为之一[123]。多年来持续的密集耕作破坏了土壤团聚体,加速了土壤有机碳的矿化和分解,而保护性耕作(即免耕和深松)显著提高了大团聚体(0~40 cm 土层)的百分比及其土壤有机碳含量,免耕和深松下大团聚体对土壤有机碳的贡献率分别比常规耕作高 17.2% 和 30.6%[124]。Kan 等[125] 研究表明,免耕平均提高了 32.7% 的大团聚体,降低了大团聚体中有机碳的矿化程度,免耕中较高的微生物活性也可以产生结合剂,促进金属氧化物有机复合物的聚集和形成。此外,长期保护性耕作保护了大团聚体和土壤有机碳,增强了固碳能力,有效减少了土壤碳排放,影响碳物理固存。近年来,覆盖作物也被广泛应用于农业生产中,覆盖样地的土壤团聚体中通常有机碳含量较高。农田土壤被作物覆盖,能使土壤中芳香度指数显著提高,而有机质的脂肪族组分对团聚体稳定的贡献更大。作物覆盖后的土壤团聚体的潜在湿润性指数也要高于覆盖前的土壤[126]。有机覆盖物能够降低团聚体的湿润性,并保护团聚体免受水的分散,从而有利于保护有机碳。有研究表明,有机肥提高了土壤中各组分有机碳含量(26.5%~362.8%)、土壤颗粒有机碳(18.0%~43.7%)和团聚率(3.0%~4.4%),结果显示物理保护的有机碳组分增加[127]。因此,保护性耕作有助于团聚体的形成和团聚体的稳定性,提高保护性耕作时间可以加速额外的有机碳固存。土壤团聚体是土壤的重要组成部分,也是一种特殊的有机-无机复合体,影响着土壤的各种物理和化学性质,因此,土壤团聚体和有机碳是不可分割的[128]

  • 4 总结与展望

  • 目前对土壤有机碳、团聚体影响因素和两者间相互作用过程和机制虽有一定认识,但迄今为止,对于黏粒包裹作用机制研究较少。团聚体保护作用机制主要集中在物理保护,而生物、化学机制有待于进一步研究。由于影响土壤有机碳、团聚体因素较多,因此,在自然环境中多种因素作用可能会产生不同的效果。为此,今后需加强注意以下方面研究:

  • (1)施加改良剂和外源有机物仅有短暂的促进团聚和稳定作用。今后的研究需要关注现代新型化学技术,利用先进技术寻找能够促进土壤颗粒团聚且稳定性强的合成有机或者无机改良剂,改善土壤结构。

  • (2)在农业生产过程中,应结合有利地形,因地适宜地选择增加土壤团聚体有机碳含量的方法,合理利用凋落物、真菌等自然生物,对于自然灾害要加以预防。在外源环境下,运用有机无机肥结合方式投入生产,继续研究探索更高效的肥料配比,合理利用种植轮作方式,提升土壤肥力。

  • (3)提高对不同微生物功能多样性和土壤团聚体微环境相互反馈机制的认识。土壤团聚体作为微生物的栖息地,不同团聚体对土壤微生物提供的营养物质和生态环境存在差异。不同生态型的微生物对土壤团聚体破坏、重组的程度同样存在差异。目前,大多数研究论述单一生态型微生物对团聚体之间的相互反馈机制,需要进一步提高微生物生长、活性、功能等与不同粒径团聚体微环境之间机制的认识。

  • (4)中国的土壤类型、农田作物种类及有机碳含量、空间分布具有显著差异。根据各地区的具体情况,应采取适当的管理措施、制度以及恰当的土地利用方式,减缓土壤有机质的分解,增加土壤有机碳含量,提高团聚体稳定性,加快农田生态系统固碳增汇关键技术体系(微生物调控、秸秆资源化利用)的研发,有效提高农业生产。

  • 参考文献

    • [1] Li X L,Zhong C,Li G Q,et al.The application and development trend of the permaculture under the background of rural construction and revitalization[J].Science Discovery,2022,3:181-185.

    • [2] Zhu Y,Huo C J.The impact of agricultural production efficiency on agricultural carbon emissions in China[J].Energies,2022,15(12):4464-4464.

    • [3] Alimu A,She D L,Liu Z P,et al.Application of biochar and polyacrylamide to revitalize coastal saline soil quality to improve rice growth[J].Environmental Science and Pollution Research International,2023,7:18731-18747.

    • [4] 胡海清,罗斯生,罗碧珍,等.林火干扰对森林生态系统土壤有机碳的影响研究进展[J].生态学报,2020,40(6):1839-1850.

    • [5] Zhao X Y,Zhang W Q,Feng Y J,et al.Soil organic carbon primarily control the soil moisture characteristic during forest restoration in subtropical China[J].Frontiers in Ecology and Evolution,2022,10:976.

    • [6] Yahya K,Neda G,Rosa F.Soil carbon stocks can be negatively affected by land use and climate change in natural ecosystems of semi-arid environment of Iran[J].Geoderma Regional,2022:31:e00591.

    • [7] 杜雪,王海燕,邹佳何,等.长白山北坡云冷杉阔叶混交林土壤有机碳分布特征及其影响因素[J].生态环境学报,2022,31(4):663-669.

    • [8] Liu W X,Wei Y X,Li R C,et al.Improving soil aggregates stability and soil organic carbon sequestration by no-till and legume-based crop rotations in the north china plain[J].The Science of the Total Environment,2022,847:157518.

    • [9] Wang F,Zhang X X,Neal A L,et al.Evolution of the transport properties of soil aggregates and their relationship with soil organic carbon following land use changes[J].Soil & Tillage Research,2022,215:105226.

    • [10] 张维理,Kolbe H,张认连.土壤有机碳作用及转化机制研究进展[J].中国农业科学,2020,53(2):317-331.

    • [11] 张雨萌,郭艳杰,张丽娟,等.生物炭配合深松对土壤团聚体及有机碳的影响[J].水土保持通报,2022,42(5):368-375,385.

    • [12] Xu P D,Wu J,Wang H T,et al.Combined application of chemical fertilizer with green manure increased the stabilization of organic carbon in the organo-mineral complexes of paddy soil[J]. Environmental Science and Pollution Research International,2023,30(2):2676-2684.

    • [13] Laub M,Schlichenmeier S,Vityakon P,et al.Litter quality and microbes explain aggregation differences in a tropical sandy soil[J].Journal of Soil Science and Plant Nutrition,2021,22(1):1191.

    • [14] Kottkamp A I,Nathan J C,Palmer M A,et al.Physical protection in aggregates and organo-mineral associations contribute to carbon stabilization at the transition zone of seasonally saturated wetlands[J].Wetlands,2022,42(5):1-17.

    • [15] 何平,刘健,余坤勇,等.南方竹林地土壤有机碳空间异质性研究[J].土壤通报,2016,47(2):278-286.

    • [16] Lal R.Soil carbon sequestration impacts on global climate change and food security[J].Science,2004,304(5677):1623-1627.

    • [17] 张健乐,曾小英,史东梅,等.生物炭对紫色土坡耕地侵蚀性耕层土壤有机碳的影响[J].环境科学,2022,43(4):2209-2218.

    • [18] Huys R,Poirier V,Bourget M Y,et al.Plant litter chemistry controls coarse-textured soil carbon dynamics[J].Journal of Ecology,2022,110(12):2911-2928.

    • [19] Wei L,Ge T D,Zhu Z K,et al.Comparing carbon and nitrogen stocks in paddy and upland soils:Accumulation,stabilization mechanisms,and environmental drivers[J].Geoderma,2021:398:115121.

    • [20] Wang L,Mandeep K,Zhang P,et al.Effect of different agricultural farming practices on microbial biomass and enzyme activities of celery growing field soil[J].International Journal of Environmental Research and Public Health,2021,18(23):12862.

    • [21] 潘根兴,丁元君,陈硕桐,等.从土壤腐殖质分组到分子有机质组学认识土壤有机质本质[J].地球科学进展,2019,34(5):451-470.

    • [22] Li F L,Kong Q B,Zhang Q,et al.Spent mushroom substrates affect soil humus composition,microbial biomass and functional diversity in paddy fields[J].Applied Soil Ecology,2020,149(C):103489.

    • [23] Liu Y L,Ge T D,Zhu Z K,et al.Carbon input and allocation by rice into paddy soils:a review[J].Soil Biology and Biochemistry,2019,133:97-107.

    • [24] Xia Y S,McSweeney K,Wander M M.Digital mapping of agricultural soil organic carbon using soil forming factors:a review of current efforts at the regional and national scales[J].Frontiers in Soil Science,2022,2:890437.

    • [25] Geng N,Kang X R,Yan X X,et al.Biochar mitigation of soil acidification and carbon sequestration is influenced by materials and temperature[J].Ecotoxicology and Environmental Safety,2022,232:113241.

    • [26] Fang X,Zhu Y L,Liu J D,et al.Effects of moisture and temperature on soil organic carbon decomposition along a vegetation restoration gradient of subtropical china[J].Forests,2022,13(4):578.

    • [27] Mioko T,Vidya S.Warming and labile substrate addition alter enzyme activities and composition of soil organic carbon[J]. Frontiers in Forests and Global Change,2021,4:691302.

    • [28] Yu H,Sui Y Y,Chen Y M,et al.Soil organic carbon mineralization and its temperature sensitivity under different substrate levels in the mollisols of northeast china[J].Life,2022,12(5):712.

    • [29] Du W W,Wang D,Wu X D,et al.Effects of forest types on soc and doc in the permafrost region of the daxing’anling mountains[J].Processes,2022,10(7):1293.

    • [30] Murugan R,Djukic I,Keiblinger K,et al.Spatial distribution of microbial biomass and residues across soil aggregate fractions at different elevations in the central austrian alps[J].Geoderma,2019,339:331-338.

    • [31] Wilhelm R C,Lynch L,Webster T M,et al.Susceptibility of new soil organic carbon to mineralization during dry-wet cycling in soils from contrasting ends of a precipitation gradient[J].Soil Biology and Biochemistry,2022,169:108681.

    • [32] 江熳,卜崇峰,郭琦,等.不同降水条件下生物结皮覆盖对沙地土壤有机碳的影响[J].应用生态学报,2022,33(7):1764-1772.

    • [33] Zheng P F,Wang D D,Yu X X,et al.Effects of drought and rainfall events on soil autotrophic respiration and heterotrophic respiration[J].Agriculture,Ecosystems and Environment,2021:308:107267.

    • [34] Mathieu S,Susana P,Thierry G,et al.Experimental precipitation reduction slows down litter decomposition but exhibits weak to no effect on soil organic carbon and nitrogen stocks in three mediterranean forests of southern france[J].Forests,2022,13(9):1485.

    • [35] 叶思源,尚鹤,陈展,等.不同浓度 CO2 对马尾松幼苗光合特性及单萜烯释放的影响[J].南京林业大学学报(自然科学版),2020,44(6):71-78.

    • [36] Zhou X,Lu Y H,Liao Y L,et al.Substitution of chemical fertilizer by chinese milk vetch improves the sustainability of yield and accumulation of soil organic carbon in a double-rice cropping system[J].Journal of Integrative Agriculture,2019,18(10):2381-2392.

    • [37] 任立军,李金,邹洪涛,等.生物有机肥配施化肥对设施土壤养分含量及团聚体分布的影响[J].土壤,2023,55(4):756-763.

    • [38] 贾璇,赵冰,吴昊天,等.餐厨垃圾调理剂对果园土壤团聚体组成及分布的影响[J].环境科学研究,2020,33(9):2163-2168.

    • [39] Wang Q J,Zhang L,Zhang J C.Effects of compost on the chemical composition of SOM in density and aggregate fractions from rice-wheat cropping systems as shown by solid-state 13C-NMR spectroscopy[J].Zeitschrift Fuer Pflanzenernaehrung Und Bodenkunde,2012,175(6):920-930.

    • [40] Mao X L,Lu K P,Sun T,et al.Effect of Long-term fertilizer application on the stability of organic carbon in particle size fractions of a paddy soil in Zhejiang Province,China[J]. Environmental Science,2015,36(5):1827.

    • [41] 张婧婷,石浩,田汉勤,等.1981—2019 年华北平原农田土壤有机碳储量的时空变化及影响机制[J].生态学报,2022,42(23):9560-9576.

    • [42] Xie M M,Zhang T Y,Liu S S,et al.Profile soil organic and inorganic carbon sequestration in maize cropland after long-term straw return[J].Frontiers in Environmental Science,2023,11:1095401.

    • [43] Gan J W,Qiu C,Han X Z,et al.Effects of 10 years of the return of corn straw on soil aggregates and the distribution of organic carbon in a mollisol[J].Agronomy,2022,12(10):2374.

    • [44] An S Q,Gong L,Li Y M,et al.Soil organic carbon components and their correlation with soil physicochemical factors in four different land use types of the northern tarim basin[J]. Environmental Science,2018,39(7):3382-3390.

    • [45] 王永栋,武均,蔡立群,等.秸秆还田量对陇中旱作麦田土壤团聚体稳定性和有机碳含量的影响[J].干旱地区农业研究,2022,40(2):232-239,249.

    • [46] Alioum P S,Kouogueu G S,Mediesse F K,et al.Effect of organic and mineral fertilizers on the growth and production parameters of maize(zea mays L.)at djalingo in the north region of cameroon[J].International Journal of Plant & Soil Science,2022,34(11):152-161.

    • [47] 李凯,窦森,韩晓增,等.长期施肥对黑土团聚体中腐殖物质组成的影响[J].土壤学报,2010,47(3):579-583.

    • [48] Zhang M,Cheng G,Feng H,et al.Effects of straw and biochar amendments on aggregate stability,soil organic carbon,and enzyme activities in the Loess Plateau,China[J].Environmental Science and Pollution Research International,2017,24(11):108-120.

    • [49] Liu C,Lu M,Cui J,et al.Effects of straw carbon input on carbon dynamics in agricultural soils:a meta-analysis[J]. Global Change Biology,2014,20(5):1366-1381.

    • [50] Xu P D,Wu J,Wang H,et al.Combined application of chemical fertilizer with green manure increased the stabilization of organic carbon in the organo-mineral complexes of paddy soil[J]. Environmental Science and Pollution Research International,2022,30(2):2627-2689.

    • [51] 黄磊,张然,陈雅丽,等.氮肥施用和秸秆还田对东北地区褐土稳定性有机碳的影响[J].2024,43(3):581-589.

    • [52] 翟龙波,章熙锋,陈靖,等.施肥对坡地土壤团聚体与磷素赋存形态的影响[J].西南大学学报(自然科学版),2019,41(7):105-115.

    • [53] Zhang Q Q,Duan P P,Anna G,et al.Mitigation of carbon dioxide by accelerated sequestration from long-term biochar amended paddy soil[J].Soil & Tillage Research,2021,209:104955.

    • [54] Xiang H M,Zhang L L,Wen D Z.Change of soil carbon fractions and water-stable aggregates in a forest ecosystem succession in south china[J].Forests,2015,6(8):2703-2718.

    • [55] Qiu S J,Nie J,Long S P,et al.Aggregate mass and carbon stocks in a paddy soil after long-term application of chemical or organic fertilizers[J].Soil Use and Management,2022,38(4):1564-1577.

    • [56] 赵冬,许明祥,刘国彬,等.用显微CT研究不同植被恢复模式的土壤团聚体微结构特征[J].农业工程学报,2016,32(9):123-129.

    • [57] 李新悦,李冰,莫太相,等.长期秸秆还田对水稻土团聚体及氮磷钾分配的影响[J].应用生态学报,2021,32(9):3257-3266.

    • [58] Yassine B,Aicha R,Rachid A,et al.Soil aggregate stability mapping using remote sensing and gis-based machine learning technique[J].Frontiers in Earth Science,2021(9):748859.

    • [59] Ghorbani M,Amirahmadi E,Neugschwandtner R W,et al. The impact of pyrolysis temperature on biochar properties and its effects on soil hydrological properties[J].Sustainability,2022,14(22):14722.

    • [60] Gupta V V S R,Germida J J.Soil aggregation:Influence on microbial biomass and implications for biological processes[J]. Soil Biology and Biochemistry,2015,80:A83-A89.

    • [61] Mouri G,Shinoda S,Golosov V,et al.Estimating the collapse of aggregated fine soil structure in a mountainous forested catchment[J].Journal of Environmental Management,2014,138:124-131.

    • [62] Yudina A V,Klyueva V V,Romanenko K A,et al.Microwithin macro:How micro-aggregation shapes the soil pore space and water-stability[J].Geoderma,2022,415:115771.

    • [63] 马文明,刘超文,周青平,等.高寒草地灌丛化对土壤团聚体生态化学计量学及酶活性的影响[J].草业学报,2022,31(1):57-68.

    • [64] Barbfris E,Marsan F A,Boero V,et al.Aggregation of soil particles by iron oxides in various size fractions of soil b horizons [J].Journal of Soil Science,1991,42(4):535-542.

    • [65] Rillig M C,Muller L A,Lehmann A.Soil aggregates as massively concurrent evolutionary incubators[J].The ISME Journal,2017,11(9):1943-1948.

    • [66] 徐香茹,汪景宽.土壤团聚体与有机碳稳定机制的研究进展 [J].土壤通报,2017,48(6):1523-1529.

    • [67] Li C,Yu Z Z,Lin J,et al.Forest conversion and soil depth can modify the contributions of organic and inorganic colloids to the stability of soil aggregates[J].Forests,2022,13(4):546.

    • [68] Li Y,Shen Q,An X C,et al.Organomineral fertilizer application enhances perilla frutescens nutritional quality and rhizosphere microbial community stability in karst mountain soils [J].Frontiers in Microbiology,2022,13:1058067.

    • [69] Kofi A C,Huang J,Han T F,et al.Fertilizer combination effects on aggregate stability and distribution of aluminum and iron oxides[J].Journal of Plant Nutrition and Soil Science,2022,185(2):251-263.

    • [70] Asmita G,Jose G,Peter K,et al.Manure and inorganic fertilization impacts on soil nutrients,aggregate stability,and organic carbon and nitrogen in different aggregate fractions[J].Archives of Agronomy and Soil Science,2022,68(9):1261-1273.

    • [71] Sun L P,He L R,Wang G L,et al.Natural vegetation restoration of Liaodong oak(Quercus liaotungensis Koidz.)forests rapidly increased the content and ratio of inert carbon in soil macroaggregates[J].Journal of Arid Land,2019,11(3):928-938.

    • [72] 肖玖军,邢丹,毛明明,等.AM 真菌对桑树根围土壤团聚体的影响机制[J].土壤学报,2020,57(3):773-782.

    • [73] 郭金瑞,宋振伟,彭宪现,等.东北黑土区长期不同种植模式下土壤碳氮特征评价[J].农业工程学报,2015,31(6):178-185.

    • [74] Khan F U,Khan A A,Li K,et al.Influences of long-term crop cultivation and fertilizer management on soil aggregates stability and fertility in the loess plateau,northern china[J].Journal of Soil Science and Plant Nutrition,2022,22(2):1-12.

    • [75] Yan L,Jiang X X,Ji X N,et al.Distribution of water-stable aggregates under soil tillage practices in a black soil hillslope cropland in northeast china[J].Journal of Soils and Sediments,2020,20(3):24-31.

    • [76] 孙文泰,马明.黄土高原长期覆膜苹果园土壤物理退化与细根生长响应[J].植物生态学报,2021,45(9):972-986.

    • [77] 孙佳,夏江宝,苏丽,等.黄河三角洲盐碱地不同植被模式的土壤改良效应[J].应用生态学报,2020,31(4):1323-1332.

    • [78] Li K S,Geng Y H,Li Q X,et al.Characterization of the Microstructural Properties of Saline-Alkali Soils in the Yellow River Delta,China[J].Communications in Soil Science and Plant Analysis,2021,52(13):1527-1543.

    • [79] 李媛媛,朱源山,郭长城,等.津冀3个盐渍化沼泽湿地土壤团聚体有机碳的分布特征[J].天津师范大学学报(自然科学版),2019,39(6):51-61.

    • [80] 魏守才,谢文军,夏江宝,等.盐渍化条件下土壤团聚体及其有机碳研究进展[J].应用生态学报,2021,32(1):369-376.

    • [81] 裴志福,红梅,兴安,等.秸秆还田条件下盐渍土团聚体中有机碳化学结构特征[J].应用生态学报,2021,32(12):4401-4410.

    • [82] Bronick C J,Lal R.Soil structure and management:a review[J]. Geoderma,2004,124(1):3-22.

    • [83] 王纯,陈晓旋,陈优阳,等.水盐梯度对闽江河口湿地土壤水稳性团聚体分布及稳定性的影响[J].环境科学学报,2019,39(9):3117-3125.

    • [84] Ishiguro M,Nakajima T.Hydraulic conductivity of an allophanic andisol leached with dilute acid solutions[J].Soil Science Society of America Journal,2000,64(3):813-818.

    • [85] Tedeschi A,Dell A R.Effects of irrigation with saline waters,at different concentrations,on soil physical and chemical characteristics[J].Agricultural Water Management,2005,77(1-3):308-322.

    • [86] Haynes R J,Beare M H.Influence of six crop species on aggregate stability and some labile organic matter fractions[J]. Soil Biology & Biochemistry,1997,29(11-12):1647-1653.

    • [87] Bai Y,Xue W,Yan Y.The challenge of improving coastal mudflat soil:Formation and stability of organo-mineral complexes [J].Land Degradation & Development,2018,29(4):1074-1080.

    • [88] Sun Y M,Chen X L,Zhong A N,et al.Variations in microbial residue and its contribution to SOC between organic and mineral soil layers along an altitude gradient in the wuyi mountains[J]. Forests,2023,14(8):1678.

    • [89] Raza T,Qadir M F,Khan K S,et al.Unrevealing the potential of microbes in decomposition of organic matter and release of carbon in the ecosystem[J].Journal of Environmental Management,2023,344:118529-118529.

    • [90] 龙静泓,雷琬莹,李娜,等.不同土地利用方式对黑土团聚体内有机碳红外光谱特征的影响[J].土壤与作物,2021,10(4):373-384.

    • [91] 秦泽峰,谢沐希,张运龙,等.丛枝菌根真菌介导的土壤有机碳稳定机制研究进展[J].植物营养与肥料学报,2023,29(4):756-766.

    • [92] 冯颖,温晓兰,石温慧,等.绿肥化肥配施对土壤团聚体及其有机碳分布的影响[J].南方农业,2021,15(19):11-13,21.

    • [93] 陈超,宓文海,居静,等.长期不同施肥模式对中低产黄泥田土壤团聚体组成及碳组分的影响[J].华北农学报,2022,37(3):168-174.

    • [94] Rao K K,Samal S K,Kumar M,et al.Carbon sequestration potential of rice-based cropping systems under different tillage practices[J].Agrochimica,2021,65(3):229-246.

    • [95] Hati K M,Jha P,Dalal R C,et al.50 years of continuous no-tillage,stubble retention and nitrogen fertilization enhanced macro-aggregate formation and stabilisation in a Vertisol[J].Soil & Tillage Research,2021,214:105163.

    • [96] Rahman M M,Kamal M Z U,Ranamukhaarachchi S,et al. Effects of organic amendments on soil aggregate stability,carbon sequestration,and energy use efficiency in wetland paddy cultivation[J].Sustainability,2022,14(8):4475.

    • [97] Zhu K,Li W J,Yang S,et al.Intense wet-dry cycles weakened the carbon sequestration of soil aggregates in the riparian zone[J]. Catena,2022,212:106117.

    • [98] Niu Z R,Su Y Z,An F J,et al.Changes in soil carbon and nitrogen content,associated with aggregate fractions,after conversion of sandy desert to irrigation farmland,northwest china[J].Soil Use and Management,2021,38(1):396-410.

    • [99] 张旭冉,张卫青.土壤团聚体研究进展[J].北方园艺,2020(21):131-137.

    • [100] Regelink I C,Stoof C R,Rousseva S,et al.Linkages between aggregate formation,porosity and soil chemical properties[J]. Geoderma,2015,247-248:224-237.

    • [101] Souza I F,Archanjo B S,Hurtarte L C C,et al.Al-/fe-(hydr)oxides-organic carbon associations in oxisols — from ecosystems to submicron scales[J].Catena,2017,154:163-172.

    • [102] Chen M M,Zhang S R,Liu L,et al.Organic fertilization increased soil organic carbon stability and sequestration by improving aggregate stability and iron oxide transformation in saline-alkaline soil[J].Plant and Soil,2022,474(1):233-249.

    • [103] Krause L,Klumpp E,Nofz I,et al.Colloidal iron and organic carbon control soil aggregate formation and stability in arable luvisols[J].Geoderma,2020,374:114421.

    • [104] 王正伟,武均,李婉玲,等.不同土地利用方式对陇东黄土高原土壤团聚体稳定性的影响[J].作物研究,2022,36(3):238-244.

    • [105] 李芳,陈林,李月,等.真菌对土壤团聚体形成的影响研究进展[J].河南农业大学学报,2021,55(5):800-806,905.

    • [106] Dahiya G,Bhardwaj K K,Ahlawat I,et al.Glomalin:a miracle protein for carbon sequestration[J].International Journal of Plant & Soil Science,2022,34(9):80-86.

    • [107] Javad V M,Sayyari Z M H,Azarmi A F,et al.The effect of biochars produced from barberry and jujube on erosion,nutrient,and properties of soil in laboratory conditions[J].Soil & Tillage Research,2022,219:105345.

    • [108] Yan M F,Li X R,Liu Y,et al.Biochar enhanced soil aggregation and c-related enzyme activity in post-mining land on the loess plateau,china[J].Land Degradation & Development,2022,33(7):1054-1061.

    • [109] Gu W Q,Zhang W M,Xiu L Q,et al.Soil aggregate variation in two contrasting rice straw recycling systems for paddy soil amendment over two years[J].Archives of Agronomy and Soil Science,2023,69(14):3044-3059.

    • [110] 万连杰,李俊杰,张绩,等.有机肥替代化肥技术研究进展 [J].北方园艺,2021(11):133-142.

    • [111] 张延,梁爱珍,张晓平,等.土壤团聚体对有机碳物理保护机制研究[J].土壤与作物,2015,4(2):85-90.

    • [112] 宋丽萍,罗珠珠,李玲玲,等.苜蓿∶作物轮作模式对土壤团聚体稳定性及有机碳的影响[J].中国生态农业学报,2016,24(1):27-35.

    • [113] 冷延慧,汪景宽,薛菁芳.连续施肥20年后棕壤团聚体分布和碳储量变化[J].土壤通报,2008,39(4):743-747.

    • [114] 马文明,刘军,周青平,等.高寒草地灌丛化对土壤团聚体稳定性及有机碳分布特征的影响[J].土壤通报,2019,50(5):1108-1115.

    • [115] 李建国,赵宴青,袁冯伟,等.滨海滩涂围垦对土壤团聚体分布及其有机碳富集的影响——以江苏省如东县垦区为例 [J].土壤通报,2018,49(3):552-559.

    • [116] Puget P,Chenu C,Balesdent J.Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates [J].European Journal of Soil Science,2000,51(4):595-605.

    • [117] Mustafa A,Xu M G,Shah S A A,et al.Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of southern china[J].Journal of Environmental Management,2020,270:110894.

    • [118] 盛明,龙静泓,雷琬莹,等.秸秆还田对黑土团聚体内有机碳红外光谱特征的影响[J].土壤与作物,2020,9(4):355-366.

    • [119] 潘英杰,何志瑞,刘玉林,等.黄土高原天然次生林植被演替过程中土壤团聚体有机碳动态变化[J].生态学报,2021,41(13):5195-5203.

    • [120] Abrar M M,Xu M G,Shah S A A,et al.Variations in the profile distribution and protection mechanisms of organic carbon under long-term fertilization in a Chinese Mollisol[J].Science of the Total Environment,2020,723:138181.

    • [121] Cates A M,Jilling A,Tfaily M M,et al.Temperature and moisture alter organic matter composition across soil fractions[J]. Geoderma,2022,409:115628.

    • [122] Liu K,Xu Y Z,Feng W T,et al.Modeling the dynamics of protected and primed organic carbon in soil and aggregates under constant soil moisture following litter incorporation[J]. Soil Biology and Biochemistry,2020,151(prepublish):108039.

    • [123] Li Y X,Yu P J,Shen L C.Changes in soil aggregate stability and aggregate-associated organic carbon during old-field succession in karst valley[J].Environmental Monitoring and Assessment,2021,194(1):15.

    • [124] Chen S Y,Cao Y Q,Zhang T T,et al.Improvement of soil aggregate-associated carbon sequestration capacity after 14 years of conservation tillage[J].Experimental Agriculture,2022,58:e55.

    • [125] Kan Z R,Liu W X,Liu W S,et al.Mechanisms of soil organic carbon stability and its response to no-till:A global synthesis and perspective[J].Global Change Biology,2021,28(3):693-710.

    • [126] Thai S,DavÃdek T Å,PavlÅ L.Causes clarification of the soil aggregates stability on mulched soil[J].Soil and Water Research,2022,17(2):91-99.

    • [127] Sun X L,Liu J T,Liu S T.Soil organic carbon fractions comparison after 40-year long-term fertilisation in  a wheatcorn rotation field[J].Soil and Water Research,2022,17(3):149-157.

    • [128] 张家春,刘盈盈,贺红早,等.土壤团聚体与有机碳固定关系研究进展[J].福建农业学报,2016,31(3):319-325.

  • 参考文献

    • [1] Li X L,Zhong C,Li G Q,et al.The application and development trend of the permaculture under the background of rural construction and revitalization[J].Science Discovery,2022,3:181-185.

    • [2] Zhu Y,Huo C J.The impact of agricultural production efficiency on agricultural carbon emissions in China[J].Energies,2022,15(12):4464-4464.

    • [3] Alimu A,She D L,Liu Z P,et al.Application of biochar and polyacrylamide to revitalize coastal saline soil quality to improve rice growth[J].Environmental Science and Pollution Research International,2023,7:18731-18747.

    • [4] 胡海清,罗斯生,罗碧珍,等.林火干扰对森林生态系统土壤有机碳的影响研究进展[J].生态学报,2020,40(6):1839-1850.

    • [5] Zhao X Y,Zhang W Q,Feng Y J,et al.Soil organic carbon primarily control the soil moisture characteristic during forest restoration in subtropical China[J].Frontiers in Ecology and Evolution,2022,10:976.

    • [6] Yahya K,Neda G,Rosa F.Soil carbon stocks can be negatively affected by land use and climate change in natural ecosystems of semi-arid environment of Iran[J].Geoderma Regional,2022:31:e00591.

    • [7] 杜雪,王海燕,邹佳何,等.长白山北坡云冷杉阔叶混交林土壤有机碳分布特征及其影响因素[J].生态环境学报,2022,31(4):663-669.

    • [8] Liu W X,Wei Y X,Li R C,et al.Improving soil aggregates stability and soil organic carbon sequestration by no-till and legume-based crop rotations in the north china plain[J].The Science of the Total Environment,2022,847:157518.

    • [9] Wang F,Zhang X X,Neal A L,et al.Evolution of the transport properties of soil aggregates and their relationship with soil organic carbon following land use changes[J].Soil & Tillage Research,2022,215:105226.

    • [10] 张维理,Kolbe H,张认连.土壤有机碳作用及转化机制研究进展[J].中国农业科学,2020,53(2):317-331.

    • [11] 张雨萌,郭艳杰,张丽娟,等.生物炭配合深松对土壤团聚体及有机碳的影响[J].水土保持通报,2022,42(5):368-375,385.

    • [12] Xu P D,Wu J,Wang H T,et al.Combined application of chemical fertilizer with green manure increased the stabilization of organic carbon in the organo-mineral complexes of paddy soil[J]. Environmental Science and Pollution Research International,2023,30(2):2676-2684.

    • [13] Laub M,Schlichenmeier S,Vityakon P,et al.Litter quality and microbes explain aggregation differences in a tropical sandy soil[J].Journal of Soil Science and Plant Nutrition,2021,22(1):1191.

    • [14] Kottkamp A I,Nathan J C,Palmer M A,et al.Physical protection in aggregates and organo-mineral associations contribute to carbon stabilization at the transition zone of seasonally saturated wetlands[J].Wetlands,2022,42(5):1-17.

    • [15] 何平,刘健,余坤勇,等.南方竹林地土壤有机碳空间异质性研究[J].土壤通报,2016,47(2):278-286.

    • [16] Lal R.Soil carbon sequestration impacts on global climate change and food security[J].Science,2004,304(5677):1623-1627.

    • [17] 张健乐,曾小英,史东梅,等.生物炭对紫色土坡耕地侵蚀性耕层土壤有机碳的影响[J].环境科学,2022,43(4):2209-2218.

    • [18] Huys R,Poirier V,Bourget M Y,et al.Plant litter chemistry controls coarse-textured soil carbon dynamics[J].Journal of Ecology,2022,110(12):2911-2928.

    • [19] Wei L,Ge T D,Zhu Z K,et al.Comparing carbon and nitrogen stocks in paddy and upland soils:Accumulation,stabilization mechanisms,and environmental drivers[J].Geoderma,2021:398:115121.

    • [20] Wang L,Mandeep K,Zhang P,et al.Effect of different agricultural farming practices on microbial biomass and enzyme activities of celery growing field soil[J].International Journal of Environmental Research and Public Health,2021,18(23):12862.

    • [21] 潘根兴,丁元君,陈硕桐,等.从土壤腐殖质分组到分子有机质组学认识土壤有机质本质[J].地球科学进展,2019,34(5):451-470.

    • [22] Li F L,Kong Q B,Zhang Q,et al.Spent mushroom substrates affect soil humus composition,microbial biomass and functional diversity in paddy fields[J].Applied Soil Ecology,2020,149(C):103489.

    • [23] Liu Y L,Ge T D,Zhu Z K,et al.Carbon input and allocation by rice into paddy soils:a review[J].Soil Biology and Biochemistry,2019,133:97-107.

    • [24] Xia Y S,McSweeney K,Wander M M.Digital mapping of agricultural soil organic carbon using soil forming factors:a review of current efforts at the regional and national scales[J].Frontiers in Soil Science,2022,2:890437.

    • [25] Geng N,Kang X R,Yan X X,et al.Biochar mitigation of soil acidification and carbon sequestration is influenced by materials and temperature[J].Ecotoxicology and Environmental Safety,2022,232:113241.

    • [26] Fang X,Zhu Y L,Liu J D,et al.Effects of moisture and temperature on soil organic carbon decomposition along a vegetation restoration gradient of subtropical china[J].Forests,2022,13(4):578.

    • [27] Mioko T,Vidya S.Warming and labile substrate addition alter enzyme activities and composition of soil organic carbon[J]. Frontiers in Forests and Global Change,2021,4:691302.

    • [28] Yu H,Sui Y Y,Chen Y M,et al.Soil organic carbon mineralization and its temperature sensitivity under different substrate levels in the mollisols of northeast china[J].Life,2022,12(5):712.

    • [29] Du W W,Wang D,Wu X D,et al.Effects of forest types on soc and doc in the permafrost region of the daxing’anling mountains[J].Processes,2022,10(7):1293.

    • [30] Murugan R,Djukic I,Keiblinger K,et al.Spatial distribution of microbial biomass and residues across soil aggregate fractions at different elevations in the central austrian alps[J].Geoderma,2019,339:331-338.

    • [31] Wilhelm R C,Lynch L,Webster T M,et al.Susceptibility of new soil organic carbon to mineralization during dry-wet cycling in soils from contrasting ends of a precipitation gradient[J].Soil Biology and Biochemistry,2022,169:108681.

    • [32] 江熳,卜崇峰,郭琦,等.不同降水条件下生物结皮覆盖对沙地土壤有机碳的影响[J].应用生态学报,2022,33(7):1764-1772.

    • [33] Zheng P F,Wang D D,Yu X X,et al.Effects of drought and rainfall events on soil autotrophic respiration and heterotrophic respiration[J].Agriculture,Ecosystems and Environment,2021:308:107267.

    • [34] Mathieu S,Susana P,Thierry G,et al.Experimental precipitation reduction slows down litter decomposition but exhibits weak to no effect on soil organic carbon and nitrogen stocks in three mediterranean forests of southern france[J].Forests,2022,13(9):1485.

    • [35] 叶思源,尚鹤,陈展,等.不同浓度 CO2 对马尾松幼苗光合特性及单萜烯释放的影响[J].南京林业大学学报(自然科学版),2020,44(6):71-78.

    • [36] Zhou X,Lu Y H,Liao Y L,et al.Substitution of chemical fertilizer by chinese milk vetch improves the sustainability of yield and accumulation of soil organic carbon in a double-rice cropping system[J].Journal of Integrative Agriculture,2019,18(10):2381-2392.

    • [37] 任立军,李金,邹洪涛,等.生物有机肥配施化肥对设施土壤养分含量及团聚体分布的影响[J].土壤,2023,55(4):756-763.

    • [38] 贾璇,赵冰,吴昊天,等.餐厨垃圾调理剂对果园土壤团聚体组成及分布的影响[J].环境科学研究,2020,33(9):2163-2168.

    • [39] Wang Q J,Zhang L,Zhang J C.Effects of compost on the chemical composition of SOM in density and aggregate fractions from rice-wheat cropping systems as shown by solid-state 13C-NMR spectroscopy[J].Zeitschrift Fuer Pflanzenernaehrung Und Bodenkunde,2012,175(6):920-930.

    • [40] Mao X L,Lu K P,Sun T,et al.Effect of Long-term fertilizer application on the stability of organic carbon in particle size fractions of a paddy soil in Zhejiang Province,China[J]. Environmental Science,2015,36(5):1827.

    • [41] 张婧婷,石浩,田汉勤,等.1981—2019 年华北平原农田土壤有机碳储量的时空变化及影响机制[J].生态学报,2022,42(23):9560-9576.

    • [42] Xie M M,Zhang T Y,Liu S S,et al.Profile soil organic and inorganic carbon sequestration in maize cropland after long-term straw return[J].Frontiers in Environmental Science,2023,11:1095401.

    • [43] Gan J W,Qiu C,Han X Z,et al.Effects of 10 years of the return of corn straw on soil aggregates and the distribution of organic carbon in a mollisol[J].Agronomy,2022,12(10):2374.

    • [44] An S Q,Gong L,Li Y M,et al.Soil organic carbon components and their correlation with soil physicochemical factors in four different land use types of the northern tarim basin[J]. Environmental Science,2018,39(7):3382-3390.

    • [45] 王永栋,武均,蔡立群,等.秸秆还田量对陇中旱作麦田土壤团聚体稳定性和有机碳含量的影响[J].干旱地区农业研究,2022,40(2):232-239,249.

    • [46] Alioum P S,Kouogueu G S,Mediesse F K,et al.Effect of organic and mineral fertilizers on the growth and production parameters of maize(zea mays L.)at djalingo in the north region of cameroon[J].International Journal of Plant & Soil Science,2022,34(11):152-161.

    • [47] 李凯,窦森,韩晓增,等.长期施肥对黑土团聚体中腐殖物质组成的影响[J].土壤学报,2010,47(3):579-583.

    • [48] Zhang M,Cheng G,Feng H,et al.Effects of straw and biochar amendments on aggregate stability,soil organic carbon,and enzyme activities in the Loess Plateau,China[J].Environmental Science and Pollution Research International,2017,24(11):108-120.

    • [49] Liu C,Lu M,Cui J,et al.Effects of straw carbon input on carbon dynamics in agricultural soils:a meta-analysis[J]. Global Change Biology,2014,20(5):1366-1381.

    • [50] Xu P D,Wu J,Wang H,et al.Combined application of chemical fertilizer with green manure increased the stabilization of organic carbon in the organo-mineral complexes of paddy soil[J]. Environmental Science and Pollution Research International,2022,30(2):2627-2689.

    • [51] 黄磊,张然,陈雅丽,等.氮肥施用和秸秆还田对东北地区褐土稳定性有机碳的影响[J].2024,43(3):581-589.

    • [52] 翟龙波,章熙锋,陈靖,等.施肥对坡地土壤团聚体与磷素赋存形态的影响[J].西南大学学报(自然科学版),2019,41(7):105-115.

    • [53] Zhang Q Q,Duan P P,Anna G,et al.Mitigation of carbon dioxide by accelerated sequestration from long-term biochar amended paddy soil[J].Soil & Tillage Research,2021,209:104955.

    • [54] Xiang H M,Zhang L L,Wen D Z.Change of soil carbon fractions and water-stable aggregates in a forest ecosystem succession in south china[J].Forests,2015,6(8):2703-2718.

    • [55] Qiu S J,Nie J,Long S P,et al.Aggregate mass and carbon stocks in a paddy soil after long-term application of chemical or organic fertilizers[J].Soil Use and Management,2022,38(4):1564-1577.

    • [56] 赵冬,许明祥,刘国彬,等.用显微CT研究不同植被恢复模式的土壤团聚体微结构特征[J].农业工程学报,2016,32(9):123-129.

    • [57] 李新悦,李冰,莫太相,等.长期秸秆还田对水稻土团聚体及氮磷钾分配的影响[J].应用生态学报,2021,32(9):3257-3266.

    • [58] Yassine B,Aicha R,Rachid A,et al.Soil aggregate stability mapping using remote sensing and gis-based machine learning technique[J].Frontiers in Earth Science,2021(9):748859.

    • [59] Ghorbani M,Amirahmadi E,Neugschwandtner R W,et al. The impact of pyrolysis temperature on biochar properties and its effects on soil hydrological properties[J].Sustainability,2022,14(22):14722.

    • [60] Gupta V V S R,Germida J J.Soil aggregation:Influence on microbial biomass and implications for biological processes[J]. Soil Biology and Biochemistry,2015,80:A83-A89.

    • [61] Mouri G,Shinoda S,Golosov V,et al.Estimating the collapse of aggregated fine soil structure in a mountainous forested catchment[J].Journal of Environmental Management,2014,138:124-131.

    • [62] Yudina A V,Klyueva V V,Romanenko K A,et al.Microwithin macro:How micro-aggregation shapes the soil pore space and water-stability[J].Geoderma,2022,415:115771.

    • [63] 马文明,刘超文,周青平,等.高寒草地灌丛化对土壤团聚体生态化学计量学及酶活性的影响[J].草业学报,2022,31(1):57-68.

    • [64] Barbfris E,Marsan F A,Boero V,et al.Aggregation of soil particles by iron oxides in various size fractions of soil b horizons [J].Journal of Soil Science,1991,42(4):535-542.

    • [65] Rillig M C,Muller L A,Lehmann A.Soil aggregates as massively concurrent evolutionary incubators[J].The ISME Journal,2017,11(9):1943-1948.

    • [66] 徐香茹,汪景宽.土壤团聚体与有机碳稳定机制的研究进展 [J].土壤通报,2017,48(6):1523-1529.

    • [67] Li C,Yu Z Z,Lin J,et al.Forest conversion and soil depth can modify the contributions of organic and inorganic colloids to the stability of soil aggregates[J].Forests,2022,13(4):546.

    • [68] Li Y,Shen Q,An X C,et al.Organomineral fertilizer application enhances perilla frutescens nutritional quality and rhizosphere microbial community stability in karst mountain soils [J].Frontiers in Microbiology,2022,13:1058067.

    • [69] Kofi A C,Huang J,Han T F,et al.Fertilizer combination effects on aggregate stability and distribution of aluminum and iron oxides[J].Journal of Plant Nutrition and Soil Science,2022,185(2):251-263.

    • [70] Asmita G,Jose G,Peter K,et al.Manure and inorganic fertilization impacts on soil nutrients,aggregate stability,and organic carbon and nitrogen in different aggregate fractions[J].Archives of Agronomy and Soil Science,2022,68(9):1261-1273.

    • [71] Sun L P,He L R,Wang G L,et al.Natural vegetation restoration of Liaodong oak(Quercus liaotungensis Koidz.)forests rapidly increased the content and ratio of inert carbon in soil macroaggregates[J].Journal of Arid Land,2019,11(3):928-938.

    • [72] 肖玖军,邢丹,毛明明,等.AM 真菌对桑树根围土壤团聚体的影响机制[J].土壤学报,2020,57(3):773-782.

    • [73] 郭金瑞,宋振伟,彭宪现,等.东北黑土区长期不同种植模式下土壤碳氮特征评价[J].农业工程学报,2015,31(6):178-185.

    • [74] Khan F U,Khan A A,Li K,et al.Influences of long-term crop cultivation and fertilizer management on soil aggregates stability and fertility in the loess plateau,northern china[J].Journal of Soil Science and Plant Nutrition,2022,22(2):1-12.

    • [75] Yan L,Jiang X X,Ji X N,et al.Distribution of water-stable aggregates under soil tillage practices in a black soil hillslope cropland in northeast china[J].Journal of Soils and Sediments,2020,20(3):24-31.

    • [76] 孙文泰,马明.黄土高原长期覆膜苹果园土壤物理退化与细根生长响应[J].植物生态学报,2021,45(9):972-986.

    • [77] 孙佳,夏江宝,苏丽,等.黄河三角洲盐碱地不同植被模式的土壤改良效应[J].应用生态学报,2020,31(4):1323-1332.

    • [78] Li K S,Geng Y H,Li Q X,et al.Characterization of the Microstructural Properties of Saline-Alkali Soils in the Yellow River Delta,China[J].Communications in Soil Science and Plant Analysis,2021,52(13):1527-1543.

    • [79] 李媛媛,朱源山,郭长城,等.津冀3个盐渍化沼泽湿地土壤团聚体有机碳的分布特征[J].天津师范大学学报(自然科学版),2019,39(6):51-61.

    • [80] 魏守才,谢文军,夏江宝,等.盐渍化条件下土壤团聚体及其有机碳研究进展[J].应用生态学报,2021,32(1):369-376.

    • [81] 裴志福,红梅,兴安,等.秸秆还田条件下盐渍土团聚体中有机碳化学结构特征[J].应用生态学报,2021,32(12):4401-4410.

    • [82] Bronick C J,Lal R.Soil structure and management:a review[J]. Geoderma,2004,124(1):3-22.

    • [83] 王纯,陈晓旋,陈优阳,等.水盐梯度对闽江河口湿地土壤水稳性团聚体分布及稳定性的影响[J].环境科学学报,2019,39(9):3117-3125.

    • [84] Ishiguro M,Nakajima T.Hydraulic conductivity of an allophanic andisol leached with dilute acid solutions[J].Soil Science Society of America Journal,2000,64(3):813-818.

    • [85] Tedeschi A,Dell A R.Effects of irrigation with saline waters,at different concentrations,on soil physical and chemical characteristics[J].Agricultural Water Management,2005,77(1-3):308-322.

    • [86] Haynes R J,Beare M H.Influence of six crop species on aggregate stability and some labile organic matter fractions[J]. Soil Biology & Biochemistry,1997,29(11-12):1647-1653.

    • [87] Bai Y,Xue W,Yan Y.The challenge of improving coastal mudflat soil:Formation and stability of organo-mineral complexes [J].Land Degradation & Development,2018,29(4):1074-1080.

    • [88] Sun Y M,Chen X L,Zhong A N,et al.Variations in microbial residue and its contribution to SOC between organic and mineral soil layers along an altitude gradient in the wuyi mountains[J]. Forests,2023,14(8):1678.

    • [89] Raza T,Qadir M F,Khan K S,et al.Unrevealing the potential of microbes in decomposition of organic matter and release of carbon in the ecosystem[J].Journal of Environmental Management,2023,344:118529-118529.

    • [90] 龙静泓,雷琬莹,李娜,等.不同土地利用方式对黑土团聚体内有机碳红外光谱特征的影响[J].土壤与作物,2021,10(4):373-384.

    • [91] 秦泽峰,谢沐希,张运龙,等.丛枝菌根真菌介导的土壤有机碳稳定机制研究进展[J].植物营养与肥料学报,2023,29(4):756-766.

    • [92] 冯颖,温晓兰,石温慧,等.绿肥化肥配施对土壤团聚体及其有机碳分布的影响[J].南方农业,2021,15(19):11-13,21.

    • [93] 陈超,宓文海,居静,等.长期不同施肥模式对中低产黄泥田土壤团聚体组成及碳组分的影响[J].华北农学报,2022,37(3):168-174.

    • [94] Rao K K,Samal S K,Kumar M,et al.Carbon sequestration potential of rice-based cropping systems under different tillage practices[J].Agrochimica,2021,65(3):229-246.

    • [95] Hati K M,Jha P,Dalal R C,et al.50 years of continuous no-tillage,stubble retention and nitrogen fertilization enhanced macro-aggregate formation and stabilisation in a Vertisol[J].Soil & Tillage Research,2021,214:105163.

    • [96] Rahman M M,Kamal M Z U,Ranamukhaarachchi S,et al. Effects of organic amendments on soil aggregate stability,carbon sequestration,and energy use efficiency in wetland paddy cultivation[J].Sustainability,2022,14(8):4475.

    • [97] Zhu K,Li W J,Yang S,et al.Intense wet-dry cycles weakened the carbon sequestration of soil aggregates in the riparian zone[J]. Catena,2022,212:106117.

    • [98] Niu Z R,Su Y Z,An F J,et al.Changes in soil carbon and nitrogen content,associated with aggregate fractions,after conversion of sandy desert to irrigation farmland,northwest china[J].Soil Use and Management,2021,38(1):396-410.

    • [99] 张旭冉,张卫青.土壤团聚体研究进展[J].北方园艺,2020(21):131-137.

    • [100] Regelink I C,Stoof C R,Rousseva S,et al.Linkages between aggregate formation,porosity and soil chemical properties[J]. Geoderma,2015,247-248:224-237.

    • [101] Souza I F,Archanjo B S,Hurtarte L C C,et al.Al-/fe-(hydr)oxides-organic carbon associations in oxisols — from ecosystems to submicron scales[J].Catena,2017,154:163-172.

    • [102] Chen M M,Zhang S R,Liu L,et al.Organic fertilization increased soil organic carbon stability and sequestration by improving aggregate stability and iron oxide transformation in saline-alkaline soil[J].Plant and Soil,2022,474(1):233-249.

    • [103] Krause L,Klumpp E,Nofz I,et al.Colloidal iron and organic carbon control soil aggregate formation and stability in arable luvisols[J].Geoderma,2020,374:114421.

    • [104] 王正伟,武均,李婉玲,等.不同土地利用方式对陇东黄土高原土壤团聚体稳定性的影响[J].作物研究,2022,36(3):238-244.

    • [105] 李芳,陈林,李月,等.真菌对土壤团聚体形成的影响研究进展[J].河南农业大学学报,2021,55(5):800-806,905.

    • [106] Dahiya G,Bhardwaj K K,Ahlawat I,et al.Glomalin:a miracle protein for carbon sequestration[J].International Journal of Plant & Soil Science,2022,34(9):80-86.

    • [107] Javad V M,Sayyari Z M H,Azarmi A F,et al.The effect of biochars produced from barberry and jujube on erosion,nutrient,and properties of soil in laboratory conditions[J].Soil & Tillage Research,2022,219:105345.

    • [108] Yan M F,Li X R,Liu Y,et al.Biochar enhanced soil aggregation and c-related enzyme activity in post-mining land on the loess plateau,china[J].Land Degradation & Development,2022,33(7):1054-1061.

    • [109] Gu W Q,Zhang W M,Xiu L Q,et al.Soil aggregate variation in two contrasting rice straw recycling systems for paddy soil amendment over two years[J].Archives of Agronomy and Soil Science,2023,69(14):3044-3059.

    • [110] 万连杰,李俊杰,张绩,等.有机肥替代化肥技术研究进展 [J].北方园艺,2021(11):133-142.

    • [111] 张延,梁爱珍,张晓平,等.土壤团聚体对有机碳物理保护机制研究[J].土壤与作物,2015,4(2):85-90.

    • [112] 宋丽萍,罗珠珠,李玲玲,等.苜蓿∶作物轮作模式对土壤团聚体稳定性及有机碳的影响[J].中国生态农业学报,2016,24(1):27-35.

    • [113] 冷延慧,汪景宽,薛菁芳.连续施肥20年后棕壤团聚体分布和碳储量变化[J].土壤通报,2008,39(4):743-747.

    • [114] 马文明,刘军,周青平,等.高寒草地灌丛化对土壤团聚体稳定性及有机碳分布特征的影响[J].土壤通报,2019,50(5):1108-1115.

    • [115] 李建国,赵宴青,袁冯伟,等.滨海滩涂围垦对土壤团聚体分布及其有机碳富集的影响——以江苏省如东县垦区为例 [J].土壤通报,2018,49(3):552-559.

    • [116] Puget P,Chenu C,Balesdent J.Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates [J].European Journal of Soil Science,2000,51(4):595-605.

    • [117] Mustafa A,Xu M G,Shah S A A,et al.Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of southern china[J].Journal of Environmental Management,2020,270:110894.

    • [118] 盛明,龙静泓,雷琬莹,等.秸秆还田对黑土团聚体内有机碳红外光谱特征的影响[J].土壤与作物,2020,9(4):355-366.

    • [119] 潘英杰,何志瑞,刘玉林,等.黄土高原天然次生林植被演替过程中土壤团聚体有机碳动态变化[J].生态学报,2021,41(13):5195-5203.

    • [120] Abrar M M,Xu M G,Shah S A A,et al.Variations in the profile distribution and protection mechanisms of organic carbon under long-term fertilization in a Chinese Mollisol[J].Science of the Total Environment,2020,723:138181.

    • [121] Cates A M,Jilling A,Tfaily M M,et al.Temperature and moisture alter organic matter composition across soil fractions[J]. Geoderma,2022,409:115628.

    • [122] Liu K,Xu Y Z,Feng W T,et al.Modeling the dynamics of protected and primed organic carbon in soil and aggregates under constant soil moisture following litter incorporation[J]. Soil Biology and Biochemistry,2020,151(prepublish):108039.

    • [123] Li Y X,Yu P J,Shen L C.Changes in soil aggregate stability and aggregate-associated organic carbon during old-field succession in karst valley[J].Environmental Monitoring and Assessment,2021,194(1):15.

    • [124] Chen S Y,Cao Y Q,Zhang T T,et al.Improvement of soil aggregate-associated carbon sequestration capacity after 14 years of conservation tillage[J].Experimental Agriculture,2022,58:e55.

    • [125] Kan Z R,Liu W X,Liu W S,et al.Mechanisms of soil organic carbon stability and its response to no-till:A global synthesis and perspective[J].Global Change Biology,2021,28(3):693-710.

    • [126] Thai S,DavÃdek T Å,PavlÅ L.Causes clarification of the soil aggregates stability on mulched soil[J].Soil and Water Research,2022,17(2):91-99.

    • [127] Sun X L,Liu J T,Liu S T.Soil organic carbon fractions comparison after 40-year long-term fertilisation in  a wheatcorn rotation field[J].Soil and Water Research,2022,17(3):149-157.

    • [128] 张家春,刘盈盈,贺红早,等.土壤团聚体与有机碳固定关系研究进展[J].福建农业学报,2016,31(3):319-325.

  • 《中国土壤与肥料》招聘启事
    关闭