-
土壤酸化是指在自然和人为条件下土壤 pH 降低或交换性酸增加,使土壤酸中和容量降低的过程[1]。土壤酸化是一种普遍存在的自然现象,是土壤形成及发育中一个非常缓慢的过程。自然过程下,土壤酸化速率较慢,一般需要经历数十年甚至数百年土壤 pH 才会出现明显降低,因此,在大多数情况下并不会对生态系统产生明显的影响[2]。然而,农业生产中高强度的氮肥施用和作物生产导致农田土壤发生了严重的酸化,显著影响了农业生产和生态系统[3]。因此,客观评估农田土壤酸化状况,提出调控土壤酸化的有效途径,对人类社会可持续发展具有重要意义。
-
茶是重要的经济作物,中国是世界最大的茶叶生产国,茶叶生产对于经济民生至关重要。据报道,我国茶园生态系统发生了严重的土壤酸化,酸化程度较粮食作物和蔬菜生产系统更为严重,已经成为茶产业绿色高质量发展的一大阻碍[4]。本文旨在全面分析我国茶园土壤酸化现状,系统阐述引起茶园土壤酸化的内部机制和外部因素,解析土壤酸化对茶树生长、土壤元素转化和生态系统过程的影响,提出茶园酸化土壤的有效调控途径,为茶园土壤健康管理和茶产业绿色可持续发展提供参考。
-
1 我国茶园土壤酸化现状
-
1.1 茶园土壤酸化现状
-
植茶导致了茶园土壤快速酸化。大量研究表明,典型地区茶园土壤 pH 显著低于林地、耕地、园地等土地利用类型[4-5]。全国范围的调查研究也表明,我国典型地区茶园土壤 pH 在 0~10、 10~20 和 20~30 cm 土层比邻近自然森林土壤平均分别降低了 0.50、0.66 和 0.68;种茶历史悠久的福建安溪茶园土壤(pH 4.22)相较于县域内耕地土壤(pH 5.29)和果蔬地土壤(pH 5.15)出现显著酸化[5]。植茶不仅导致土壤活性酸增加,土壤潜在酸也显著增加,土壤 pH 缓冲容量下降[6]。与现代茶园比较,古茶园土壤并未显著酸化,现代茶园酸化有加快趋势[7]。茶园土壤酸化不仅出现在表土层,表土层以下土层也表现出显著酸化的趋势。研究表明,与森林比较,短期的茶叶种植(10 年)茶园土壤酸化主要发生在 0~120 cm 土层,而随着种植年限增加,茶园土壤的酸化发生在整个 0~200 cm 土层[8]。茶园各土层酸化程度存在差异,部分研究认为表层土壤的酸化最为严重[9],也有研究指出表层以下土壤酸化更为严重[10]。
-
1.2 茶园土壤酸化的时空特征
-
从时间尺度来看,随着植茶年限的增加,茶园土壤 pH 均呈下降趋势[4]。1980 s 到 2000 s 的20~30 年间,我国典型地区茶园土壤整体呈酸化趋势,福建安溪茶园土壤 pH 值平均降低 1.37,浙江松阳茶园土壤 pH 值平均降低 0.47,浙江武义茶园土壤 pH 值平均降低 1.43[5]。茶园土壤快速酸化可能与长期的茶树种植和大量的化学氮肥施用直接相关[11]。
-
从空间尺度来看,全国茶园土壤酸化普遍。我国 19 个省份 225 个典型植茶县的表层土壤评估结果表明,全国茶园土壤 pH 平均值仅为 4.68, pH<4.5 的点位达 46.0%,pH 在 4.5~5.5 的点位占 43.9%,pH>5.5 的茶园仅占 10.1%。全国不同省份茶园土壤酸化程度有所不同,主要产茶省份茶园土壤 pH 在 3.96~5.48,其中以江西省茶园土壤 pH 最低,平均值仅 3.96;江西、福建、重庆、广西、贵州、四川、湖北和广东 8 个省(市、自治区)植茶土壤 pH 平均值低于 4.5;云南、湖南、江苏、山东、浙江、河南、安徽、陕西等省份茶园土壤 pH 值低于 5.5;江西、福建、重庆、广西、湖北等省 (市、自治区)茶园土壤 pH 低于 4.5 的样点比例超过 50%;河南、安徽、浙江、江苏、山东等省份土壤 pH 集中分布在 4.5~5.5[5]。不同地区间茶园土壤酸化程度的差异性与各地区土壤成土环境差异相关,山东、河南、江苏、陕西等北方茶区土壤以黄棕壤和棕壤为主,土壤盐基离子丰富,酸缓冲容量大,pH 较高;而江西、福建、广西和广东等南方茶区以红壤为主,土壤强淋溶发育,盐基离子淋失较多,pH 较低[12]。
-
2 茶园土壤酸化的成因
-
茶园土壤酸化的成因既有内部机制,也有外部因素。内部机制主要是茶树生长代谢和茶园土壤物质循环[10],外部因素主要包括氮肥施用[13]和酸沉降[14]。
-
2.1 茶园土壤酸化的内部机制
-
茶树生长发育代谢过程是引起茶园土壤酸化的主要内部机制。茶树生长发育过程中树体对阳离子吸收较多,茶树根系选择性吸收更多的铵态氮,尤其是茶树属于典型的聚铝植物(吸收土壤中的活性 Al3+),茶树根系吸收了大量的阳离子后通过释放 H+ 维持树体内离子平衡,造成土壤酸化[15-16]。茶树根系分泌有机酸也是导致土壤酸化的一个重要因素。茶树代谢过程中产生的过量有机酸不易与钙中和,通过根系分泌物排出,所以茶树生长期和修剪后根系会分泌大量有机酸,根系分泌的有机酸具有较强的络合能力及与阴离子竞争吸附点位能力,对于土壤的酸度有较大的影响,有机酸解离向土壤提供 H+,从而降低土壤 pH[17]。茶树在生长发育过程中的凋落物和修剪枝叶含有大量铝,分解进入土壤后会被有机酸和多酚类化合物活化,引起土壤中活性铝含量增加,进一步造成土壤酸化[18]。
-
土壤物质循环过程中氮素转化、盐基离子淋失和铝离子累积等过程是引起茶园土壤酸化的重要内部机制。土壤氮素硝化过程是造成土壤酸化的重要直接因素,土壤铵态氮发生硝化反应由羟胺转化为亚硝态氮的过程会释放出 H+,造成土壤酸度的增加[15]。土壤盐基离子(Ca2+、Mg2+、K+、Na+)淋失是导致茶园土壤酸化的重要原因,由于茶园一般分布于降水丰富的地区,土壤淋溶作用强,强烈的淋溶作用使土壤盐基阳离子逐渐淋失,交换性酸 (交换性氢和交换性铝)逐渐形成,土壤呈酸性或强酸性反应[6]。铝在茶园土壤中的内部循环和积累过程加快了土壤酸化,由于土壤硅铝酸盐崩解不断释放出铝离子,茶树枝叶中积累的大量铝通过修剪过程归还到土壤中,在分解过程中释放出大量活性铝,造成土壤中交换性和游离的铝离子增加,从而导致土壤酸化[18-19]。
-
2.2 茶园土壤酸化的外部因素
-
氮肥施用是直接影响茶园土壤酸化最主要的外部因素。研究结果表明,施用氮肥会导致茶园土壤 pH 降低,不施氮肥的茶园土壤 pH 相对较高,随着氮肥用量的增加和施肥年限的延长,茶园土壤酸化加剧[20-21]。从土壤的酸化速率来看,在不施氮肥条件下,茶园土壤 pH 下降速率约为每年 0.071,而施用高量氮肥条件下(596 kg/hm2),土壤 pH 下降速率达每年 0.083[13]。不同形态氮素肥料对茶园土壤酸化的程度不同,铵态氮肥较硝态氮肥具有更强的酸化能力,而茶园使用的肥料多为铵态氮肥,造成茶园土壤快速酸化[22]。Ruan 等[23] 研究指出,与施用铵态氮肥比较,施用硝态氮肥条件下,茶园土壤交换性铝、交换性锰和交换性酸显著降低,pH 值显著更高。铵态氮肥中酸化能力最强的是硫酸铵,尿素和碳酸氢铵虽是中性肥,但大量施用也能导致土壤酸化[24]。
-
酸沉降是茶园土壤酸化的重要外部因素。茶园大量施用氮肥,通过氨挥发过程向大气排放,氨 (NH3)和铵(NH4 +)通过干湿沉降方式产生进入茶园,参与土壤氮素循环,成为茶园土壤酸化的重要因素[25-26]。酸沉降通过抑制土壤氮的固定和有机物分解,加速盐基离子淋失,使土壤酸化加剧[27]。 1990 s 到 2010 s 的 20~30 年间,全国酸雨发生面积占比由 22.53% 上升至 30.45%,以南方各省市酸雨发生程度较高,与我国茶区的分布相一致[28]。因此,酸沉降必然导致茶园土壤酸化[14]。
-
3 茶园土壤酸化对茶树生长和茶园生态的影响
-
3.1 茶园土壤酸化对茶树生长和茶叶产量及品质的影响
-
茶园土壤酸化直接影响了茶树根系生长和养分吸收[29],从而间接影响茶树地上部生长,特别是新梢的生长,最终影响茶叶的产量和品质[30]。当土壤 pH<4.0 时,茶树根尖萎缩,生长受抑制[29],此时茶树对氮、磷、钾的吸收量急剧下降,茶树发芽迟缓,新梢生长缓慢[31]。茶园土壤酸化还会通过影响土壤养分有效性间接影响茶树生长。茶园土壤酸化导致土壤物理性状恶化,盐基离子加速淋失,土壤氮素形态转化,从而降低了茶树根系对 N、Ca、Mg、K 等养分的吸收,减少茶树叶绿素合成,降低光合作用,影响产量和茶叶品质[32-33];同时土壤酸化导致 Al、F、Pb 等元素活化,茶树对有害物质的积累增加[34-35]。Ding 等[36] 研究显示,当土壤 pH 值由 5.32 降低至 3.29 时,茶树根际土壤脲酶、蛋白酶和天冬酰胺酶活性降低,茶树的氮素生理利用率由 116.74% 降低至 89.79%。土壤酸化会破坏茶树叶片细胞酸碱平衡,降低茶叶多酚物质的合成,影响氨基酸合成与转运,造成茶叶品质下降[30]。一项对福建安溪茶园的调查发现,随着茶园土壤 pH 值的降低,茶园土壤铵态氮降低,硝态氮增加,茶叶产量和茶叶中茶多酚、茶氨酸、咖啡碱显著降低[37]。
-
3.2 茶园土壤酸化对土壤元素转化的影响
-
茶园土壤酸化显著改变了土壤元素循环过程。土壤酸化总体上抑制了 N、P 转化,降低其有效性,且不同程度改变其根际效应,从而影响茶园养分循环[38]。茶园土壤 pH 直接或间接影响了土壤氮素转化相关微生物活性,从而影响氮素硝化和反硝化过程[33,39]。研究发现,茶园土壤中硝化作用发生的下限 pH 大约为 2.9[40],且在强酸性茶园土壤中土壤硝化作用与土壤 pH 呈显著正相关[41],土壤酸化可能导致茶园土壤硝化和反硝化基因丰度变化,茶园 NOx 和 N2O 排放增加[42]。茶园土壤酸化降低土壤砂粒和粉粒中云母、长石等含钾矿物含量,促进土壤黏粒中 2∶1型(伊利石)矿物向 1∶1型矿物(高岭石)的转变,降低了土壤钾素含量及潜在供钾能力[43]。土壤酸化可以改变金属元素的形态,碳酸盐结合态和残留态金属可以转化为交换态和水溶态,从而增强阳离子的有效性[44]。
-
3.3 茶园土壤酸化对生态系统的影响
-
茶园土壤生态系统过程显著受到土壤酸化影响。土壤中绝大多数微生物都对酸敏感,所以在酸性条件下茶园土壤中微生物的种类和数量均较少,而且活性很低,使一些重要的微生物酶失活,或者使细胞的蛋白质变性,影响土壤功能[45]。同时酸化土壤中高浓度的 Al,也会毒害微生物,使微生物的活性丧失[46]。土壤酸化可以降低茶园土壤大型动物的数量,随着土壤 pH 降低,茶园土壤蚯蚓密度显著降低[47]。然而,土壤酸化也能使一些嗜酸微生物的活性增强,增加土壤 N2O 的排放,增加了土壤基础呼吸强度和通量[4,48],酸化可能导致全球气候变暖和生态破坏问题加剧。
-
4 茶园土壤酸化调控途径
-
酸化的本质是土壤中的 H+ 累积,可通过 H+ 产生和消耗之间的平衡关系来调控土壤的酸化过程。从耕作管理调控降低土壤 H+ 的产生,添加碱性物质中和土壤中过多的 H+ 是降低土壤酸化程度的两类主要途径。从茶叶生产实践来看,合理施用肥料和碱性物质是茶园土壤酸化调控的两种主要农艺途径。
-
4.1 合理施用肥料
-
科学施肥是减缓人为因素造成茶园土壤酸化的有效措施。采用测土配方施肥技术、基于产量反应和农学效率的养分推荐方法等技术方法,根据土壤肥力状况和茶树养分需求,降低过量氮肥施用,减少氮肥硝化过程产生 H+,有效防治茶园土壤酸化[49-50]。通过氮肥形态的调整,采用部分硝态氮、有机氮替代铵态氮(酰胺态氮),减少生理酸性肥料的施用,能够减少茶树吸收氮产生 H+[23]。此外,采用脲酶抑制剂、硝化抑制剂等氮肥增效剂,通过改进缓控释肥工艺,降低氮肥挥发损失和淋溶损失,延长肥效,辅助氮肥减量,从而减缓土壤酸化[51-52]。通过采用深施、水肥一体化等方式减少氨的挥发,能够降低氮的沉降,减少酸的产生[53]。合理施用钾、镁肥,补充土壤盐基离子,降低交换性 Al3+,提高土壤 pH[54]。施用有机肥、沼渣沼液及农作物秸秆等有机物料,能够减缓和平衡酸化茶园的土壤酸性。有机肥含有较多的碱性官能团,能够中和土壤酸度,施用有机肥能够增加土壤有机质,调节土壤酸碱缓冲能力[53,55]。例如,吴志丹等[56]在福建安溪的研究结果显示,通过专用肥和有机替代等技术措施,能够在减少化肥投入 33%~53% 的基础上提高土壤 pH 0.34~0.58,提高茶叶产量 5.21%~9.18%。
-
4.2 施用碱性物质
-
采用石灰可以迅速中和土壤活性酸,提高土壤 pH,且改良剂材料廉价易得,是茶园酸性土壤改良的重要手段[57]。但是,有研究指出,长期施用石灰石会加速土壤钾、镁离子浸出,导致土壤养分失衡,引起土壤板结,停止施用后会出现更强的复酸化,对茶叶的产量和品质提高也不明显[58]。同时有研究指出,由于茶叶对钙素较为敏感,过高的钙含量或者不协调的 Ca/Mg 对于茶叶产量和品质形成不利[59]。石灰能够与土壤溶液中的氟形成 CaF2 沉淀,降低细胞壁或膜渗透性,从而降低茶树对氟的吸收[60]。因此,学者提出采用白云石改良茶园土壤酸化效果较好,白云石中含有大量钙、镁离子,能够增加土壤阳离子交换量,且白云石粒径越小效果越好[61]。近年来,生物质炭作为一种结构良好的改良剂材料,对于茶园酸性土壤改良取得了良好的效益。生物质炭能够通过提高土壤 pH,从而增加磷、钾和镁的含量,降低铜和锰的有效性,从而提高茶树的产量和品质[62]。对于酸化茶园,每公顷施用 1125~2250 kg 硅钙钾镁、牡蛎壳粉、海藻肥和腐植酸等改良剂,能够显著提升土壤 pH 值 0.12~0.41,提高交换性盐基离子含量,有效改善土壤酸化[63]。
-
5 展望
-
茶园土壤酸化正在成为茶产业绿色高质量发展的重要挑战。对全国和区域茶园土壤酸化系统评估,指导开展科学的土壤酸化调控,成为当前面临的迫切需求。当前茶园土壤酸化主要采用活性酸(pH)评估,由于茶园土壤中存在较多的活性铝和交换性铝,不能完全反映酸化的进程。很多研究直接计算多点位的土壤 pH 算术平均值,用于评估茶园土壤整体酸化程度,但是基于算术平均的计算方法对于掌握多样点和土壤 pH 变异性较大时凸显出明显的不足。笔者认为,对于一个相同供试土壤进行的同种处理试验,其重复值采用直接算术平均求导得到其平均值,以表征土壤的酸度情况是可行的。对于大尺度多点位土壤 pH 数据的比较应当以中位数表征整体土壤的酸化情况较为适宜。另外,无论是自然土壤还是农业土壤都缓慢或快速的酸化,由于茶园土壤具有较多的交换性铝和活性铝,从土壤 pH 缓冲容量的角度开展土壤酸度评估对于指导茶园土壤的改良更为重要。
-
对于区域茶园土壤酸化的现状和趋势评价,往往采用多点位数据的比较,或者采集相同区域内不同植茶年限的土壤进行评估,这样的研究是基于相同的施肥管理措施条件下的假设,忽略了田块尺度农事操作在长期时间尺度的变异。近年来随着茶叶种植规模的扩张,多点位土壤数据的趋势比较必须增强对土地利用变化因素的考量,以避免因为土地利用变化产生的趋势测量误差。从国家尺度来看,建立不同生态区茶园的长期定位监测点,系统研究和揭示植茶过程和施肥管理等对全国茶园土壤酸化影响的长期趋势十分重要。
-
茶园土壤酸化的成因与茶树特性和人为耕作管理等因素相关,然而,当前的研究仍然无法系统评估在不同尺度上各影响因素的贡献,尤其是茶树吸收积累铝较多,铝素吸收累积迁移过程在茶园土壤酸化中的作用不能忽视,因此,需要在系统层面开展茶园土壤酸化贡献率的研究,才能更好地指导、调控和治理茶园土壤酸化。
-
茶园土壤酸化的调控和改良,既需要考虑酸性土壤改良的实际效果,又必须从茶树生产特征出发,兼顾茶叶的产量、品质和茶园土壤的综合健康。从茶叶生产实践来看,必须科学认识茶园土壤酸化的长期性,通过系统性的土壤调控策略,农机农艺产品结合的方式,才能真正将技术应用落地。
-
参考文献
-
[1] van Breemen N,Driscoll C T,Mulder J.Acidic deposition and internal proton sources in acidification of soils and waters[J]. Nature,1984,307(5952):599-604.
-
[2] Krug E C,Frink C R.Acid rain on Acid soil:a new perspective[J]. Science,1983,221(4610):520-525.
-
[3] Guo J H,Liu X J,Zhang Y,et al.Significant acidification in major Chinese croplands[J].Science,2010,327:1008-1010.
-
[4] Fan L,Han W.Soil respiration after forest conversion to tea gardens:a chronosequence study[J].Catena,2020,190:104532.
-
[5] Yan P,Wu L Q,Wang D H,et al.Soil acidification in Chinese tea plantations[J].Science of The Total Environment,2020,715:136963.
-
[6] Wang H,Xu R K,Wang N,et al.Soil acidification of alfisols as influenced by tea cultivation in eastern China[J]. Pedosphere,2010,20(6):799-806.
-
[7] 杨广容,王秀青,谢瑾,等.云南古茶园和现代茶园土壤养分与茶叶品质成分关系的研究[J].茶叶科学,2015,35(6):574-582.
-
[8] Yan P,Chen S,Fan L C,et al.Tea planting affects soil acidification and nitrogen and phosphorus distribution in soil[J]. Agriculture,Ecosystems & Environment,2018,254:20-25.
-
[9] Alekseeva T,Alekseev A,Xu R K,et al.Effect of soil acidification induced by a tea plantation on chemical and mineralogical properties of alfisols in eastern China[J]. Environmental Geochemistry and Health,2011,33(2):137-148.
-
[10] Li S Y,Li H X,Yang C L,et al.Rates of soil acidification in tea plantations and possible causes[J].Agriculture,Ecosystems & Environment,2016,233:60-66.
-
[11] 倪康,廖万有,伊晓云,等.我国茶园施肥现状与减施潜力分析[J].植物营养与肥料学报,2019,25(3):421-432.
-
[12] Chen S,Liang Z,Webster R,et al.A high-resolution map of soil pH in China made by hybrid modelling of sparse soil data and environmental covariates and its implications for pollution[J]. Science of the Total Environment,2019,655:273-283.
-
[13] Yang X D,Ni K,Shi Y,et al.Effects of long-term nitrogen application on soil acidification and solution chemistry of a tea plantation in China[J].Agriculture,Ecosystems & Environment,2018,252:74-82.
-
[14] Jiang W,Shen J,Li Y,et al.Contrasting change trends in dry and wet nitrogen depositions during 2011 to 2020:Evidence from an agricultural catchment in subtropical central China[J].Science of The Total Environment,2024,907:168094.
-
[15] Wan Q,Xu R Q,Li X H.Proton release by tea plant(Camellia sinensis L.)roots as affected by nutrient solution concentration and pH[J].Plant,Soil and Enviroment,2012,58(9):429-434.
-
[16] Wang Q,Mi Y,Yang Y,et al.Aluminum-enhanced proton release associated with plasma membrane H+-adenosine triphosphatase activity and excess cation uptake in tea(Camellia sinensis)plant roots[J].Pedosphere,2018,28(5):804-813.
-
[17] Pramanik P,Phukan M,Ghosh S,et al.Pruned tea bushes secrete more root exudates to influence microbiological properties in soil[J].Archives of Agronomy and Soil Science,2018,64(8):1172-1180.
-
[18] Ruan J,Ma L,Shi Y,et al.Effects of litter incorporation and nitrogen fertilization on the contents of extractable aluminium in the rhizosphere soil of tea plant(Camallia sinensis L.O.Kuntze)[J]. Plant and soil,2004,263:283-296.
-
[19] Hu X F,Chen F S,Wine M L,et al.Increasing acidity of rain in subtropical tea plantation alters aluminum and nutrient distributions at the root-soil interface and in plant tissues[J]. Plant and Soil,2017,417:161-274.
-
[20] Liu Y,Zhang M,Li Y,et al.Influence of nitrogen fertilizer application on soil acidification characteristics of tea plantations in karst areas of southwest China[J].Agriculture,2023,13(4):849.
-
[21] Yang X,Ma L,Ji L,et al.Long-term nitrogen fertilization indirectly affects soil fungi community structure by changing soil and pruned litter in a subtropical tea(Camellia sinensis L.)plantation in China[J].Plant and Soil,2019,444(1-2):409-426.
-
[22] Wang H,Zhang H,Zhao Y,et al.Soil acidification of alfisols influenced by nitrate and ammonium nitrogen level in tea plantation [J].International Journal of Agricultural and Biological Engineering,2018,11(4):168-172.
-
[23] Ruan J Y,Zhang F S,Wong M H.Effect of nitrogen form and phosphorus source on the growth,nutrient uptake and rhizosphere soil property of Camellia sinensis L.[J].Plant and Soil,2000,223(1-2):65-73.
-
[24] Wang J,Tu X,Zhang H,et al.Effects of ammonium-based nitrogen addition on soil nitrification and nitrogen gas emissions depend on fertilizer-induced changes in pH in a tea plantation soil [J].Science of The Total Environment,2020,747:141340.
-
[25] Zhu X,Shen J,Li Y,et al.Nitrogen emission and deposition budget in an agricultural catchment in subtropical central China[J]. Environmental Pollution,2021,289:117870.
-
[26] Shen J,Li Y,Liu X,et al.Atmospheric dry and wet nitrogen deposition on three contrasting land use types of an agricultural catchment in subtropical central China[J].Atmospheric Environment,2013,67:415-424.
-
[27] Hu X F,Wu A Q,Wang F C,et al.The effects of simulated acid rain on internal nutrient cycling and the ratios of Mg,Al,Ca,N,and P in tea plants of a subtropical plantation[J]. Environmental Monitoring and Assessment,2019,191:1-14.
-
[28] Yu H,He N,Wang Q,et al.Development of atmospheric acid deposition in China from the 1990s to the 2010s[J]. Environmental Pollution,2017,231:182-190.
-
[29] Xu Q,Wang Y,Ding Z,et al.Aluminum induced physiological and proteomic responses in tea(Camellia sinensis)roots and leaves[J].Plant Physiology and Biochemistry,2017,115:141-151.
-
[30] 王海斌,陈晓婷,丁力,等.福建省安溪县茶园土壤酸化对茶树产量及品质的影响[J].应用与环境生物学报,2018,24(6):1398-1403.
-
[31] Li Y,Huang J,Song X,et al.An RNA-Seq transcriptome analysis revealing novel insights into aluminum tolerance and accumulation in tea plant[J].Planta,2017,246(1):91-103.
-
[32] Fung K F,Wong M H.Effects of soil pH on the uptake of Al,F and other elements by tea plants[J].Journal of the Science of Food and Agriculture,2002,82(1):146-152.
-
[33] Lin S,Liu Z,Wang Y,et al.Soil acidification associated with changes in inorganic forms of N reduces the yield of tea(Camellia sinensis)[J].Archives of Agronomy and Soil Science,2023,69(9):1660-1673.
-
[34] Zhang M,Zhou C,Huang C.Relationship between extractable metals in acid soils and metals taken up by tea plants[J]. Communications in Soil Science and Plant Analysis,2006,37(3-4):347-361.
-
[35] Zhang L,Li Q,Ma L,et al.Characterization of fluoride uptake by roots of tea plants(Camellia sinensis L.O.Kuntze)[J]. Plant and Soil,2013,366(1-2):659-669.
-
[36] Ding L,Hong L,Wang Y H,et al.Allelopathic effects of soil pH on nitrogen uptake,its utilization efficiency and soil enzymes in tea bush soil[J].Allelopathy Journal,2022,56(2):181-192.
-
[37] Wang Y H,Hong L,Wang Y C,et al.Effects of soil nitrogen and pH in tea plantation soil on yield and quality of tea leaves[J]. Allelopathy Journal,2022,55(1):51-60.
-
[38] Yan P,Shen C,Fan L,et al.Tea planting affects soil acidification and nitrogen and phosphorus distribution in soil[J]. Agriculture,Ecosystems & Environment,2018,254:20-25.
-
[39] Zhang Y Y,Zhang J B,Chapman S J,et al.Tea plantation affects soil nitrogen transformations in subtropical China[J]. Journal of Soils and Sediments,2020,20(9):1-11.
-
[40] Hayatsu M.The lowest limit of pH for nitrification in tea soil and isolation of an acidophilic ammonia oxidizing bacterium[J].Soil Science & Plant Nutrition,1993,39(2):219-226.
-
[41] Han W,Kemmitt S J,Brookes P C.Soil microbial biomass and activity in Chinese tea gardens of varying stand age and productivity[J].Soil Biology & Biochemistry,2007,39(7):1468-1478.
-
[42] Yu H,Han X,Zhang X,et al.Fertilizer-induced N2O and NO emissions in tea gardens and the main controlling factors:A recent three-decade data synthesis[J].Science of The Total Environment,2023,871:162054.
-
[43] 麻万诸,朱康莹,卓志清.酸化对茶园土壤矿物转变及供钾能力的影响[J].茶叶科学,2023,43(1):17-26.
-
[44] Wen B,Li L,Duan Y,et al.Zn,Ni,Mn,Cr,Pb and Cu in soil-tea ecosystem:The concentrations,spatial relationship and potential control[J].Chemosphere,2018,204:92-100.
-
[45] ZhengX,Wu Y,Xu A,et al.Response ofsoil microbial communities and functions to long-term tea(Camellia sinensis L.)planting in a subtropicalregion[J].Forests,2023,14(7):1288.
-
[46] Hu Y,Li H,Zhou Y,et al.Illumina MiSeq sequencing investigation on the contrasting rhizosphere soil bacterial community structures in tea orchard soil under different content of aluminium[J].All Life,2023,16(1):2206544.
-
[47] Jamatia S K S,Chaudhuri P S.Earthworm community structure under tea plantations(Camellia sinensis)of Tripura(India)[J]. Tropical Ecology,2017,58(1):105-113.
-
[48] Yin J,Chen H,Duan P,et al.Soil microbial communities as potential regulators of N2O sources in highly acidic soils[J].Soil Ecology Letters,2023,5(4):1-7.
-
[49] Tang S,Liu Y,Zheng N,et al.Temporal variation in nutrient requirements of tea(Camellia sinensis)in China based on QUEFTS analysis[J].Scientific Reports,2020,10(1):1745.
-
[50] 马立锋,倪康,伊晓云,等.浙江茶园化肥减施增效技术模式及示范应用效果[J].中国茶叶,2019,41(10):40-43.
-
[51] 吴晓荣,张蓓蓓,余云飞,等.硝化抑制剂对典型茶园土壤尿素硝化过程的影响[J].农业环境科学学报,2017,36(10):2063-2070.
-
[52] Wang J,Zhang B,Tian Y,et al.A soil management strategy for ameliorating soil acidification and reducing nitrification in tea plantations[J].European Journal of Soil Biology,2018,88:36-40.
-
[53] Jia X,Wang Y,Zhang Q,et al.Reasonable deep application of sheep manure fertilizer to alleviate soil acidification to improve tea yield and quality[J].Frontiers in Plant Science,2023,14:1179960.
-
[54] 朱悦蕊,林慧凌,张誉龄,等.钾、镁配施改良茶园土壤酸化的效果及其作用路径[J].生态学杂志,2023,42(7):1554-1560.
-
[55] Xie S,Yang F,Feng H,et al.Organic fertilizer reduced carbon and nitrogen in runoff and buffered soil acidification in tea plantations:evidence in nutrient contents and isotope fractionations[J].Science of The Total Environment,2020,762:143059.
-
[56] 吴志丹,江福英,陈玉真,等.安溪铁观音茶园化肥减施增效技术模式研究[J].茶叶学报,2021,62(4):179-184.
-
[57] Xue D,Huang X,Yao H,et al.Effect of lime application on microbial community in acidic tea orchard soils in comparison with those in wasteland and forest soils[J].Journal of Environmental Sciences,2010,22(8):1253-1260.
-
[58] Yan P,Zou Z,Zhang J,et al.Crop growth inhibited by overliming in tea plantations[J].Beverage Plant Research,2021,1(1):1-7.
-
[59] 吴洵.茶树的钙镁营养及土壤调控[J].茶叶科学,1994,14(2):115-121.
-
[60] Fung K F,Wong M H.Application of different forms of calcium to tea soil to prevent aluminium and fluorine accumulation[J]. Journal of the Science of Food and Agriculture,2004,84(12):1469-1477.
-
[61] 余跑兰,孙永明,李小飞,等.施用白云石粉对茶园土壤酸化及茶叶品质与产量的影响[J].茶叶通讯,2020,47(1):46-51.
-
[62] Zhang S H,Wang Y,Hu J J,et al.Bamboo charcoal affects soil properties and bacterial community in tea plantations[J]. Open Life Sciences,2023,18(1):20220681.
-
[63] 赵丽芳,黄鹏武,陈翰,等.土壤调理剂与有机肥配施治理红壤茶园土壤酸化与培育地力的效果[J].浙江农业科学,2022,63(11):2692-2695.
-
摘要
土壤酸化问题正在成为限制茶园土壤健康和茶叶优质高产的重要因素,然而,当前对茶园土壤酸化的现状、机制及调控途径尚缺乏系统性总结,制约了茶产业高质量发展。对我国茶园土壤酸化现状进行重点分析,系统阐述茶园土壤酸化的内部机制和外部因素,解析了土壤酸化对茶树生长、土壤元素转化和生态系统过程的影响。针对茶园酸化土壤改良目标,提出酸化土壤的有效调控途径,旨在为茶园土壤健康管理和茶产业绿色可持续发展提供依据。
Abstract
Soil acidification in tea gardens is becoming an increasingly important factor that limits the health of tea plantation soil and the quality of tea produced. However,there is currently a lack of a systematic summary of the current status, mechanisms and regulatory pathways of soil acidification in tea plantation,which restricts the high-quality development of the tea industry. This article focused on the analyzes the status of soil acidification in tea plantations in China. It systematically explained the internal mechanisms and external factors of soil acidification in the tea plantations,and analyzed the impact of soil acidification on tea tree growth,soil material cycling,and ecosystem processes. In response to the goal of tea garden acidification improvement,effective regulation pathways for tea garden acidified soil were proposed,aiming to provide a basis for the healthy management of tea garden soil and the green and sustainable development of the tea industry.