-
磷素在植物营养领域发挥着重要的作用,对植物正常生长以及遗传贡献巨大,是植物体内许多重要生化物质组成的必需元素(如三磷酸腺苷、磷脂、RNA、DNA 等)[1]。磷是不可再生资源,主要来自于磷酸盐矿物,据估计,土壤中平均总磷储存量约为 570.0 mg/kg[2],由此可知土壤中磷储量丰富,但全球仍有 30%~40% 的农田缺磷[3]。其原因是磷在土壤中的移动性较差,施入的磷肥也易被土壤矿物吸附或金属阳离子固定,大量磷素在土壤中积累而植物难以吸收利用导致磷利用效率较低 (10%~25%)[4]。
-
植物对磷的吸收通常由形态反应和生理反应共同驱动[5]。因为这些性状的呈现需要碳成本,根系形态的变化需要将更多的光合产物分配到根系,而根系分泌物的外排同样需要消耗植物的碳源,所以植物对这些有利性状之间进行了一系列的权衡[6-7],例如对于禾本科植物而言,根系形态变化的贡献要高于由于低磷胁迫造成的生理反应,而对于豆科而言,低磷胁迫所诱导的根系分泌物增加的贡献更高。在低磷胁迫条件下,植物促进形成优良的根系形态和根系构型以提升磷吸收面积,通过增加主根的数量,增加根密度,增加根毛长度和密度,减小根直径以实现相对较高的根表面积,降低根代谢成本以增加植物获取磷的土壤体积,以此增强植物的磷素吸收能力[8]。另外,植物对磷素的吸收能力很大程度上取决于其是否具有特定的菌根策略。对于非菌根植物,只有靠近根或根毛表面的磷可被获取,这些植物通常生长在土壤溶液中磷含量较高的环境[9]。而对于具有特定菌根策略的植物(丛枝菌根和外生菌根植物),可获得磷耗竭区外的无机磷[10]。对于外生菌根植物,其分泌的有机酸盐也可以将土壤固定的一部分磷利用起来[11]。对于非菌根植物则通过释放大量的有机酸盐和磷酸酶增强磷素的吸收利用[9]。此外,非菌根植物中的白羽扇豆以及山龙眼科形成了释放大量有机酸盐的排根[12-13],这会在很大程度上提高植物磷素吸收能力。由此可以明确,植物的磷获取策略以及根系生理反应和形态特征是决定其磷素吸收能力的重要因素。
-
大量研究表明,合理配施有机肥是提高磷素利用效率的有效途径之一[14],改变土壤中磷素的形态增加其生物有效性的同时,还能改变植物对磷的吸收能力(改变根系构型及其生理反应,调整植物微生物共生关系)[15-16]。除此之外,由于有机肥料具有多种成分,它不仅可以在土壤中提供均衡的营养,还可以为微生物的生长和新陈代谢提供足够的有机碳和能量,促进微生物活性,而在整个土壤生物化学磷循环中起到介导作用的微生物会随之投入且改变,反过来影响植物对磷素的吸收利用[17-18]。但遗憾的是,目前鲜有较为详细的文章对有机肥施用促进磷素高效吸收利用的原因及微生物机制进行梳理。因此,本综述的目的是系统地探究有机肥施用如何影响土壤中磷素的有效性和植物的磷素吸收能力,以及描述有机肥施入之后土壤微生物如何响应其投入,对整个磷吸收利用过程产生影响;并对存在的问题以及如何优化有机肥施用条件下磷素吸收利用模式提供一定的建议。
-
1 有机肥增加土壤磷素有效性
-
土壤中的磷素分为有机磷和无机磷,二者包含了整个土壤生态系统中的全部磷形态,但仅有土壤溶液中的磷酸盐可被直接吸收利用[19-20]。为了保证作物生长的正常进行,需要投入大量的含磷肥料来进行补充,但遗憾的是长期投入的磷肥与土壤矿物结合形成较为稳定的结合态磷,而形成的结合态磷很难被再次释放到土壤溶液中,这导致了土壤中的磷大量累积且植物难以利用[21-22]。此外,土壤中的有机磷含量也很高,占土壤总磷含量的 30%~65%[23]。因此,为保证土壤中的磷可被植物所利用,需要采取一系列的措施对土壤中遗留的磷素进行活化增加其有效性。植物体自身也具有一些策略来应对低磷胁迫,例如分泌有机酸,释放酸性磷酸酶等,但这会增加植物对碳源的需求[24],并不见得是行之有效的方式。有机肥施入后可刺激根系周围的微生物,并通过各种途径增加土壤中磷素的有效性,可降低植物磷素吸收难度,减少植物磷吸收成本。本部分的目的是讨论有机肥施入后从物理、化学和生物途径增加土壤磷素有效性的方式以及一些相应的实例。
-
1.1 物理和化学
-
土壤中的磷含量并不低,但仅有极少的一部分可被植物直接吸收利用,绝大多数的磷都被吸附,以有机络合体、沉淀的形式存在于矿物之中[25]。影响土壤中的磷有效性的因素有很多,其中对可变电荷表面成分的吸附和解吸被认为是最重要的因素之一[26]。有机肥施用可以提高有机碳含量,其分解产生的小分子有机酸等可以与磷酸根竞争土壤表面的吸附点位[27],减少施入磷肥固定的同时增加土壤中吸附磷的解吸附[28-29]。此外,先前的研究用磷饱和度判断土壤的磷吸附性[30],而有机肥(羊粪)与化肥减量配施会降低土壤中的磷饱和度,由此可降低土壤对磷酸盐的吸附,增加土壤溶液中的磷酸盐含量,通过降低磷吸附能力(最大磷吸附容量和磷亲和力常数降低)提高了磷的有效性[31-32]。另外,土壤磷有效性低是由于它在高 pH 下与 Ca2+ 沉淀,或在低 pH 下被铁和铝( 氢) 氧化物吸附[33]。在含有具有可变电荷的矿物质的土壤中,例如异构体、铁或铝氧化物,由于吸附表面上的电势降低,增加土壤 pH 会降低无机磷吸附[34]。而在一项长期有机替代施肥的钙质碱性土壤中发现,有机肥施入降低了 pH 有利于磷的溶解和释放[35-36]。对于酸性土壤而言,施用有机肥可提高土壤 pH,使得磷的溶解度增加;此外,有机物分解过程中产生的有机酸与土壤中的磷酸盐竞争土壤胶体表面的吸附位点,从而减少磷吸附。但引起的土壤 pH 改变是无机磷吸附能力的主要驱动因素[29]。由此可见,有机肥施入会降低土壤中的最大磷吸附容量和磷饱和度以及引起 pH 改变,在增加土壤磷有效性方面贡献卓著,但遗憾的是,施用不当也可能增加磷损失的风险。
-
后续的研究进一步确定有机肥施入后有机碳的变化有助于增加磷的可用性。例如,有机碳增加促进了大团聚体的形成,而多价金属阳离子(Ca2+、 Mg2+、Fe3+、Al3+ 等)作为重要的无机黏合剂,对大团聚体的形成及其稳定性的提高起重要作用。钙键和铁铝键与有机质复合的有机无机复合体是土壤团聚体稳定性增加的原因,以此改变了土壤钙行为,降低了土壤磷酸根,与 Ca2+ 形成稳定钙磷[37]。此外,有机肥显著增加土壤微团聚体的稳定性与化学特性,也影响着外源磷进入土壤后的周转过程与形态转化,微团聚体的破坏不仅大大降低土壤对外源磷的吸附与固定作用,还会导致与铁铝氧化物结合态磷的释放、防止磷素与大团聚体包被的铁铝氧化物结合,进而提高土壤磷素的生物有效性[38]。另外,有机肥改善土壤物理和水力特性(例如,增加土壤孔隙度、导水性和团聚体稳定性,降低土壤容重),减少了根系扩张的阻力,促进植物根系生长,增加土壤磷素的空间有效性[39]。
-
1.2 生物
-
土壤微生物的核心微生物共生关系是影响土壤磷有效性的关键[40]。微生物能以复杂的方式调节植物对土壤中磷的高效吸收利用,可归纳为:首先,微生物直接促进植物生长,从而增加磷的吸收[41]。其次,细菌和真菌通过溶解、矿化和固持过程直接影响土壤磷有效性[42]。第三,土壤活性磷循环的中心成分是微生物量磷,其主要由一部分易矿化有机磷(微生物体内的核酸和磷脂)和无机磷构成,可被腐生生物直接吸收且周转速率最快[43]。微生物裂解死亡后微生物固持的磷释放到土壤环境中可在水解后被植物吸收,改变土壤有机磷的动态,而有机磷的固持取决于维持土壤生物量生长所需的磷有效性;有机磷矿化受微生物和作物的磷需求与土壤磷素有效性平衡的影响[44]。由此可明确微生物在调控土壤磷素有效性方面有着极其突出的贡献。
-
许多研究表明,化肥减量配施有机材料(例如粪便或秸秆 / 有机肥)可增强土壤微生物活性并促进大田作物系统中的磷转化[45-46]。有机肥不仅通过提供养分直接影响微生物群落,而且还通过影响土壤 pH 和 C∶N∶P 化学计量比间接影响微生物[47],通过增加土壤 C∶P 促进集约化农业系统中土壤微生物对磷的固持,增加土壤微生物量磷的含量[48]。正如前面所提及的微生物量磷是土壤中最活跃的磷库,其含量明显增加表明土壤的磷循环将会加快,促使土壤磷有效性提高。另外,有机肥为无机磷增溶微生物提供了大量的碳源促使其大量繁殖[49],以此增加其对土壤无机磷的增溶潜力。微生物可通过释放质子来酸化其环境,因为含磷矿物的溶解和平衡反应的吸附和解吸对 pH 具有依赖性[42];通过释放有机酸,如葡萄糖酸、2-酮基葡糖、柠檬酸、苹果酸、丙二酸、草酸、琥珀酸、乳酸、酒石酸和乙醇酸来溶解磷[50],它们促进含磷矿物溶解(配体促进溶解)以及配体交换导致磷从矿物表面解吸[51];还可通过释放胞外多糖和铁载体来溶解磷,它们都能作为螯合剂溶解土壤中的磷[52]。在这些过程中有机酸的产生被认为是矿物磷酸盐溶解的主要机制[53]。此外,Zhang 等[54]通过基因手段研究发现,有机替代施肥提高了微生物对磷的矿化能力,促进了微生物磷的固持和矿化。微生物是驱动土壤中有机磷转化的主要因素,在有机磷动态变化中发挥的作用具体为:添加有机物后微生物将有机磷同化到生物质中保存;微生物细胞裂解后有机磷释放到土壤溶液中; 通过微生物代谢物分解和催化有机磷的转化[55]。即为微生物分泌的磷相关酶,如碱性磷酸酶,植酸酶和无机焦磷酸酶水解土壤中由磷酸单酯(90%) 构成的有机磷[56-57]。另外,有机肥施入提供了大量的碳,而微生物对碳源的响应直接影响到其对土壤磷素有效性改变的策略。例如,添加不同浓度的相同碳源主要是改变土壤中磷转化相关微生物的群落组成,随着添加浓度的增加土壤中磷转化微生物的联系越紧密,组成更加复杂,磷的有效性也更高[58];而添加相同浓度不同活性的碳源后发现,高活性碳源主要改变微生物组成进而增加土壤磷有效性,而活性较弱的碳源添加则是改变了土壤 pH 以及增加与磷酸盐竞争吸附位点来增加土壤磷有效性[59]。此外,有机肥(C)低投入可增强土壤微生物对土壤无机磷的溶解,而高投入量则更多地增强了土壤微生物的有机磷的矿化能力[60]。综合来看,有机肥施用对改变土壤微生物磷循环,增加土壤磷素有效性意义重大,且微生物对有机肥的性质及用量响应存在差异。
-
2 有机肥对植物磷素吸收能力的影响
-
植物与微生物共生模式以及根系形态生理反应是影响植物磷吸收能力的重要因素[61]。现已有大量研究发现,有机肥的投入可对植物的磷吸收策略以及根系形态特征产生影响,进而增加植物对磷素的吸收[62-63],基于此,本部分侧重于有机肥施入影响磷吸收能力展开一系列的陈述,对其背后的具体过程进行梳理。有机肥调节了植物与微生物的共生关系,增加了磷获取潜力,改变了植物的根系和生理反应,增加了植物磷吸收能力,具体过程如图1 所示。
-
2.1 调节植物与微生物(菌根真菌)共生关系
-
丛枝菌根真菌(AMF)是广泛分布的植物共生体,其最重要的功能之一是改善植物的磷营养,特别是在低磷土壤中[64-65]。在菌根共生中,真菌菌丝穿透宿主根的内部皮质细胞,形成分化的丛枝,在 AMF 和寄主植物的根之间交换营养[66],极大地增强了植物从土壤中获取磷素的能力[11,67]。有机肥施入为土壤增加了更多的碳和活性养分,可显著提高 AMF 的孢子生物量、改变 AMF 的微生物群落组成[68](图1),由此可增加植物对磷素的吸收潜力。此外,有机底物的施入会刺激 AMF 菌丝生长,进一步增强对养分的获取能力,增加植物磷素吸收面积[69]。在相同磷水平下,由于微生物活性,有机肥料释放的养分比大多数无机肥料更有利于菌根的建立和功能增强[70]。因此,有机肥增加了 AMF 的定殖及生长、增加其菌根形成潜力,在促进植物磷素吸收方面可能有着巨大贡献。
-
图1 有机肥增加磷素吸收利用能力机制
-
2.2 改变根系响应提高磷素吸收能力
-
植物的磷吸收和利用效率主要取决于根系可塑性以及浅根结构发育[71]。根系结构影响植物获得磷酸盐的能力[18]。有机质中的腐植酸和不饱和脂肪酸可以加速细胞分裂,促进根系发育[72]。由于根系结构的改变导致吸收面积增加有利于获得更高的磷吸收能力[73]。有机肥施入促使调控植酸酶和生长素分泌关键功能基因的表达上调[74],增加根系植酸酶分泌,并增加侧根数和根毛密度,增加磷吸收土壤体积(图1);导致植酸盐的水解增强以及根系形态适应,促进了植物对植酸盐的利用[75]。此外,有机肥还能激发根际促生菌调控“微生物-根系”互作,通过干预植物激素平衡来调控根系构成,改变根系形态和生理特征[76-77],促进作物对磷素的吸收。有机肥增加了溶磷细菌数量并促进其释放吲哚乙酸、赤霉素和细胞分裂素等生长素来改变作物生长[78-79],这些生长素与内源性生长素协同作用改变植物根系的发育[77,80],影响细胞增殖,通过增加侧根和根毛的数量引起根系结构发生变化,随后增加对营养和水分摄取能力[77]。另一方面,溶磷细菌产生的酶不仅直接增加土壤中无机磷有效性,且间接有助于引发根的结构和功能变化[81],诱导形成磷吸收能力较强的浅层根系,增加侧根数量、根分枝强度、根毛数量[82-83]。由此可以确定,有机肥施用通过促进植物根系发育以及调节植物相关基因表达对根系形态产生影响,并增加了根系分泌物的外产生,同时激发促生微生物与植物互作,改变根系形态,增强植物磷素吸收能力。
-
3 有机肥促进磷素高效吸收利用的耦合机制
-
有机肥调控植物对磷素吸收利用的途径可归纳为两个部分,一方面是通过有机肥的特性直接影响土壤磷素有效性,同时引起土壤理化性质(团聚体)的变化来间接提高土壤中的磷素有效性,以降低植物对磷素吸收的难度;另一方面是通过改变根系形态及生理特征增强植物的磷素吸收能力,其具体机制如图1 所示。有机肥促进大团聚体的形成,促进根系生长、减小根系扩张阻力并降低磷的吸附,以此增加了植物磷素吸收利用能力[38],同时根系扩张以及根系分泌物的外排也会促进团聚体的形成并增加其稳定性[84-85]。此外,有机肥施入为微生物提供了大量的碳源和营养物质使得其大量增殖,通过分泌有机酸、酶和生长激素等促进了植物根系生长的同时增加土壤磷素有效性[42,74-75]。综合来看,有机肥施入为溶磷微生物提供了充足的碳底物,促进其大量增殖。而土壤溶磷微生物会促进根系生长;植物根系生长后所影响的根际环境对溶磷细菌同样影响巨大,由此可以说是相互依存的关系(图1)。结合前面的讨论不难发现,有机肥的施入既会对植物根系形态产生影响,也会对溶磷细菌群落产生影响,甚至就是由于二者对有机肥的共同响应使得植物的磷吸收利用效率增加,但目前有关这方面的研究还不够充分。
-
4 展望
-
有机肥的施入究其本质是碳的投入,植物磷吸收策略的变化需要碳源,与磷循环相关的微生物对不同碳源存在差异响应[24,58-59]。因此,有机肥施入后植物磷素吸收利用能力增加,极有可能存在以“碳”为核心的植物-微生物-土壤相互作用机制。有机肥施用对植物根系的促生作用以及增加土壤磷素有效性以微生物为纽带交织在一起(图1)。有机肥(碳源及营养源)调节微生物区系促进了植物根系的生长,同时根系也会增加根淀积,从而进一步增强微生物在整个磷素吸收利用的调控作用。但据目前的研究结果来看,仅有关于有机肥对植物磷素获取策略的影响或者是有机肥施入后增加土壤磷有效性的单一研究[25,36]。因此,研究有机肥施入后全面认知植物-微生物-土壤连续体相互作用机制是未来研究的一个思路。因为农业生产系统中长期的磷肥施用造成了大量磷积累,而迫切需要合理的方式在不影响正常生产的前提下提高土壤磷素的利用,甚至是将积累的磷素重新利用起来,减少磷矿资源的消耗。若可将这一过程解释清楚,便可对有机肥施入磷管理策略进行调整,进一步优化有机肥促进植物高效吸收利用,降低磷资源利用的风险。
-
5 结论
-
有机肥施入对促进植物磷素高效吸收利用的正向效果显而易见:(1)有机肥施入改变土壤吸附特性、pH 以及影响微生物代谢活动,增加土壤磷素有效性;另外,促进大团聚体的形成影响钙行为,进而降低土壤对磷的吸附固定。(2)有机肥施入调节微生物与根系的相互作用,改变根系形态、促进根系生长,增加植物获取磷的土壤体积。(3)有机肥施入后改变的是土壤-微生物-植物的连续体,并非单独影响某个环节,且围绕碳作出差异响应。高活性碳源主要改变生物途径,增加土壤磷素有效性,而低活性碳源则主要改变理化途径;低碳投入增强土壤微生物的无机磷溶解能力,而高投入量则更多地增强土壤微生物的有机磷矿化能力。
-
参考文献
-
[1] .Advances in Ecological Research,1983,13:1-55.
-
[2] He X J,Augusto L,Goll D S,et al.Global patterns and drivers of soil total phosphorus concentration[J].Earth System Science Data,2021,13(12):5831-5846.
-
[3] Atere C T,Ge T,Zhu Z,et al.Assimilate allocation by rice and carbon stabilisation in soil:effect of water management and phosphorus fertilisation[J].Plant Soil,2019,445:153-167.
-
[4] Etesami H.Enhanced phosphorus fertilizer use efficiency with microorganisms[M]//Meena R.(eds)Nutrient dynamics for sustainable crop production.Springer,Singapore,2020:215-245.
-
[5] Honvault N,Houben D,Nobile C,et al.Tradeoffs among phosphorus-acquisition root traits of crop species for agroecological intensification[J].Plant and Soil,2020,461:137-150.
-
[6] Raven J A,Lambers H,Smith S E,et al.Costs of acquiring phosphorus by vascular land plants:patterns and implications for plant coexistence[J].New Phytologist,2018,217(4):1420-1427.
-
[7] Zhi H,Hong B,Qi S,et al.Tradeoffs among root morphology,exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species.[J].New Phytologist,2019,223(2):882-895.
-
[8] Wang C,Lukas T,Dippold M A,et al.Reductive dissolution of iron phosphate modifies rice root morphology in phosphorusdeficient paddy soils[J].Soil Biology and Biochemistry,2023,177:108904.
-
[9] Lambers H,Raven J A,Shaver G R,et al.Plant nutrientacquisition strategies change with soil age[J].Trends in Ecology & Evolution,2007,23(2):95-103.
-
[10] Mai W X,Xue X R,Feng G,et al.Arbuscular mycorrhizal fungi-15-Fold enlargement of the soil volume of cotton roots for phosphorus uptake in intensive planting conditions[J].European Journal of Soil Biology,2019,90:31-35.
-
[11] Smith S E,Anderson I C,Smith F A.Mycorrhizal associations and phosphorus acquisition:from ells to ecosystems,Phosphorus Metabolism in Plants[M].Wiley-Blackwell,2015:409-439.
-
[12] Zhou Y P,Sarker U,Neumann G,et al.The LaCEP1 peptide modulates cluster root morphology in Lupinus albus[J]. Physiologia Plantarum,2018,166(2):525-537.
-
[13] Shi J M,Strack D,Albornoz F E,et al.Differences in investment and functioning of cluster roots account for different distributions of Banksia attenuata and B.sessilis,with contrasting life history[J].Plant and Soil:An International Journal on Plant-Soil Relationships,2020,447(2):85-98.
-
[14] Wang B S,Wang Y,Sun Y,et al.Watermelon responds to organic fertilizer by enhancing root-associated acid phosphatase activity to improve organic phosphorus utilization[J].Journal of Plant Physiology,2022,279:153838.
-
[15] Erro J,Zamarreno A M,Garcia-mina J M.Ability of various water-insoluble fertilizers to supply available phosphorus in hydroponics to plant species with diverse phosphorus-acquisition efficiency:Involvement of organic acid accumulation in plant tissues and root exudates[J].Journal of Plant Nutrition and Soil Science,2010,173(5):772-777.
-
[16] Thonar C,Lekfeldt J D S,Cozzolino V,et al.Potential of three microbial bio-effectors to promote maize growth and nutrient acquisition from alternative phosphorous fertilizers in contrasting soils[J].Chemical and Biological Technologies in Agriculture,2017,4(1):7.
-
[17] Alori E T,Glick B R,Babalola O O.Microbial phosphorus solubilization and its potential for use in sustainable agriculture[J]. Frontiers in Microbiology,2017,8:971.
-
[18] Liu D.Root developmental responses to phosphorus nutrition[J]. Journal of Integrative Plant Biology,2021,63(6):1065-1090.
-
[19] Zhao Y,Li Y L,Yang F.Critical review on soil phosphorus migration and transformation under freezing-thawing cycles and typical regulatory measurements[J].Science of the Total Environment,2021,751:141614.
-
[20] Zhu J,Li M,Whelan M.Phosphorus activators contribute to legacy phosphorus availability in agricultural soils:a review[J]. Science of the Total Environment,2018,612:522-537.
-
[21] Mengel K.Agronomic measures for better utilization of soil and fertilizer phosphates[J].European Journal of Agronomy,1997,7(1-3):221-233.
-
[22] Rubaek G H,Kristensen K,Olesen S E,et al.Phosphorus accumulation and spatial distribution in agricultural soils in Denmark[J].Geoderma,2013,209:241-250.
-
[23] 严玉鹏,王小明,刘凡,等.有机磷与土壤矿物相互作用及其环境效应研究进展[J].土壤学报,2019,56(6):1290-1299.
-
[24] Ding W L,Cong W F,Lambers H.Plant phosphorusacquisition and-use strategies affect soil carbon cycling[J]. Trends in Ecology & Evolution,2021,36(10):899-906.
-
[25] Bello S K.An overview of the morphological,genetic and metabolic mechanisms regulating phosphorus efficiency via root traits in soybean[J].Journal of Soil Science and Plant Nutrition,2021,21(2):1013-1029.
-
[26] Weng L P,Vega F A,Van Riemsdijk W H.Competitive and synergistic effects in pH dependent phosphate adsorption in soils:LCD modeling[J].Environmental Science and Technology,2011,45(19):8420-8428.
-
[27] 章永松,林咸永,倪吾钟.有机肥对土壤磷吸附-解吸的直接影响[J].植物营养与肥料学报,1996(3):200-205.
-
[28] Li R L,Zhang S R,Zhang M,et al.Phosphorus fractions and adsorption-desorption in aggregates in coastal saline-alkaline paddy soil with organic fertilizer application[J].Journal of Soils and Sediments,2021,21:3084-3097.
-
[29] Nobile C M,Bravin M N,Becquer T,et al.Phosphorus sorption and availability in an andosol after a decade of organic or mineral fertilizer applications:Importance of pH and organic carbon modifications in soil as compared to phosphorus accumulation[J].Chemosphere,2020,239(C):124709.
-
[30] Fischer P,Pöthig R,Venohr M.The degree of phosphorus saturation of agricultural soils in Germany:current and future risk of diffuse P loss and implications for soil P management in Europe [J].Science of the Total Environment,2017,599:1130-1139.
-
[31] Jin J W,Fang Y Y,He S,et al.Improved phosphorus availability and reduced degree of phosphorus saturation by biochar-blended organic fertilizer addition to agricultural field soils[J].Chemosphere,2023,317:137809.
-
[32] Li K J,Bi Q F,Liu X P,et al.Unveiling the role of dissolved organic matter on phosphorus sorption and availability in a 5-year manure amended paddy soil[J].The Science of the Total Environment,2022,838(P1):155892.
-
[33] Pizzeghello D,Berti A,Nardi S,et al.Phosphorus forms and P-sorption properties in three alkaline soils after long-term mineral and manure applications in north-eastern Italy[J].Agriculture,Ecosystems and Environment,2011,141(1):58-66.
-
[34] Barrow N J.The effects of pH on phosphate uptake from the soil[J]. Plant and Soil,2017,410(1/2):401-410.
-
[35] Yan Z J,Chen S,Dari B,et al.Phosphorus transformation response to soil properties changes induced by manure application in a calcareous soil[J].Geoderma,2018,322:163-171.
-
[36] Zhang Y J,Gao W,Luan H A,et al.Long-term organic substitution management affects soil phosphorus speciation and reduces leaching in greenhouse vegetable production[J].Journal of Cleaner Production,2021,327:129464.
-
[37] 魏朝富,谢德体,李保国.土壤有机无机复合体的研究进展 [J].地球科学进展,2003(2):221-227.
-
[38] 周亦靖,牛犇,李欢,等.长期施肥对旱地红壤微团聚体磷素有效性的影响[J].土壤通报,2023,54(1):89-99.
-
[39] Tinashe M,Manoj M,Harriet B,et al.Preferential wheat(Triticum aestivum.L cv.Fielder)root growth in different sized aggregates[J].Soil & Tillage Research,2021,212:105054.
-
[40] Yang J J,Shi J X,Jiang L H,et al.Co-occurrence network in core microorganisms driving the transformation of phosphorous fractionations during phosphorus recovery product used as soil fertilizer [J].Science of the Total Environment,2023,871:162081.
-
[41] Richardson A E,Simpson R J.Soil microorganisms mediating phosphorus availability[J].Plant Physiology,2011,156(3):989-996.
-
[42] Alori E T,Glick B R,Babalola O O.Microbial phosphorus solubilization and its potential for use in sustainable agriculture[J]. Frontiers in Microbiology,2017,8:971.
-
[43] Coleman D,Reid C,Cole C.Biological strategies of nutrient cycling in soil systems
-
[44] Huang L M,Jia X X,Zhang G L,et al.Soil organic phosphorus transformation during ecosystem development:a review[J]. Plant and Soil,2017,417(1/2):17-42.
-
[45] Bi Q F,Li K J,Zheng B X,et al.Partial replacement of inorganic phosphorus(P)by organic manure reshapes phosphate mobilizing bacterial community and promotes P bioavailability in a paddy soil[J].Science of the Total Environment,2020,703(C):134977.
-
[46] Wei K,Chen Z H,Jiang N,et al.Effects of mineral phosphorus fertilizer reduction and maize straw incorporation on soil phosphorus availability,acid phosphatase activity,and maize grain yield in northeast China[J].Archives of Agronomy and Soil Science,2021,67(1):66-78.
-
[47] Enebe M C,Babalola O O.The Influence of soil fertilization on the distribution and diversity of phosphorus cycling genes and microbes community of maize rhizosphere using shotgun metagenomics[J].Genes,2021,12(7):1022.
-
[48] Zhang Y J,Gao W,Luan H A,et al.Effects of a decade of organic fertilizer substitution on vegetable yield and soil phosphorus pools,phosphatase activities,and the microbial community in a greenhouse vegetable production system[J].Journal of Integrative Agriculture,2022,21(7):2119-2133.
-
[49] Hu J L,Lin X G,Wang J H,et al.Population size and specific potential of P-mineralizing and-solubilizing bacteria under long-term P-deficiency fertilization in a sandy loam soil[J]. Pedobiologia,2009,53(1):49-58.
-
[50] Gyaneshwar P,Kumar G N,Parekh L J,et al.Poole.Role of soil microorganisms in improving P nutrition of plants[J].Plant and Soil,2002,245(1):133-143.
-
[51] Oburger E,Jones D L,Wenzel W W.Phosphorus saturation and pH differentially regulate the efficiency of organic acid anionmediated P solubilization mechanisms in soil[J].Plant and Soil,2011,341(1/2):363-382.
-
[52] Jones D L,Oburger E.Solubilization of phosphorus by soil microorganisms[M]//B nemann E K.Phosphorus in action:biological processes in soil phosphorus cycling.Berlin:SpringerVerlag Berlin,2011.
-
[53] Rawat P,Das S,Shankhdhar D,et al.Phosphate-solubilizing microorganisms:mechanism and their role in phosphate solubilization and uptake[J].Journal of Soil Science and Plant Nutrition,2020,21(1):49-68.
-
[54] Zhang Y J,Gao W,Ma L,et al.Long-term partial substitution of chemical fertilizer by organic amendments influences soil microbial functional diversity of phosphorus cycling and improves phosphorus availability in greenhouse vegetable production[J].Agriculture,Ecosystems and Environment,2023,341:108193.
-
[55] Wu J S,Huang M,Xiao H A,et al.Dynamics in microbial immobilization and transformations of phosphorus in highly weathered subtropical soil following organic amendments[J]. Plant and Soil,2007,290(1/2):333-342.
-
[56] Kunito T,Hiruta N,Miyagishi Y,et al.Changes in phosphorus fractions caused by increased microbial activity in forest soil in a short-term incubation study[J].Chemical Speciation and Bioavailability,2018,30(1):9-13.
-
[57] Kathuria S,Martiny A C.Prevalence of a calcium-based alkaline phosphatase associated with the marine cyanobacterium prochlorococcus and other ocean bacteria[J].Environmental Microbiology,2011,13(1):74-83.
-
[58] Huang Y L,Dai Z M,Lin J H,et al.Labile carbon facilitated phosphorus solubilization as regulated by bacterial and fungal communities in zea mays[J].Soil Biology and Biochemistry,2021a,163:108465.
-
[59] Huang Y L,Dai Z M,Lin J H,et al.Contrasting effects of carbon source recalcitrance on soil phosphorus availability and communities of phosphorus solubilizing microorganisms[J]. Journal of Environmental Management,2021b,298:113426.
-
[60] Zhang L L,Niu J F,Lu X W,et al.Dosage effects of organic manure on bacterial community assemblage and phosphorus transformation profiles in greenhouse soil[J].Frontiers in Microbiology,2023,14:1188167.
-
[61] Lambers H.Phosphorus acquisition and utilization in plants [J].Annual Review of Plant Biology,2021,73:17-42.
-
[62] Bzdyk R M,Olchowik J,Studnicki M,et al.The impact of effective microorganisms(EM)and organic and mineral fertilizers on the growth and mycorrhizal colonization of fagus sylvatica and quercus robur seedlings in a bare-root nursery experiment[J]. Forests,2018,9(10):597.
-
[63] Song G,Chen R,Xiang W,et al.Contrasting effects of longterm fertilization on the community of saprotrophic fungi and arbuscular mycorrhizal fungi in a sandy loam soil[J].Plant,Soil and Environment,2015,64(3):127-136.
-
[64] Li X X,Zeng R S,Liao H.Improving crop nutrient efficiency through root architecture modifications[J].Journal of Integrative Plant Biology,2016,58(3):193-202.
-
[65] Wipf D,Krajinski F,Van Tuinen D,et al.Trading on the arbuscular mycorrhiza market:from arbuscules to common mycorrhizal networks[J].The New phytologist,2019,223(3):1127-1142.
-
[66] Parniske M.Arbuscular mycorrhiza:the mother of plant root endosymbiosis[J].Nature Reviews Microbiology,2008,6(10):763-775.
-
[67] Cavagnaro T R.Impacts of compost application on the formation and functioning of arbuscular mycorrhizas[J].Soil Biology and Biochemistry,2014,78:38-44.
-
[68] Qin H,Lu K P,Strong P J,et al.Long-term fertilizer application effects on the soil,root arbuscular mycorrhizal fungi and community composition in rotation agriculture[J].Applied Soil Ecology,2015,89:35-43.
-
[69] Hammer E C,Nasr H,Wallander H.Effects of different organic materials and mineral nutrients on arbuscular mycorrhizal fungal growth in a mediterranean saline dryland[J].Soil Biology and Biochemistry,2011,43(11):2332-2337.
-
[70] Linderman R G,Davis E A.Evaluation of commercial inorganic and organic fertilizer effects on arbuscular mycorrhizae formed by glomus intraradices[J].HortTechnology,2004,14(2):196-202.
-
[71] Bello S K.An overview of the morphological,genetic and metabolic mechanisms regulating phosphorus efficiency via root traits in soybean[J].Journal of Soil Science and Plant Nutrition,2021,21(2):1013-1029.
-
[72] Yang Q L,Zheng F X,Jia X C,et al.The combined application of organic and inorganic fertilizers increases soil organic matter and improves soil microenvironment in wheat-maize field[J]. Journal of Soils and Sediments,2020,20(5):2395-2404.
-
[73] Falk K G,Jubery T Z,O’Rourke J A,et al.Soybean root system architecture trait study through genotypic,phenotypic,and shape-based clusters[J].Plant Phenomics,2020,2020:1925495.
-
[74] Dobbss L B,Canellas L P,Olivares F L,et al.Bioactivity of chemically transformed humic matter from vermicompost on plant root growth[J].Journal of Agricultural and Food Chemistry,2010,58(6):3681-3688.
-
[75] Li S J,Wang B S,Wang Y,et al.Soluble organic nutrients induce ClaPhys expression to enhance phytase activity of watermelon roots[J].Annals of Applied Biology,2022,181(1):80-92.
-
[76] Kang Y L,Ma Y W,An X R,et al.Effects on the root morphology and mircostructure of young pear(Pyrus pyrifolia)tree by split-root supply of bioorganic and chemical fertilizer[J]. Rhizosphere,2022,22:100504.
-
[77] Kudoyarova G R,Vysotskaya L B,Arkhipova T N,et al.Effect of auxin producing and phosphate solubilizing bacteria on mobility of soil phosphorus,growth rate,and P acquisition by wheat plants [J].Acta Physiologiae Plantarum,2017,39(11):253.
-
[78] Li Y B,Liu X M,Hao T Y,et al.Colonization and maize growth promotion induced by phosphate solubilizing bacterial isolates[J].International Journal of Molecular Sciences,2017,18(7):1253.
-
[79] Pathan S I,Větrovsk T,Giagnoni L,et al.Microbial expression profiles in the rhizosphere of two maize lines differing in N use efficiency[J].Plant and Soil,2018,433(1/2):401-413.
-
[80] Haidar B,Ferdous M,Fatema B,et al.Population diversity of bacterial endophytes from jute(Corchorus olitorius)and evaluation of their potential role as bioinoculants[J].Microbiological Research,2018,208:43-53.
-
[81] Bal H B,Nayak L,Das S,et al.Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress[J].Plant and Soil,2013,366(1/2):93-105.
-
[82] Wang J F,Zhang Y Q,Li Y,et al.Endophytic microbes Bacillus sp.LZR216-regulated root development is dependent on polar auxin transport in Arabidopsis seedlings[J].Plant Cell Reports,2015,34(6):1075-1087.
-
[83] Bargaz A,Elhaissoufi W,Khourchi S,et al.Benefits of phosphate solubilizing bacteria on belowground crop performance for improved crop acquisition of phosphorus[J].Microbiological Research,2021,252:126842.
-
[84] 于雯霏,王佩佩,刘俊娥,等.黄土高原典型植被根系对土壤团聚体及其有机碳组分的影响[J].水土保持学报,2023,37(6):246-254.
-
[85] 谭文峰,许运,史志华,等.胶结物质驱动的土壤团聚体形成过程与稳定机制[J].土壤学报,2023,60(5):1000-1007.
-
摘要
磷素对植物的正常生长发育极为重要,但由于土壤中固有的磷形态生物有效性低,植物磷素吸收能力弱,导致磷素利用率低。有机肥施用能有效增强植物的磷素吸收利用能力,但其背后的原因错综复杂。综述了有机肥施用如何增加土壤磷素有效性以及增强植物对磷素的吸收能力的机制,并重点强调了在此过程中微生物的重要作用。有机肥通过改变土壤吸附特性、团聚体形成以及微生物代谢活动增加土壤磷素有效性;通过调节根际微生物与植物根系间的关系促进根系生长、改变根系形态,从而增强磷素吸收能力,是以“碳”为核心的植物-微生物-土壤互作的连续体。
Abstract
Phosphorus is extremely important for the normal growth and development of plants,but due to the low bioavailability of phosphorus forms inherent in the soil,the weak phosphorus uptake capacity of plants leads to low phosphorus utilization. Organic fertilizer application can effectively enhance the phosphorus uptake and utilization capacity of plants,but the reasons behind this are intricate. This review examines the mechanisms of how organic fertilizer application increases soil phosphorus effectiveness and enhances plant phosphorus uptake capacity,and highlights the important role of microorganisms in this process. Organic fertilizers increase soil phosphorus effectiveness by altering soil adsorption properties, aggregate formation and microbial metabolic activities;promote root growth and enhance phosphorus uptake by regulating the relationship between inter-root microorganisms and plant roots;and alter root morphology to enhance phosphorus uptake, which is a continuum of plant-microorganism-soil interactions with“carbon”as the nucleus.
关键词
有机肥 ; 磷吸收能力 ; 磷素有效性 ; 植物 - 微生物 - 土壤连续体