-
水稻是全球三大粮食作物之一,世界超过 50% 人口以水稻为主食[1],产量和面积分别占谷物总产量和面积的 29% 和 23%[2]。由于稻田的特殊生长环境和资源投入较大的管理方式,稻田既是重要的农田土壤碳库[3],也是重要的碳排放源,尤其是全球重要温室气体氧化亚氮和甲烷的排放源,分别占全球排放总量的 11% 和 30%[4]。在全球农业可持续低碳发展的战略背景下,厘清水稻碳足迹研究现状和知识框架,明确领域关注热点和发展趋势,对于实现稻田固碳减排具有重要意义。
-
碳足迹最初来源生态足迹的概念[5],之后随着定义和计算方法的不断丰富[6-7],陆续应用于农田系统评价[8-10]。自 21 世纪以来,国内外学者围绕稻田系统碳足迹产生机制、调控技术和定量评估方面开展了大量研究[11-22]。在田块尺度上通过原位检测手段开展不同区域稻田系统碳足迹评估[11],探究了不同品种[12]及施肥、灌溉、栽培等管理措施[13-15]对稻田碳足迹的影响。一些学者分别通过模型模拟和文献综述方法开展了水稻温室气体排放影响因素的综合分析[16-17],并对不同尺度(国家、全球、地区)水稻碳足迹进行了量化评估[18-22]。但是,目前对于近 30 多年来水稻碳足迹领域的研究进展、热点主题、发展趋势尚缺乏基于文献的系统量化分析。
-
文献计量学是以文献体系为研究对象,采用数学和统计学相结合手段,系统定量分析某研究领域的发展现状和取得进展[23]。与传统文献综述方法相比较,可对文献数据进行定量分析和可视化表达,通过数据挖掘、信息分析、科学计量和图形绘制等,可视化展现某一学科领域的知识图景,具有客观性、定量化、模型化的研究特点[24]。 CiteSpace 是文献计量学中常用的分析软件之一,具有多元、分时、动态的可视化特点,能通过知识图谱展现知识结构、规律和分布情况,探究学科领域的研究热点、前沿和趋势[25]。目前已广泛应用于生态学、土壤学和环境学领域[26-29]。但有关基于文献计量学的水稻碳足迹研究进展分析尚未见报道。
-
为更好了解水稻碳足迹研究现状和发展趋势,本研究围绕水稻碳足迹研究主题,利用 CiteSpace 文献计量和可视化分析工具,对近 30 多年来 (1990—2023 年)公开发表的国际文献发表数量及特点进行综合分析,对水稻碳足迹研究历史脉络、发展方向和研究热点进行挖掘梳理,对目前存在问题和未来研究重点进行展望,以期为水稻碳足迹科学评估和有效控制提供科学依据和技术参考,为该领域未来相关研究提供借鉴。
-
1 材料与方法
-
1.1 数据来源
-
本研究基于世界权威的 web of science 核心数据库,以“水稻”和“碳足迹”为主题进行全面搜索,筛选语言为英文(English)、文献类型为研究性论文(review 和 article),发表年限为近 30 多年 (1990—2023 年),数据库搜索截止日期为 2023 年 8 月 23 日,之后通过逐一人工筛选剔除重复文献和不相关文献,获得最终相关文献数量为 2413 篇的分析文献库。
-
1.2 数据分析
-
本研究利用 web of science 系统自身分析功能对目标文献库进行文献数量、发表期刊、发表机构、发文国家等统计分析。本研究利用搜索到的以“水稻”和“碳足迹”或“温室气体排放”为主题的相关文献,运用 CiteSpace5.8.R2 内置的国家、机构、关键词及聚类分析等运算模型,对样本数据进行共现、共引分析,并据此绘制出稻田碳足迹领域的知识图谱,对其研究动态、发展过程等进行可视化分析,以此来确定稻田碳足迹领域相关研究的学术热点,为今后的相关研究提供新思路和参考。
-
2 结果与分析
-
2.1 发文量时序分析
-
有关水稻碳足迹研究自 1995 年开始有零星报道,之后发文量整体呈不断增加趋势(图1),其中,在 1995—2004 年,年发文量基本徘徊在 10 篇以下;2005—2008 年,年发文量逐渐增加;2009 年后,年发文量快速增加,特别是近 10 年以来发文量对总发文量的贡献达 89.2%,可见,水稻碳足迹领域仍然处于快速发展时期,相关研究势必持续增加。
-
图1 1990—2023 年水稻碳足迹领域文献发表数量
-
2.2 发文国家及机构分析
-
从发文数量看(表1),文献发表前 10 名国家依次是中国、美国、印度、澳大利亚、德国、日本、英国、巴基斯坦、菲律宾和韩国,其中中国、美国和印度贡献了总发文量的 75.9%,这 3 个国家也是发文总被引频次的前 3 位国家,说明对该研究领域的重视和引领。
-
文章发表主要涉及千余家科研机构,说明水稻碳足迹领域受到各研究机构的广泛关注。其中,中国科学院、中国农业科学院、印度农业研究委员会、国际农业研究磋商小组、南京农业大学、华中农业大学、中国农业大学、加利福尼亚大学戴维斯分校、浙江大学、日本农业与食品研究机构排名前 10 的研究机构贡献了总发文量一半以上 (表2)。从发文引用率来看,总被引频次排名前 3 机构分别是中国科学院、南京农业大学和国际农业研究磋商小组。总体看,我国科研机构的发文量和引用率均较高。
-
2.3 发文期刊及学科分析
-
关于稻田碳足迹主体研究的论文涉及 478 种期刊,其中 Science of the Total Environment、Journal of Cleaner Production、Agriculture Ecosystems Environment 等期刊是主要发表期刊,排名前 10 的期刊发文量占总发文量 33.4%(表3)。一半期刊属于环境领域期刊,说明水稻碳足迹是环境领域期刊关注的重要科研主题。
-
从发表文献的所属学科来看(表4),主要分布在环境科学、农学、土壤科学、绿色可持续科学技术、生态等学科领域,其中排名前 3 的环境科学、农学、土壤科学学科领域是主要的发文分布区间,贡献 79.6% 发文量,说明水稻碳足迹研究仍然是这些学科重点关注的问题。
-
2.4 研究合作关系网络分析
-
从主要国家的合作关系来看(图2),各个国家均与世界其他国家有较为广泛的合作,形成较为明显的合作网络。其中,中国和美国合作国家数明显高于印度、德国、日本、澳大利亚等其他主要国家(表5),中国中介中心性显著较高,处于明显的研究核心,贡献突出。
-
图2 水稻碳足迹领域发文量排名前 10 位的国家合作网络
-
从主要研究机构的合作关系来看(图3),形成了以中国科学院、中国农业科学院、南京农业大学等为核心的研究网络,其中,中国科学院与南京农业大学、中国农业科学院、中国农业大学、英国阿伯丁大学、华中农业大学和浙江大学等国内外科研机构均有广泛合作,其合作机构数、合作国家数和中介中心性均具有明显优势(表6)。
-
图3 水稻碳足迹领域发文量排名前 10 位的研究机构合作网络
-
从主要作者的合作关系分析发现(图4,表7),英国阿伯丁大学 Pete Smith 在作者合作网络中具有最高出现频次,来自西班牙巴塞罗那自治大学 Josep Penuelas、中国农业科学院张卫建、南京农业大学潘根兴和中国科学院吴金水紧随其后。英国阿伯丁大学 Pete Smith 中介中心性数值最高,在该领域具有显著的影响力。同时,该领域形成几个较为明显的学者合作群,分别包含南京农业大学潘根兴与英国阿伯丁大学 Pete Smith 的合作群、福建师范大学王维奇与西班牙巴塞罗那自治大学 Jordi Sardans 和 Josep Penuelas 合作群、国际水稻研究所 Rener Wassmann 与 Bjoern Ole Sander 的合作群 3 个国际核心合作群,以及中国农业科学院张卫健、中国科学院吴金水、华中农业大学曹凑贵 3 个国内核心合作群,但不同核心合作群间的合作关系较弱。
-
图4 水稻碳足迹领域发文量排名前 10 位的作者合作网络
-
2.5 关键词共现热点分析
-
从发文关键词共现热点分析发现(图5),全球水稻碳足迹研究主要集中在温室气体排放、气候变化、作物体系、土壤碳固持、模型、作物秸秆、微生物、免耕、品种、水分管理等与水稻碳足迹密切相关的不同主题方面[30-45]。在碳排放方面,主要开展了与气候变化相关的不同温室气体排放数量、过程、系数等方面研究[30-34];在碳固持方面,研究重点是利用田间试验结合模型等工具开展稻田土壤碳固持的库容、速率和潜力等方面研究[35-37]; 在驱动因子方面,基于田间试验验证了耕作、品种、灌溉、作物体系等不同措施对水稻碳排放和固持的影响[38-42];在作用机制方面,重点研究了水稻碳排放和土壤碳固持方面的微生物控制机制[43-45]。总体来看,稻田碳排放研究已向跨学科方向发展,多学科交叉融合有利于促进研究的深入。
-
从水稻碳足迹研究主题的时间演化进程上看 (表8),随年代推进,热点关键词发生变化。在 90 年代初开始,水稻碳足迹的研究主要关注与甲烷、氧化亚氮和二氧化碳等温室气体的排放及其对气候变化的影响方面[46-47],且热点持续时间最长; 从 2000 年开始,主要开展较多田块尺度、不同品种、种植体系等管理措施对碳足迹的影响研究[48-49],这一时期亚洲成为研究的热点区域;从 2010 年开始,稻田生物质固碳、过腹还田、水分管理等土壤固碳减排措施成为重要研究主题[40,50-51],同时基于生命周期循环理论的水稻碳足迹研究开始出现[52-54]。近 5 年来,不同田间管理措施及措施组合的影响效果仍然是重要研究主题[55-57],同时稻田碳固持、转化和释放的微生物作用机制成为研究热点[58-59],在稻田作物产量、土壤碳固持、活性氮排放、生态服务、经济效益、水分利用效率等多方面的综合评价逐步得到关注[60-61]。
-
图5 水稻碳足迹领域文献关键词共现网络
-
3 结论与展望
-
3.1 结论
-
本研究采用文献计量方法,系统分析了近 30 多年以来有关水稻碳足迹研究的发表文献,主要结论如下。
-
(1)水稻碳足迹受到学者广泛关注,形成较为明显的核心研究力量。水稻碳排放发文量逐年增加,近 10 年来快速增加,已成为国际关注的热点领域。中国、美国和印度发文量和引文量均较高,是该领域研究的代表性国家。我国的中国科学院、南京农业大学等机构的发文数量和质量均具有明显优势。环境类期刊是相关研究发表文章的主要期刊。从国家、机构和作者的研究合作网络来看,我国是重要的研究核心国家,中国科学院是影响力最高的研究机构,核心合作群或核心学者的研究贡献较大。
-
(2)稻田碳足迹研究呈现跨学科发展趋势,各研究主题演化进程不尽相同。研究热点已逐渐从不同管理措施主要温室气体的田块监测发展到水稻生产中固碳减排创新措施的发展和生态经济资源等综合效应的评价,同时在碳足迹的相关碳固持和碳排放方面的微生物机理机制取得较大进展。目前,在不同管理措施的固碳减排效果方面仍是持续关注的热点和重点,主要聚焦在废弃物还田利用、耕作管理措施、新型作物生产体系等内容。而水稻碳固持释放的微生物作用机制、水稻生产的生态、经济、资源利用等效益的综合评价等方面是该研究领域的前沿热点。
-
3.2 展望
-
随着对农业绿色低碳发展的不断重视,稻田作为重要的农田生态系统,国内外学者围绕水稻碳足迹评估及降低策略取得了较多试验证据和理论及技术研究进展,但不同研究方法、研究尺度对水稻碳足迹结果有较大影响。因而,深入开展水稻碳足迹研究,可为水稻产业实现绿色低碳发展提供重要支撑。基于对近 30 年的水稻碳足迹研究进展回顾,笔者认为未来水稻碳足迹研究应加强以下三方面工作。
-
(1)在研究方法方面,目前学者围绕不同区域、不同种植制度、不同管理措施等的水稻碳足迹开展了较多研究,但研究主要基于短期试验或统计数据,难以展示不同试验处理下稻田碳足迹的长期稳定效应。另外,目前不同研究中采用的边界、方法和参数不尽相同,导致不同研究的相互比对带来较大挑战。因而,未来应加强水稻碳足迹的长期定位试验研究,同时建立科学合理、标准统一的碳足迹评级方法体系,为准确开展水稻碳足迹评估提供方法和手段支撑。
-
(2)在研究内容方面,已有研究利用数学统计、模型模拟等多种方法开展了水稻碳足迹评估和降低策略的情景分析,但关于基于情景分析的田间验证研究较为缺乏。此外,水稻生产是涉及工业、种植、加工等多环节的综合系统,尽管目前研究已对一些其中部分环节有所涉及,但实现水稻低碳生产需要对不同环节进行系统优化。因而,未来应加强关于降低碳足迹情景分析的实证研究,强化基于水稻全产业链的碳足迹核算评价,降低水稻生产全链条碳排放,为实现水稻生产全链条绿色低碳化提供科学依据和技术参考。
-
(3)在研究尺度方面,根据文献分析,目前研究主要以试验田块尺度或区域宏观尺度为主,而对农户生产尺度的研究报道关注不够,且近年来随着水稻生产组织化程度不断提高,一些种植大户、合作社等新型经营主体不断涌现,有关生产尺度的水稻碳足迹研究显得尤为重要。因而,未来应加强农户生产尺度碳足迹的定量评估研究,提高对农业实际生产中的碳足迹科学认知,为准确客观认识水稻碳足迹和未来针对性减排策略提供科学依据和参考证据。
-
参考文献
-
[1] Yuan S,Linquist B A,Wilson L T,et al.Sustainable intensification for a larger global rice bowl[J].Nature Communications,2021,12:7163.
-
[2] FAO.FAOSTAT production data[DB/OL].[2023-11-14]. www.fao.org/faostat/en/#data.2022.
-
[3] Lehmann J,Kleber M.The contentious nature of soil organic matter[J].Nature,2015,528:60-68.
-
[4] Hussain S,Peng S B,Fahad S,et al.Rice management interventions to mitigate greenhouse gas emissions:a review[J]. Environmental Science and Pollution Research,2015,22(5):3342-3360.
-
[5] Rees W E.Ecological footprints and appropriated carrying capacity:what urban economics leaves out[J].Environment and Urbanisation,1992,4:121-130.
-
[6] Wackernagel M.Ecological footprint and appropriated carrying capacity:a tool for planning toward sustainability[D].Vancouver,Canada:School of Community and Regional Planning,The University of British Columbia,1994.
-
[7] Wiedmann T,Minx J.A definition of‘carbon footprint’[M]//Pertsova C C.Ecological economics research trends.Hauppauge NY:Nova Science Publishers Inc.,2008:1-11.
-
[8] Gan Y,Liang C,Hamel C,et al.Strategies for reducing the carbon footprint of field crops for semiarid areas.A review[J]. Agronomy for Sustainable Development,2011,31(4):643-656.
-
[9] Gan Y,Liang C,Con A,et al.Carbon footprint of spring wheat in response to fallow frequency and soil carbon changes over 25 years on the semiarid Canadian prairie[J].European Journal of Agronomy,2012,43:175-184.
-
[10] Liu C,Cutforth H,Chai Q,et al.Farming tactics to reduce the carbon footprint of crop cultivation in semiarid areas.A review[J]. Agronomy for Sustainable Development,2016,36:69-85.
-
[11] Cai S Y,Cameron M,Pittelkow C,et al.Winter legume-rice rotations can reduce nitrogen pollution and carbon footprint while maintaining net ecosystem economic benefits[J].Journal of Cleaner Production,2018,195:289-300.
-
[12] Dastan S,Ghareyazie B,Pishgar S H.Environmental impacts of transgenic Bt rice and non-Bt rice cultivars in northern Iran[J]. Biocatalysis & Agricultural Biotechnology,2019,20:101160.
-
[13] Aguilera E,Guzmán G,Alonso A.Greenhouse gas emissions from conventional and organic cropping systems in Spain.I.Herbaceous crops[J].Agronomy for Sustainable Development,2015,35(2):713-724.
-
[14] Habibi E,Niknejad Y,Fallah H,et al.Life cycle assessment of rice production systems in different paddy field size levels in north of Iran[J].Environmental Monitoring and Assessment,2019,191:202.
-
[15] Jiang Y,Carrijo D,Huang S,et al.Water management to mitigate the global warming potential of rice systems:a global meta-analysis[J].Field Crops Research,2019,234:47-54.
-
[16] Li C S,Mosier A,Wassmann R,et al.Modeling greenhouse gas emissions from rice-based productions systems:sensitivity and upscaling[J].Global Biogeochemical Cycles,2004,18:1043.
-
[17] Ahmad A,Zoli M,Latella C,et al.Rice cultivation and processing:highlights from a life cycle thinking perspective[J]. Science of the Total Environment,2023,871:162079.
-
[18] Yan M,Cheng K,Luo T,et al.Carbon footprint of grain crop production in China-based on farm survey data[J].Journal Cleaner Production,2015,104:130-138.
-
[19] Zhang D,Shen J,Zhang F,et al.Carbon footprint of grain production in China[J].Scientific Report,2017,7:4126.
-
[20] Cui Z L,Zhang H Y,Chen X P,et al.Pursuing sustainable productivity with millions of smallholder farmers[J].Nature,2018,555:363-366.
-
[21] Qian H Y,Zhu X C,Huang S,et al.Greenhouse gas emissions and mitigation in rice agriculture[J].Nature Reviews Earth & Environment,2023,4:716-732.
-
[22] Xia L L,Cao L,Yang Y,et al.Integrated biochar solutions can achieve carbon-neutral staple crop production[J].Nature Food,2023,4:236-246.
-
[23] Zhou F,Guo H,Ho Y,et al.Scientometric analysis of geostatistics using multivariate methods[J].Scientometrics,2007,73(3):265-279.
-
[24] 邱均平.文献计量学[M].2 版. 北京:科学出版社,2019:22-25.
-
[25] 李杰,陈超美.CiteSpace:科学文本挖掘及可视化[M].2 版.北京:首都经济贸易大学出版社,2017:15-75.
-
[26] 孙波,王晓玥,吕新华.我国60年来土壤养分循环微生物机制的研究历程——基于文献计量学和大数据可视化分析[J]. 植物营养与肥料学报,2017,23(6):1590-1601.
-
[27] 梁丽娜,赵亚慧,吴佳俊,等.基于Citespace的国内外农业面源污染研究进展与前沿分析[J].中国农业资源与区划,2023,44(4):99-112.
-
[28] 马笑,张世浩,张芬,等.基于 Web of Science 对蔬菜系统活性氮损失研究的文献计量分析[J],中国农学通报,2022,38(26):124-132.
-
[29] 朱汪悦,王延华,赵子涵.基于CiteSpace的氮循环研究热点和进展分析[J].生态与农村环境学报,2022,38(6):702-713.
-
[30] Bouwman A F.Nitrogen oxides and tropical agriculture[J]. Nature,1998,392:866-867.
-
[31] IPCC.2019 refinement to the 2006 IPCC guidelines for national greenhouse gas inventories[R].(2019-05-12)[2023-11-14]. https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipccguidelines-for-national-greenhouse-gas-inventories.
-
[32] Linquist B,Groenigen K J,Adviento-Borbe M A,et al.An agronomic assessment of greenhouse gas emissions from major cereal crops[J].Global Change Biology,2015,18:194-209.
-
[33] Carlson K M,Gerber J S,Mueller N D,et al.Greenhouse gas emissions intensity of global croplands[J].Nature Climate Change,2016,7(1):63-68.
-
[34] Lu Y,Wassmann R,Neue H U,et al.Methanogenic responses to exogenous substrates in anaerobic rice soils[J].Soil Biology Biochemistry,2000,32:1683-1690.
-
[35] Qiu J J,Li C S,Wang L G,et al.Modeling impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils in China[J].Global Biogeochemical Cycles,2009,23:1007.
-
[36] Tao F,Palosuo T,Valkama E,et al.Cropland soils in china have a large potential for carbon sequestration based on literature survey[J].Soil and Tillage Research,2019,186:70-78.
-
[37] Tang H,Liu Y,Li X,et al.Carbon sequestration of cropland and paddy soils in china:potential,driving factors,and mechanisms[J].Greenhouse Gases:Science and Technology,2019,9(5):872-885.
-
[38] Cai Z,Xing G,Yan X,et al.Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilisers and water management[J].Plant and Soil,1997,196:7-14.
-
[39] Qin Y M,Liu S W,Guo Y Q,et al.Methane and nitrous oxide emissions from organic and conventional rice cropping systems in Southeast China[J].Biology and Fertility of Soils,2010,46(8):825-834.
-
[40] Zhang A F,Cui L Q,Pan G X,et al.Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain,China[J].Agriculture Ecosystems & Environment,2010,139(4):469-475.
-
[41] Linquist B A,Adviento-Borbe M A,Pittelkow C M,et al. Fertilizer management practices and greenhouse gas emissions from rice systems:a quantitative review and analysis[J].Field Crops Research,2012,135:10-21.
-
[42] Jiang Y,van Groenigen K J,Huang S,et al.Higher yields and lower methane emissions with new rice cultivars[J].Global Change Biology,2017,23:4728-4738.
-
[43] Conrad R.Microbial ecology of methanogens and methanotrophs[J]. Advances in Agronomy,2007,96:1-63.
-
[44] Yuan H Z,Ge T D,Wu X H,et al.Long-term field fertilization alters the diversity of autotrophic bacteria based on the ribu-lose-1,5-biphosphate carboxylase/oxygenase(RubisCO)largesubunit genes in paddy soil[J].Applied Microbiology and Biotechnology,2012,95(4):1061-1071.
-
[45] Chen X B,Hu Y J,Xia Y H,et al.Contrasting pathways of carbon sequestration in paddy and upland soils[J].Global Change Biology,2021,27:2478-2490.
-
[46] Rao P G.Climatic change,greenhouse gas emissions,future climate and response strategies:the implications for India[J]. Theoretical and Applied Climatology,1996,55:61-64.
-
[47] Lin E D,Liu Y F,Li Y.Agricultural C cycle and greenhouse gas emission in China[J].Nutrient Cycling in Agroecosystems,1997,49(1-3):295-299.
-
[48] Zheng X H,Wang M X,Wang Y S,et al.Mitigation options for methane,nitrous oxide and nitric oxide emissions from agricultural ecosystems[J].Advances in Atmospheric Sciences,2000,17:83-92.
-
[49] Xu Y C,Shen Q R,Li M L,et al.Effect of soil water status and mulching on N2O and CH4 emission from lowland rice field in China[J].Biology Fertility Soils,2004,39:215-217.
-
[50] Pathak H,Sankhyan S,Dubey D S,et al.Dry direct-seeding of rice for mitigating greenhouse gas emission:field experimentation and simulation[J].Paddy Water Environment,2013,11:593-601.
-
[51] Kudo Y,Noborio K,Shimoozono N,et al.The effective water management practice for mitigating greenhouse gas emissions and maintaining rice yield in central Japan[J].Agriculture,Ecosystems & Environment,2014,186:77-85.
-
[52] Pathak H,Jain N,Bhatia A,et al.Carbon footprints of Indian food items[J].Agriculture,Ecosystems & Environment,2010,139:66-73.
-
[53] Feng J F,Chen C Q,Zhang Y,et al.Impacts of cropping practices on yield-scaled greenhouse gas emissions from rice fields in China:a meta-analysis[J].Agriculture,Ecosystems & Environment,2013,164:220-228.
-
[54] Chen X P,Cui Z L,Fan M S,et al.Producing more grain with lower environmental costs[J].Nature,2014,514:486-489.
-
[55] Zhang T,Liu H B,Luo J F,et al.Long-term manure application increased greenhouse gas emissions but had no effect on ammonia volatilization in a Northern China upland field[J]. Science of the Total Environment,2018,633:230-239.
-
[56] Gangopadhyay S,Chowdhuri I,Das N,et al.The effects of no-tillage and conventional tillage on greenhouse gas emissions from paddy fields with various rice varieties[J].Soil and Tillage Research,232:105772.
-
[57] Li W W,Ahmad S,Liu D,et al.Subsurface banding of blended controlled-release urea can optimize rice yields while minimizing yield-scaled greenhouse gas emissions[J].The Crop Journal,2023,11(3):914-921.
-
[58] Dhaliwal S S,Naresh R K,Gupta R K,et al.Effect of tillage and straw return on carbon footprints,soil organic carbon fractions and soil microbial community in different textured soils under ricewheat rotation:a review[J].Reviews in Environmental Science & Bio-technology,2020,19:103-115.
-
[59] Lin Y X,Ding W X,Liu D Y,et al.Wheat straw-derived biochar amendment stimulated N2O emissions from rice paddy soils by regulating the amoA genes of ammonia-oxidizing bacteria[J]. Soil Biology and Biochemistry,2017,113:89-98.
-
[60] Cai S Y,Pittelkow C M,Zhao X,et al.Winter legume-rice rotations can reduce nitrogen pollution and carbon footprint while maintaining net ecosystem economic benefits[J].Journal of Cleaner Production,2018,195:289-300.
-
[61] Nayak A K,Tripathi R,Debnath M,et al.Carbon and water footprints of major crop production in India[J].Pedosphere,2013,33:448-462.
-
摘要
稻田减排降碳是实现农业碳中和的重要研究领域,全面梳理水稻碳足迹研究脉络和领域发展前沿,为未来相关研究提供参考借鉴。采用文献计量学方法,在综合分析近 30 多年来(1990—2023 年)水稻碳足迹研究相关文献基础上,对该领域研究历程、聚焦主题及发展趋势进行梳理探讨。结果表明:稻田碳足迹研究受到领域学者的广泛关注,2009 年后文献数量快速增长,近 10 年来发文量贡献率达 89.2%。领域形成明显的核心研究力量,中国、美国和印度是主要的文献发表国家,发文量占全球总量的 75.9%;该研究领域发文量排名前 10 研究机构中有 6 个机构来中国,中国科学院发文量位居首位。关键词共现热点分析表明,水稻碳足迹研究呈现跨学科发展趋势,在稻田碳排放数量及过程、土壤碳固持速率及潜力、不同管理措施的固碳减排效果等方面取得较大进展,稻田碳固持、碳排放的微生物机制和水稻生产的生态、经济、资源利用等效益综合评价是该领域的研究热点。未来应逐步建立科学合理、标准统一的碳足迹评价方法体系,重点关注农户生产尺度稻田碳足迹定量评估,加强基于碳足迹研究情景分析的实证研究,为降低稻田碳足迹、实现水稻低碳绿色发展提供支撑。
Abstract
Reducing carbon emission of rice field is an important research area for achieving carbon neutrality in agriculture. Comprehensively reviewing the history and frontier of this field could provide guideline for related research in the future. In this paper,based on a detailed analysis of literature related to carbon footprint research of rice field over the past 30 years(1990-2023)and using bibliometric methods,we explored the research process,focus themes,and development trends in this field. The results indicated that carbon footprint in rice fields had received widespread attention from scientists in the area. The number of literatures grew rapidly since 2009,and the contribution rate of published literature in the past ten years had reached 89.2%. A clear core research forces had been observed in the area. China,the United States,and India were the main countries for publishing literatures,which accounting for 75.9% of the total world publications. Ranking of the numbers of publication showed that six of the top ten research institutions were from China,and the Chinese Academy of Sciences ranked first. The analysis of keywords co-occurrence hotspots indicated that the research on carbon footprint of rice field showed an interdisciplinary development trend. Significant progress had been made in the quantity and process of carbon emissions from rice fields,the rate and potential of soil carbon sequestration,and the effects on carbon sequestration and emission reduction of different management measures. The microbial mechanisms of carbon sequestration and carbon emissions in rice fields,as well as the comprehensive evaluation of the ecological,economic and resource utilization benefits of rice production,were the hotspots in this research area. In the future,a scientific,reasonable and standardized carbon footprint evaluation method system should be gradually established. It was necessary to focus on the quantitative assessment of carbon footprint in rice fields at the production scale of farmers. The evidence-based validation of scenario analysis of carbon footprint of rice production was needed. These could provide basis for reducing the carbon footprint of rice fields and achieving low-carbon and green development of rice production.
Keywords
rice ; carbon footprint ; bibliometrics ; low-carbon and green