-
土传病害指真菌、细菌和病毒等病原菌随病残体生活在土壤中,并在适宜条件下从作物根部或茎部侵害作物而引起的病害[1]。如今土壤病害发生的主要原因在于农林业生产中过于追求高产、高效而改变传统的种植方式导致生态失衡,不当的耕种方式和过量施用化肥、农药打破了植物与病原物间的平衡[2]。土传病害一般在作物生长阶段没有明显的症状,但在接近收获期时,由于作物抵抗力减弱且病原菌数量增加,症状会突然暴发并迅速扩散,造成严重的经济损失。土传病害的防治具有挑战性,传统的化学农药方法对土壤病原菌的防治效果有限,并且容易导致环境污染。因此,通常采取综合防治策略来应对土传病害。
-
利用有益微生物及其代谢产物对土传病害进行防治,与其他防治方法相比具有污染少、对人畜无害等优点,同时也存在不易定殖和效果不稳定等缺点。生物炭近年来被广泛应用于土传病害的防治及土壤健康的维持。生物炭可以通过改善土壤理化性质、提高土壤酶活性、调节根际土壤微生物种群结构、增加有益微生物组比例、吸附根际分泌物等途径,来减少病原菌在植物根部的定殖,进而降低发病率。然而,生物炭的单独防治效果往往并不稳定,主要是由于不能从根本上减少土传病原菌的数量,且过多的生物炭输入反而会降低防治效果。
-
土传病害侵染作物是一个动态过程,涉及病害与土壤生物、非生物因素等的相互作用,因此,仅用一种手段难以达到稳定且可持续的防治效果。随着人们对绿色技术的追求愈加强烈,生物与其他防治措施协同应用逐渐成为土传病害防治的研究热点。本研究综述土传病害的致病机制以及各类防治措施,详述生物防治、生物炭单独防治及协同防治土传病害的机制及其优缺点和应用前景,分别总结了生物炭单独防治和协同生物防治的国内外研究结果,为未来生物炭协同生物措施在农业的实际应用提供理论依据。
-
1 土传病害的致病机制及防治措施
-
土传病害会影响植物的正常生理功能,导致农作物生长受阻,产量下降甚至全面凋萎死亡。蔬菜常见的土传病害有猝倒病、立枯病、瓜类枯萎病等 (表1)。一些病原微生物能在土壤中长期存活,并能通过土壤颗粒、根系和水分传播,引发新的病害,造成地区性流行和连锁反应,增加农作物病害的发生风险。此外,土传病害还会增加农业生产成本,农民需要投入大量资源来控制土传病害,如使用农药、翻耕土壤、引入抗病品种等,这些控制措施会降低农业生产的经济效益。为了防治土传病害的发生和传播需要根据各种类型的致病机制合理研究应对措施。
-
1.1 土传病害的致病机制
-
土传病害可通过土壤颗粒、残留物、种子或水分进行传播。耕作、轮作和焚烧等土壤管理实践会影响有机质的数量和质量,导致土壤中养分不平衡和植物病原体数量增加,会对植物健康造成不利影响[3]。土传病害的致病机制如下[1]:
-
1.1.1 直接致病机制
-
根际微生物可被植物分泌的有机酸、脂多糖和蛋白质等成分特异性吸引[4],这种特异性使微生物对分泌物质表现出趋化反应并促进其侵入、定殖。专性感染的病原菌通常具有高度特化的感染结构,以穿透植物细胞壁,并在穿透部位释放毒力因子及防止植物防御反应激活的效应分子[5],毒力因子包括细胞外聚合物物质、针对拮抗生物的抗生素、质粒和细胞壁降解酶等。它们的表达通过不同的调控网络发生,蛋白质毒素在其中发挥主要作用,其可以靶向细胞壁、质膜和其他细胞内组分[6],并诱导细胞中微丝和微管发生变化[7],导致细胞迅速发生病变。
-
病原菌还能够分泌激素样物质来干扰植物的生长发育,病毒感染可同时诱导几种拮抗激素的分泌,导致激素信号和反应、代谢物、转录组发生变化,从而干扰植物的正常生理过程,最终导致植物的生理功能失调及病症的出现[8]。
-
1.1.2 间接致病机制
-
土传病害的病媒包括节肢动物、线虫和动物孢子等多种类群,以蚜虫为例,病毒可通过循环和非循环 2 种方式传播,主要区别在于非循环传播的病毒仅存在于载体的探针和前肠尖端,而循环传播的病毒通过载体的唾液腺传播,在载体体内循环,这种传播方式主要见于黄体病毒科[9]。
-
土壤中的病原菌可以利用植物根系分泌的营养物质来滋养自身,它们与根际的原生微生物竞争营养物质,使根际有益菌的生存受到限制,不仅会降低病原菌拮抗菌的抵御能力,还会导致植物无法获得足够的养分来支持正常的生长,最终导致植物营养不良甚至受害。
-
2 生物措施防治土传病害
-
作物品种、管理措施、耕作制度、土壤有机质含量、pH 值、菌源数量种类和气候等多种因素均可影响病害的发生。土传病原菌在土壤中的生存能力强,即使感知不到植物信号或遇到不适合的生长环境,仍可保持在休眠状态,有条件时再次复苏、入侵作物。土传病害的防治方法包括选育抗病品种、轮作、嫁接等农业防治手段以及物理、化学和生物的土壤处理措施。生物防治指利用一种或多种生物来降低病源菌的数量或削弱其致病能力,减轻病原菌感染带来的伤害[10]。由于对环境无害的防治需求增加,包括细菌、真菌、病毒、线虫和昆虫在内的生物防治剂可被用来管理土传病害,为提高对疾病抑制的稳定性和效率,也有将 2 种或 2 种以上微生物菌株组成的不同生物防治剂联合体。生物防治的主要措施包括:通过喷雾或者灌溉的方式添加其他微生物到土壤中或利用具有生物防治能力的土著根际微生物,起到控制土传病害的作用;还可以利用噬菌体侵染宿主细菌,靶向防治病原菌,并且可以调控细菌种群数量,减少病原菌产生对抗生素的抗性;另外,施用生物有机肥料,提升土壤肥力,促进作物生长,也可直接或间接抑制病害发生。
-
2.1 生防菌防治机理
-
生防菌指具有生物防治作用的微生物群,其添加至土壤后,可以通过多种机制实现防治土传病害的效果。首先,生防菌在根际土壤中可通过拮抗作用直接降低植物木质部内病原水平[11],并且根际微生物群还可通过竞争空间和养分间接抵御入侵病原菌,微生物对植物根系分泌物具有底物偏好,根际细菌对渗出物的选择性吸收与植物生长阶段这些化合物的增强、释放及相互作用,实现促生作用[12]。其次,在与病原菌作用过程中生防菌还可以通过分泌抗生素、毒素和表面活性化合物等代谢物来抑制病原菌的生长、破坏病原菌细胞膜的结构,从而影响细胞的运输过程。同时,一些与宿主植物具有寄生关系的内生菌和其他附生微生物,能够合成具有生物活性的化合物,可影响植物宿主分泌抗菌物质的过程,增强宿主全身的免疫反应[13]。
-
2.2 噬菌体疗法防治机理
-
噬菌体是一种可特异性感染细菌,并在其体内进行复制的病毒,其中部分类型可引起宿主细菌裂解[14]。噬菌体防治的机理主要是噬菌体对病原菌的直接裂解,如毒性噬菌体感染宿主细胞,经过复制周期后,裂解宿主细胞同时释放子代噬菌体,噬菌体可以靶向对抗具有耐药性的植物病原菌。同时还可以重构根际土壤菌群防御体系,利用多种不同类型的噬菌体制备成噬菌体鸡尾酒能够同时攻击细菌群落中不同类型的致病微生物,虽然病原菌在噬菌体组合胁迫下能发展出对具有共同进化型噬菌体的抗性,但这种权衡成本高昂,会导致病原菌的竞争和侵染能力降低。同时,噬菌体可通过选择性杀灭特定细胞来避免产生新的耐药突变,进一步对土壤性质和原生根际微生物群产生影响,降低噬菌体抗性菌株的突变率[15]。
-
2.3 生物有机肥防治机理
-
生物有机肥指具特定功能的微生物与畜禽粪便、农作物秸秆等的有机物料复合而成的一类兼具微生物肥料和有机肥效应的肥料。肥料能改善土壤的微粒结构和孔隙大小,对土壤有机质团聚体的形成有重要影响,聚积的团聚体颗粒能通过增加根瘤菌来影响原核和真菌群落结构[16]。同时,通过肥料在土壤中的缓慢释放,能够有效避免养分污染造成的滞留,缓解由根际微生物间营养争夺而导致的植物病弱,抵抗力降低。在有机肥料中添加合适的生物防治剂可以有效减少病原菌数量,从而控制植物病害[17],因而生物有机肥的总体效果是生防菌对病原菌的直接抑制和对于土著根系微生物群落重塑而产生的间接影响的总和。
-
2.4 生物防治土传病害的局限性
-
随着生态农业的发展,生防菌在农业领域的应用迅速拓展,但要做到从实验室到大规模的生产运用仍有待发掘。单独应用生物防治时存在定殖不良和效果不一致的问题,需要与适应性更好的本地微生物群竞争,并且生防菌的防治效果很大程度上受环境条件的影响[18]。目前已有研究将生物炭与生防菌剂协同施用来防治土传病害,生物炭能够有效改善土壤理化性质,并且防治效果较为稳定,还能够从改善植物自身抗病性角度实现防治作用,该协同防治方法为土壤抗性细菌等病害的治理提供新的选择。
-
3 生物炭对土传病害的防治机理
-
生物炭是在缺氧、低温条件下将作物秸秆等废弃生物质热解炭化,所产生的富含芳香烃类难降解有机物的固态物质[19]。烷基及芳香环等结构使生物炭具有较强的吸附性和抗氧化性质等。生物炭可为作物生长提供各种矿质营养物质,直接或间接地提高作物产量,其较大的比表面积还可为各种分泌物及微生物提供着床条件[20]。由不同原料和裂解温度产生的不同类型生物炭适合于不同种类的作物和病害类型,生物炭已被证明对包括镰孢菌属和青霉菌属在内的多种植物病原有有效的抑制作用(表2),分析发现秸秆生物炭与其他原料生物炭相比具有更好的抑病效果,主要可能是由于秸秆生物炭中较高的硅(Si)含量[21],植物中的高效 Si 可以通过增强细胞壁来抑制病原真菌的渗透[22], 400~600℃条件下裂解生产的生物炭更有助于植物生长,研究表明,热解温度是决定生物炭理化性质的重要因素[23],当温度在 300~400℃之间时,有机化合物碳化过程中产生的毒性物质会抑制植物生长[24]。此外,3%~5% 为生物炭施用较为适宜的浓度,高施用量(10%)对病害抑制效果没有显著影响。
-
3.1 改善土壤理化性质
-
生物炭具有较大的比表面积,能够与土壤中的矿物质、根系分泌物等物质相互作用,同时还能够通过吸附作用提高土壤中养分的有效性和可利用性[35]。此外,生物炭的施入能够显著提升土壤有机质含量,同时促进较大颗粒团聚体的形成,作为新合成的有机质载体[36],增加土壤的结构稳定性,减少土壤的侵蚀和沉积,还能够通过混合或稀释效应及与土壤颗粒的相互作用降低土壤容重和土壤颗粒密度,直接使土壤孔隙度增大[37]。另外,生物炭可从提高土壤入渗性、蔗糖酶活性等多方面来增强土壤肥力,改善作物品质,降低病害侵染程度[38]。
-
3.2 调节微生物种群结构
-
植物根际土壤中微生物种类复杂,而生物炭的孔隙结构可为根际微生物提供适宜的生存环境,进而通过拮抗作用来降低病原菌含量。研究表明[39] 对连作土壤施用生物炭可促进根际微生物对氨基酸类、羧酸类等碳源的利用,丰富土壤细菌物种的多样性。植物根际各种微生物间资源竞争激烈,病原菌与其他有益微生物在根际中竞争有限的养分和空间资源,生物炭显著提升了与土传病害抑制、植物生长促进和生物氮相关属的丰度[40],增强植物与有益微生物的互利共生关系,强化根际土壤-有益微生物系统的防御能力,限制了病原菌的繁殖[41]。
-
3.3 吸附植物根际及病原菌的分泌物
-
在植物生长过程中,病原菌通常通过植物根际进入植物根部,生物炭具有吸附植物根系分泌物和病原菌分泌物等多种物质的能力,从而减少了植物与病原菌之间的接触,有效降低了病原菌对植物的侵染风险。一些病原菌对吸附根际分泌物的生物炭表现出很强的趋化反应,进而影响到病原菌在根际土壤中的集群运动,使病原菌根际定殖率降低[42]。此外,还有研究表明生物炭可以有效吸附病原菌细胞壁降解酶和毒性代谢物,进而降低其与植物根系细胞壁的接触,有效阻碍了病原菌的侵染[43]。
-
3.4 诱导增强植物抗病性
-
植物的诱导抗病性现象是指植物在受到病原菌入侵或其他外界刺激后,通过刺激作用诱导植物发生生理、形态上的变化来产生抗性。生物炭对病原菌并没有直接的毒性,而是以诱导系统性抗性 (ISR)和系统获得性抗性(SAR)形式的系统性诱导抗性[44]。Harel 等[45]在接种病原菌的土壤中施用生物炭,测定植物叶片中相关的防御基因表达情况后,发现生物炭增强了植物体内水杨酸(SA)代谢途径、茉莉酸(JA)代谢途径以及乙烯(Et)代谢途径,提高了植物本身抵抗病原菌侵害的能力。
-
3.5 生物炭防治土传病害的局限性
-
从机理上可见,生物炭对土传病害的防治以间接方式为主,很难从根本上减少土传病原菌的数量。因此,一些研究结果发现,生物炭对土传病害具有中性,甚至负面影响。Elzobair 等[46]将生物炭与粪便对照施用,发现生物炭对玉米根系微生物量、群落结构、胞外酶活性和丛枝菌根真菌根定植均无影响,并且,生物炭吸附的氮、铁等营养元素可能会对植物生长起负作用[47]。同时,生物炭对土壤性质的影响因素并未完全都得到深入研究,例如,施用同量的生物炭,其不同原料类型、热解温度都会使生物炭对土壤性质的影响程度发生改变,从而可能在生存空间和营养条件方面影响病害的防治结果。
-
4 生物炭协同生物措施防治土传病害
-
4.1 生物炭协同生防菌防治土传病害
-
土壤环境的复杂性使生物防治效果受到土壤温度、土壤水分含量和养分含量等多种因素的影响,因此,单一的生物防治效果通常并不稳定[45]。另一方面,由于微生物发挥防治作用效率的关键在于其在植物根际定殖的稳定性,而生物炭作为一种具备吸附特性的多孔材料,将其与微生物接种剂联用可以充分利用生物炭吸附和固定养分的能力,为接种的益生菌提供合适的生存环境,并加强生物炭与土壤微生物之间的相互作用,因而成为配合生物防治的优势选择。
-
图1 中展示了生物炭协同生防菌对土传病害的防治过程。生物炭依靠自身的理化性质调节土壤中微生物的群落结构,使有益菌定殖在寄主植物的根系并发挥其功能,调节有益菌在群落中的优势地位,放大其生防效果;而微生物可通过 JA/Et 依赖性或 SA 依赖性信号特异性杀死病原菌或诱导植物全身抗性,从而降低寄主植物的易感性;微生物可以通过与生物炭相互作用改变根际分泌物或改善土壤性质,从而减少病原菌的生长、繁殖和传播[48]。
-
图1 生物炭协同生防菌对土传病害的防治机理示意图
-
注:ISR 为诱导系统性抗性,SAR 为系统获得性抗性。
-
首先,生物炭能够吸附根际根系分泌物中的有机酸和其他化合物,为生防菌生长提供所需的能量和碳源。生防菌附着在生物炭的表面或孔隙中,形成一个稳定的抑制疾病的根际微生物组,生物炭为生防菌提供受保护的环境,增加其生存率和竞争力,促进其缓慢释放并延长生存。其次,生物炭的应用增加了土壤中活性有机碳含量,为土壤微生物的生长提供了足够的碳源,促进细胞外酶活性提升[49],且提升土壤微生物的活性又为土壤酶的生产提供更多的底物[50]。同时,生物炭在其表面形成活性细胞聚集体,有利于维持细胞活力,促进细菌群体感应,提高微生物的代谢效率和生物合成活性[49],具备氧化、还原性的官能团使生物炭能够作为传递桥梁,介导微生物的电子传递过程,也能够促进微生物的代谢活动[51],调节根际微生物的群落结构。最后,当病原体突破根际微生物组的保护屏障并与宿主细胞皮质相接触后,植物的先天防御机制和内生微生物组都会被触发[52],SAR 通常在植物受到弱毒菌株感染或经过特殊试剂处理后被触发,ISR 则由植物生长促进根际细菌(PGPR)启动。生物炭含有多种有机酸、酚类物质和植物毒性化合物,能够影响 PGPR 的能力。在 Rasool 等[53] 的研究中,发现单独添加生物炭能够诱导茉莉酸途径相关的 PI2、TomloxD 基因以及水杨酸途径相关的 PR1a、PR2 等植物防御相关基因的表达水平上调,且接种 PGPR 后,PR2 的表达水平提高,生物炭协同 PGPR 诱导植物防御涉及全身抗性和全身获得性抗性机制。
-
生物炭的原料可以是各种植物和动物残渣,如木材、秸秆、果壳、骨骼等。简单制备方法有直接热解和高温热分解等,通过控制制备工艺可以调节生物炭的孔隙结构和表面化学性质,使其具有更好的吸附和释放性能,提高生物防治效果。不同微生物对来源不同的生物炭具有选择趋向性,生物炭-生防菌协同在许多病害类型的防治中表现出良好的效果,表3 总结了不同生物炭对生防菌的协同防治效果。
-
4.2 生物炭协同噬菌体防治土传病害
-
生物炭和噬菌体在土传病害防治领域的研究,分别取得了许多成果。噬菌体疗法有能力识别特定的病毒,而且对环境影响小,它可以进入宿主细胞内,高效地杀死病原菌,还能有效减少抗生素的使用[61]。研究发现,噬菌体对于韭菜细菌性枯萎病[62]、西兰花黑腐病[63]和辣椒细菌性斑点病[64] 等多种植物病害的发生均有明显的抑制作用。在病原菌侵染植物以及噬菌体与病原菌相互作用的过程中,噬菌体疗法的防治效果可能会受到土壤条件、微生物群落结构及微生物-植物相互关系的影响,单一的防治手段效果不稳定,合理配施“生物炭 + 噬菌体”可稳定噬菌体的防治效果,达到持续防治的目的。
-
图2 显示了生物炭协同噬菌体防治土传病害的影响效果,二者协同施用阻碍了耐药病原菌在土层中的迁移,且对土壤中耐药病原菌和耐药基因具有抑制效果[65]。同时,由于噬菌体的生物学特性,它只对特定的目标细菌产生灭活作用,协同施用还可以维持土壤微生物群落的结构和多样性。噬菌体对病原菌的抑制可为土著微生物群提供生态位空间和营养物质,进而提高根际微生物组的多样性,丰富对病原菌具拮抗性的细菌分类群,因此,噬菌体群落可通过减弱病原菌与“抑制菌”间的竞争间接驱动防治效果[66]。
-
相比于单独接种噬菌体,可以将噬菌体与生物炭结合,生物炭可以通过吸附和阻隔作用有效地持留抗性致病细菌,并避免其进一步扩散和侵害其他非目标微生物,生物炭的多孔结构还能为抗性致病细菌提供定殖和生长的环境,形成定殖区域,并且同时引入噬菌体有助于提高噬菌体与宿主致病细菌的接触机率,从而节省噬菌体搜索并向宿主移动所花费的时间,进而降低病原菌在根部的定殖、提高有益微生物组的比例、减少病害发生。将多种噬菌体混合制备的噬菌体鸡尾酒具有较广泛的宿主类型,能够更好的适应病原菌耐药性的突变,而生物炭多孔结构等理化性质的协同作用可以使噬菌体鸡尾酒在协同配施的区域内侵染病原菌,提高靶向侵染率,噬菌体鸡尾酒可以在多类噬菌体之间建立协同作用,从而改善噬菌体吸附和病原体裂解速率的稳健性[14]。
-
图2 生物炭协同噬菌体对土传病害的防治机理示意图
-
注:ARGs 为抗生素抗性基因。
-
土传病原菌需要在其生存和致病力间进行权衡,以适应多样且不断变化的土壤环境,当噬菌体对土传病原菌的侵染胁迫增强时,病原菌以资源摄取能力和毒性基因表达等来替换更强的抗胁迫机制,同时对所有噬菌体产生抗性需要病原菌付出巨大的适应性成本,即生存成本提高,致病能力下降[67]。
-
生物炭协同噬菌体使用已有报道,主要集中在生物炭协同噬菌体阻控土壤中抗生素抗性致病细菌方面[68]。由于噬菌体携带的抗生素抗性基因 (ARGs)存在于衣壳内,导致其在自然环境中可以保留较长时间[69],而生物炭能够同时吸附土著菌群和大量广宿主型噬菌体,缩小噬菌体活动区间,可以阻滞 ARGs 在土壤中的传播。但是,将生物炭协同多种专性噬菌体用于土传病害防治的相关研究仍较少。
-
4.3 生物炭协同生物有机肥防治土传病害
-
土壤有机物的稳定性会影响微生物对有机物料的响应,进而影响土传病害的致病性。施用生物有机肥可增加土壤有机质含量,为土壤微生物的生长提供碳源,丰富根际微生物类群[70],微生物群落进而通过养分竞争、拮抗作用和植物抗性诱导来抑制土传病害的发生。生物有机肥输入后,会激起有益微生物强烈活动,同时,一些植物病原菌兼营腐生,如腐霉(Pythium),其对土壤养分的响应十分迅速[71],而后发展与有益微生物的竞争关系。
-
由农业废弃物制作的生物炭具有高度羧酸酯化、芳香化和脂肪族链状等稳定结构,应用到土壤中能够促进土壤团聚体形成,为许多重要微生物的繁殖提供了“温床”和良好的“庇护所”,使它们最小程度地受到外界干扰,也减少了微生物之间的生存竞争,从而提高土壤抵抗力与恢复力[72]。生物炭输入土壤将会降低微生物对外来碳源输入的响应程度,进而减少土传病害与拮抗或竞争微生物之间的竞争。
-
根际微生物组作为抵御土传病害的第一道防线,其种类和功能多样性与病害抑制和促进植物生长直接相关,生物炭通过其多孔结构特征和对土壤 pH 调节等能力富集芽孢杆菌属等促生根际有益菌[40]。研究表明,生物炭作为生物有机肥的辅料可以促进菌肥发酵,对烟草黑胫病的防治效果显著,且添加稻壳生物炭还能够避免发酵物过度酸化[73]。因此,选用不同类型生物炭进行合理配施,提供有益菌所需要的营养物质,从而促进其在与病原菌根际竞争中获胜,且生物炭可凭借其理化特性用作微生物的载体,使生物有机肥的养分释放过程更加稳定和持久。
-
4.4 协同防治的优势与存在问题
-
目前,关于生物防治对植物根际土壤微生态的影响以及对作物的防病促生效果已有许多报道。然而,具有明显抑菌作用的生防菌在盆栽和田间施用时,会受到自身抑菌制剂、病原菌、寄主植物以及环境因素的影响,可能会导致其定殖能力和防病效果发生不稳定的变化。因而利用无机生物炭作为生防菌的营养来源和载体,可以协助生防菌在植物根际土壤中的定殖,使生防菌形成稳定的优势种群,以达到更好的防治效果。生物炭还能够同时吸附土著菌群和大量广宿主型噬菌体,缩小噬菌体活动区间,提高其靶向灭活抗生素抗性致病细菌的效率。特别是在低肥力土壤中,生物炭还能够刺激微生物活性,同时,生物炭相比其他环保材料的成本低,是一种普适性的可以大规模应用的材料,制备生物炭的原材料大部分来源于农林废弃物,因而生物炭与生物措施协同施用仍具有环境友好等优点。
-
然而,生物炭与有益菌配施,对病原菌的防治效果也受到原材料类型、原生根际微生物群和土壤营养条件等影响,其中,土壤代谢物在分析生物炭-根际微生物系统的活动中可能起重要作用,在土壤代谢过程中,系统内的相互作用对于有益菌在根际的定殖和生物炭的吸附防治作用具有一定影响。为实现更有效的防治效果,可以通过控制生物炭的原料类型、热解温度和时间来配合微生物的生物学特性,选择配施的生物炭时,需要考虑到目标病害的种类,选择对其具有拮抗作用的菌株,还应考虑到菌株的生长适应性,如耐受性、适应性和生存能力等因素。然而,目前对于不同类型根际土壤条件所选用不同原料生物炭的研究仅选取部分典型土壤条件,有待丰富和总结。
-
噬菌体灭活病原菌的效果和稳定性也受病原菌丰度的影响。当病原菌水平较低时,大量的噬菌体因缺乏营养来源而失活或者转为溶原状态,进而降低了防治效果[74]。一般认为,施用噬菌体 24 h 后,其在土壤中的存活率会明显降低,如何提高噬菌体对病害防治的时效性有待进一步研究。目前虽然已有研究关注噬菌体介导的基因转移现象,但多集中于污水和淡水环境,关于噬菌体在土壤环境中的 ARGs 转导过程中担任的角色和具体过程仍未完全明确,以及噬菌体疗法和生物炭协同减弱土壤-植物系统中抗生素抗性细菌和 ARGs 水平的影响条件和机制还有待探索。
-
另外,生物炭和微生物的协同防治系统还不确定具有高度的靶向性,因此需要控制生物炭和微生物的施用剂量,以确保它们对土壤-植物-微生物功能的作用在可控制的范围内。目前有关生物炭与微生物协同防治植物病害的研究还很有限,因此,对协同防治植物病害的研究能够促进生物炭-微生物接种剂的产业化和商业化。
-
5 总结与展望
-
生物炭和生物协同防治的方式能够直接影响病原菌和土壤环境,然而,在该协同系统外有诸多因素,如土温、气温和降水对协同系统防治效果的影响尚不明确,利用协同系统防治土传病害仍存有很多值得解决的问题:
-
(1)针对不同的植物-病原菌系统,其土壤理化性质、各类胁迫条件、植物对病原菌的免疫抗性等存在差异,因此需要针对不同类型植物-病原菌系统的靶向生物炭协同方案,并且在不同的植物-病原菌系统中,确定出生物炭协同施用的方法和最佳剂量。
-
(2)由于生物炭的物理、化学、生物学特性及环境功能等会受到原材料和制备条件的影响,因而需要进一步探索不同物种在与特定类型病害共存时产生抑菌或促进植株健康的机制,可以考虑利用寄主激活系统来诱导植株自身产生抗性蛋白质或化合物以应对各种外界压力。
-
(3)生物炭协同生物防治系统可能会对植物根际的微生物功能和生物多样性产生影响,从外界添加的生防微生物在根系群落结构稳定后与土著群落的互作关系仍未开展研究,因此需要进一步研究施用后对根际土壤理化性质及稳定性的影响。
-
(4)目前协同防治方法应用的常见微生物多是从植物内生菌或根际微生物群中筛选、分离出的,如芽孢杆菌、假单胞菌和木霉菌等。大部分研究试验时间较短,而且多以实验室或温室等控制条件下为主,与现实的生产差距甚大,要想确定生物炭协同生物措施的防治效果及机制,仍需进行长期的田间试验。
-
参考文献
-
[1] 马艳,王光飞.生物炭防控植物土传病害研究进展[J].中国土壤与肥料,2014(6):14-20.
-
[2] Li Q,Zhan Y,Xie H Z,et al.Potential causes and recovery of soil sickness from the Panax ginseng cultivation[J].Allelopathy Journal,2021,54(1):105-119.
-
[3] Steffan J J,Brevik E C,Burgess L C,et al.The effect of soil on human health:an overview[J].European Journal of Soil Science,2018,69(1):159-171.
-
[4] White J F,Kingsley K L,Zhang Q,et al.Endophytic microbes and their potential applications in crop management[J].Pest Management Science,2019,75(10):2558-2565.
-
[5] Horbach R,Navarro-Quesada A R,Knogge W,et al.When and how to kill a plant cell:infection strategies of plant pathogenic fungi[J].Journal of Plant Physiology,2011,168(1):51-62.
-
[6] Gutiérrez-Pacheco M M,Bernal-Mercado A T,VázquezArmenta F J,et al.Quorum sensing interruption as a tool to control virulence of plant pathogenic bacteria[J].Physiological and Molecular Plant Pathology,2019,106:281-291.
-
[7] Zhao J,Chen Q H,Zhou S,et al.H2Bub1 regulates RbohDdependent hydrogen peroxide signal pathway in the defense responses to Verticillium dahliae toxins[J].Plant Physiology,2020,182(1):640-657.
-
[8] Alazem M,Lin N S.Roles of plant hormones in the regulation of host-virus interactions[J].Molecular Plant Pathology,2015,16(5):529-540.
-
[9] Dáder B,Moreno A,Viñuela E,et al.Spatio-temporal dynamics of viruses are differentially affected by parasitoids depending on the mode of transmission[J].Viruses,2012,4(11):3069-3089.
-
[10] Niu B,Wang W X,Yuan Z B,et al.Microbial interactions within multiple-strain biological control agents impact soilborne plant disease[J].Frontiers in Microbiology,2020,11:585404.
-
[11] Markakis E A,Tjamos S E,Antoniou P P,et al.Biological control of Verticillium wilt of olive by Paenibacillus alvei,strain K165[J].Bio Control,2016,61:293-303.
-
[12] Zhalnina K,Louie K B,Hao Z,et al.Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly[J].Nature Microbiology,2018,3(4):470-480.
-
[13] Kashyap N,Singh S K,Yadav N,et al.Biocontrol screening of endophytes:applications and limitations[J].Plants,2023,12(13):2480.
-
[14] Farooq T,Hussain M D,Shakeel M T,et al.Deploying viruses against phytobacteria:potential use of phage cocktails as a multifaceted approach to combat resistant bacterial plant pathogens [J].Viruses,2022,14(2):171.
-
[15] Yu L,Wang S,Guo Z M,et al.A guard-killer phage cocktail effectively lyses the host and inhibits the development of phageresistant strains of Escherichia coli [J].Applied Microbiology and Biotechnology,2018,102:971-983.
-
[16] Lin Y X,Ye G P,Kuzyakov Y,et al.Long-term manure application increases soil organic matter and aggregation,and alters microbial community structure and keystone taxa[J].Soil Biology and Biochemistry,2019,134:187-196.
-
[17] Tao C Y,Li R,Xiong W,et al.Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression[J].Microbiome,2020,8(1):137.
-
[18] Larkin R P,Fravel D R.Effects of varying environmental conditions on biological control of Fusarium wilt of tomato by nonpathogenic Fusarium spp.[J].Phytopathology,2002,92(11):1160-1166.
-
[19] Bilgili A V,Aydemir S,Altun O,et al.The effects of biochars produced from the residues of locally grown crops on soil quality variables and indexes[J].Geoderma,2019,345:123-133.
-
[20] Zheng H,Wang X,Luo X X,et al.Biochar-induced negative carbon mineralization priming effects in a coastal wetland soil:roles of soil aggregation and microbial modulation[J].Science of the Total Environment,2018,610:951-960.
-
[21] Wang Y F,Xiao X,Zhang K,et al.Effects of biochar amendment on the soil silicon cycle in a soil-rice ecosystem[J]. Environmental Pollution,2019,248:823-833.
-
[22] Shabbir I,Samad A Y M,Othman R,et al.White root rot disease suppression in rubber plant with microbial co-inoculants and silicon addition[J].Rhizosphere,2020,15:100221.
-
[23] Abhijeet A,Vivek K,Priyanka K.Biochar and its twin benefits:crop residue management and climate change mitigation in India [J].Renewable and Sustainable Energy Reviews,2022,156:111959.
-
[24] Yang Y H,Chen T T,Xiao R,et al.A quantitative evaluation of the biochar’s influence on plant disease suppress:a global meta-analysis[J].Biochar,2022,4(1):43.
-
[25] Asif M,Haider M S,Akhter A.Impact of biochar on Fusarium wilt of cotton and the dynamics of soil microbial community[J]. Sustainability,2023,15(17):12936.
-
[26] 冯慧琳,付兵,任天宝,等.生物炭对青枯病烟株的根际土壤微生物群落结构调控机制分析[J].农业资源与环境学报,2022,39(1):173-181.
-
[27] 刘春来,杨帆,王爽,等.生物碳对大豆根腐病防控效果及植株生长的影响[J].黑龙江农业科学,2020(8):49-52.
-
[28] Zhang C,Lin Y,Tian X,et al.Tobacco bacterial wilt suppression with biochar soil addition associates to improved soil physiochemical properties and increased rhizosphere bacteria abundance[J].Applied Soil Ecology,2017,112:90-96.
-
[29] Tian J H,Rao S,Gao Y,et al.Wheat straw biochar amendment suppresses tomato bacterial wilt caused by Ralstonia solanacearum:potential effects of rhizosphere organic acids and amino acids[J].Journal of Integrative Agriculture,2021,20(9):2450-2462.
-
[30] Xue J,Zhou X G,Wu F Z,et al.Biochar amendment suppressed Fusarium wilt and altered the rhizosphere microbial composition of tomatoes[J].Agronomy,2023,13(7):1811.
-
[31] Debode J,Ebrahimi N,D’Hose T,et al.Has compost withbiochar added during the process added value over biochar or compost to increase disease suppression?[J].Applied Soil Ecology,2020,153:103571.
-
[32] Jin L,Feng S,Tang S C,et al.Biological control of potato late blight with a combination of Streptomyces strains and biochar[J]. Biological Control,2023,183:105248.
-
[33] Egamberdieva D,Shurigin V,Alaylar B,et al.The effect of biochars and endophytic bacteria on growth and root rot disease incidence of Fusarium infested narrow-leafed lupin(Lupinus angustifolius L.)[J].Microorganisms,2020,8(4):496.
-
[34] Gao Y,Wang L,Liu R,et al.Physiological response and proteomic profiling of biochar-induced tomato resistance to bacterial wilt[J].Scientia Horticulturae,2023,317:112055.
-
[35] Ajeng A A,Abdullah R,Ling T C,et al.Bioformulation of biochar as a potential inoculant carrier for sustainable agriculture [J].Environmental Technology & Innovation,2020,20:101168.
-
[36] 龙杰琦,苗淑杰,李娜,等.施用生物炭对黑土各组分有机质结构的影响[J].植物营养与肥料学报,2022,28(5):775-785.
-
[37] Blanco-Canqui H.Biochar and soil physical properties[J]. Soil Science Society of America Journal,2017,81(4):687-711.
-
[38] 石芬芬,莫明浩,胡皓,等.施用生物炭对红壤坡地土壤性质改良效果的试验研究[J].江西农业学报,2023,35(1):94-98.
-
[39] 杨莉,勾颖,文子伟,等.生物质炭对连作参地土壤肥力及微生物特性的影响[J].核农学报,2022,36(6):1244-1253.
-
[40] Jaiswal A K,Elad Y,Paudel I,et al.Linking the belowground microbial composition,diversity and activity to soilborne disease suppression and growth promotion of tomato amended with biochar [J].Scientific Reports,2017,7(1):44382.
-
[41] 王孝芳,梅新兰,黄大鹏,等.生物质炭载体联合有益菌防控番茄土传青枯病的效果研究[J].土壤学报,2022,59(2):536-544.
-
[42] Gu Y,Hou Y G,Huang D P,et al.Application of biochar reduces Ralstonia solanacearum infection via effects on pathogen chemotaxis,swarming motility,and root exudate adsorption[J].Plant and Soil,2017,415:269-281.
-
[43] Jaiswal A K,Frenkel O,Tsechansky L,et al.Immobilization and deactivation of pathogenic enzymes and toxic metabolites by biochar:a possible mechanism involved in soilborne disease suppression[J].Soil Biology and Biochemistry,2018,121:59-66.
-
[44] Elad Y,David D R,Harel Y M,et al.Induction of systemic resistance in plants by biochar,a soil-applied carbon sequestering agent[J].Phytopathology,2010,100(9):913-921.
-
[45] Harel Y M,Elad Y,David D R,et al.Biochar mediates systemic response of strawberry to foliar fungal pathogens[J]. Plant and Soil,2012,357:245-257.
-
[46] Elzobair K A,Stromberger M E,Ippolito J A,et al.Contrasting effects of biochar versus manure on soil microbial communities and enzyme activities in an Aridisol[J].Chemosphere,2016,142:145-152.
-
[47] Kim H S,Kim K R,Kim H J,et al.Effect of biochar on heavy metal immobilization and uptake by lettuce(Lactuca sativa L.)in agricultural soil[J].Environmental Earth Sciences,2015,74:1249-1259.
-
[48] Liu Z W,Zhou W,Sun Y Q,et al.Biochar and its coupling with microbial inoculants for suppressing plant diseases:a review [J].Applied Soil Ecology,2023,190:105025.
-
[49] Yan H C,Liu C C,Yu W T,et al.The aggregate distribution of Pseudomonas aeruginosa on biochar facilitates quorum sensing and biofilm formation[J].Science of the Total Environment,2023,856:159034.
-
[50] Xia H,Riaz M,Liu B,et al.Over two years study:peanut biochar promoted potassium availability by mediating the relationship between bacterial community and soil properties[J]. Applied Soil Ecology,2022,176:104485.
-
[51] Sathishkumar K,Li Y,Sanganyado E.Electrochemical behavior of biochar and its effects on microbial nitrate reduction:role of extracellular polymeric substances in extracellular electron transfer [J].Chemical Engineering Journal,2020,395:125077.
-
[52] Carrión V J,Perez-Jaramillo J,Cordovez V,et al.Pathogeninduced activation of disease-suppressive functions in the endophytic root microbiome[J].Science,2019,366:606-612.
-
[53] RasoolM,Akhter A,Haider M S.Molecular and biochemical insight into biochar and Bacillus subtilis induced defense in tomatoes against Alternaria solani [J].Scientia Horticulturae,2021,285:110203.
-
[54] 贾海江,冯俊喜,吴涛,等.生物炭菌剂对烟草黑胫病及土壤微生物的影响[J].中国烟草科学,2022,43(6):68-75.
-
[55] 曹帅,李金梦,王蓝琴,等.贝莱斯芽孢杆菌 B4-7 联合水稻秸秆生物炭对烟草青枯病的防治作用[J].南方农业学报,2022,53(9):2568-2574.
-
[56] 王莹乐,李泳霖,梁雪,等. 生物炭环境协同生防菌 Bacillus amyloliquefaciens P4 防控香芋软腐病的研究[J].湖北农业科学,2022,61(21):79-85.
-
[57] Safaei A R,Hage-Ahmed K,Steinkellner S.Biochar,compost and arbuscular mycorrhizal fungi:a tripartite approach to combat Sclerotinia sclerotiorum in soybean[J].Journal of Plant Diseases and Protection,2021,128(6):1433-1445.
-
[58] Da Silva J S A,De Medeiros E V,Da Costa D P,et al.Biochar and Trichoderma aureoviride URM 5158 as alternatives for the management of cassava root rot[J].Applied Soil Ecology,2022,172:104353.
-
[59] Luigi M,Manglli A,Dragone I,et al.Effects of biochar on the growth and development of tomato seedlings and on the response of tomato plants to the infection of systemic viral agents[J].Frontiers in Microbiology,2022,13:862075.
-
[60] Ijaz M,Sattar A,Sher A,et al.Sulfur application combined with Planomicrobium sp.strain MSSA-10 and farmyard manure biochar helps in the management of charcoal rot disease in sunflower(Helianthus annuus L.)[J].Sustainability,2021,13(15):8535.
-
[61] 韦中,王孝芳,马迎飞,等.噬菌体微生态疗法与一体化健康:现状、挑战与机遇[J].中国科学:生命科学,2023,53(5):698-710.
-
[62] Sofie R,Anneleen V,Sofie V,et al.Characterization of novel bacteriophages for biocontrol of bacterial blight in leek caused by Pseudomonas syringae pv.porri[J].Frontiers in Microbiology,2016,7:279.
-
[63] Nagai H,Miyake N,Kato S,et al.Improved control of black rot of broccoli caused by Xanthomonas campestris pv.campestris using a bacteriophage and a nonpathogenic Xanthomonas sp.strain[J]. Journal of General Plant Pathology,2017,83(6):373-381.
-
[64] Katarina G,Nemanja K,Milan I,et al.Complete genome of the Xanthomonas euvesicatoria specific bacteriophage KΦ1,its survival and potential in control of pepper bacterial spot[J]. Frontiers in Microbiology,2018,9:2021.
-
[65] Sun M M,Ye M,Zhang Z Y,et al.Biochar combined with polyvalent phage therapy to mitigate antibiotic resistance pathogenic bacteria vertical transfer risk in an undisturbed soil column system[J].Journal of Hazardous Materials,2019,365:1-8.
-
[66] Yang K M,Wang X F,Hou R J,et al.Rhizosphere phage communities drive soil suppressiveness to bacterial wilt disease[J]. Microbiome,2023,11(1):1-18.
-
[67] 韦中,王佳宁,江高飞,等.土传病原细菌的生存与致病权衡[J].土壤学报,2022,59(2):324-333.
-
[68] Ye M,Sun M M,Zhao Y C,et al.Targeted inactivation of antibiotic-resistant Escherichia coli and Pseudomonas aeruginosa in a soil-lettuce system by combined polyvalent bacteriophage and biochar treatment[J].Environmental Pollution,2018,241:978-987.
-
[69] 陈莫莲,安新丽,杨凯,等.土壤噬菌体及其介导的抗生素抗性基因水平转移研究进展[J].应用生态学报,2021,32(6):2267-2274.
-
[70] Liu Y,Lv Z,Hou H,et al.Long-term effects of combination of organic and inorganic fertilizer on soil properties and microorganisms in a Quaternary Red Clay[J].PLoS One,2021,16(12):e0261387.
-
[71] Descalzo R C,Punja Z K,Lévesque C A,et al.Glyphosate treatment of bean seedlings causes short-term increases in Pythium populations and damping off potential in soils[J].Applied Soil Ecology,1998,8(1-3):25-33.
-
[72] 陈温福,张伟明,孟军.农用生物炭研究进展与前景[J]. 中国农业科学,2013,46(16):3324-3333.
-
[73] 王耀晨.花椒籽炭基有机肥防治烟草黑胫病研究[D].北京:中国农业科学院,2020.
-
[74] 王孝芳,江高飞,王硕,等.噬菌体靶向消减土壤生物污染的制约因素及提升策略[J].土壤学报,2023,60(5):1378-1388.Research progress of biochar combined with biological measures to suppress soil-borne diseases
-
摘要
土传病害造成的作物减产、低质等问题制约了我国农业的可持续发展。土传病原菌种类多、致病机理复杂使得其防治难度较高,仅采取一种措施难以达到稳定且高效的防治效果。生物炭的孔隙结构及吸附特性在土壤改良和修复方面具有很大潜力,其防治效果与不同原料类型有关,且不能直接去除病原菌。生物措施具有绿色、可持续等优点,但土壤微生物群落相互作用关系复杂,可能会导致防治效果不稳定。将生物炭与生物措施协同施用对环境无害且效果稳定,比单一处理更能降低病原菌致病水平,因而逐渐成为植物病害防治领域的研究热点。对土传病害的致病机制以及防治措施进行了总结,详述了生物措施、生物炭单独防治及其协同防治土传病害的效应及机制,为生物炭协同生物措施在防治土传病害的应用提供理论依据。
Abstract
The problems of crop yield reduction and low quality caused by soil-borne diseases restrict the sustainable development of agriculture in China.Many kinds of soil-borne pathogens and complex pathogenic mechanisms make it difficult to control them,and it is difficult to achieve stable and efficient control effects by only taking one measure.The pore structure and adsorption characteristics of biochar have great potential in soil improvement and remediation.The control effect of biochar is related to different raw material types,and it cannot directly remove pathogens.Biological measures have the advantages of green and sustainable,but the interaction between soil microbial communities is complex,which may lead to unstable control effects.The combined application of biochar and biological measures is environmentally friendly and stable,and can reduce the pathogenicity level of pathogens more than single treatment,so it has gradually become a research hotspot in the field of plant disease control.Summarized the pathogenic mechanism and various control measures of soil-borne diseases,and detailed the specific mechanisms and application methods of biological measures,biochar alone control and synergistic control of soil-borne diseases,providing a theoretical basis for the application of biochar combined with biological measures in the control of soil-borne diseases.
Keywords
soil-borne diseases ; biochar ; biological control ; soil health ; soil microorganism